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Abstract: Angle or L-section bars are commonly used as non-structural elements in modern buildings, such as 
carriers of massive and expensive glass walls. While they are commonly loaded with shear forces, they can 
nonetheless be subjected to significant torsion, which occurs from loading outside the shear center, and can be 
omitted. This omission may result in lack of shear bearing capacity. Shear and additional normal stresses were 
investigated due to torsion and without one. Analytical calculations in the linear-elastic domain showed a significant 
increase in shear stresses due to torsion. In addition, we compared the results with numerical models to test the 
accuracy of the analytical calculations and the suitability of numerical models. 
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NAPREZANJA KUTNOG PROFILA USLIJED DJELOVANJA POPREČNE SILE 

VAN CENTRA POSMIKA 

 
Sažetak: Kutne ili L profile primjenjujemo najčešće kao nekonstrukcijske elemente, naprimjer pri gradnji nosača 
teških i skupocjenih staklenih stijena. Pritom oni, iako izloženi isključivo poprečnom opterećenju, mogu biti pod 
značajnim utjecajem St. Venantovog uvijanja koje nastaje zbog djelovanja van centra posmika, a koje se može 
previdjeti. Posljedica toga može biti nedovoljna nosivost na posmik. Istražena su posmična te dodatno normalna 
naprezanja u slučaju s i bez uvijanja. Analitički proračuni u linearno-elastičnom području pokazali su značajan 
utjecaj uvijanja na razinu posmičnih naprezanja. Rezultati su dodatno uspoređeni s rezultatima numeričkih 
proračuna radi provjere točnosti i prikladnosti. 

 
Ključne riječi: kutni profil, centar posmika, uvijanje, posmična naprezanja 
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1 INTRODUCTION 

In modern times, glass has become more and more popular among architects because of its aesthetic appeal 
and because of the trend toward energy-efficient buildings (Figure 1). This has led angle bars to become 
widespread non-structural elements (secondary elements), but which still must support heavy, expensive glass 
walls. However, because angle bars are secondary elements, engineers tend to overlook possible torsional effects. 

 

 
Figure 1 Steel and glass buildings in Osijek 

 
For a given cross-section, there is a point where the resultant of transverse shear stresses passes. That point 

is called the shear center 0. If a bar with an angled cross-section is loaded at the shear center, it will only bend 
(Figure 2a); however, if a transverse force is applied outside the shear center, the beam will bend and twist (Figure 
2b). In some cases, due to restrained torsion, the beam warps, additionally increasing the shear and normal stress 
[2]  . Furthermore, because of their low torsional stiffness, thin-walled sections are extremely sensitive to transverse 
loading outside the shear center [4, 5]. For the remainder of this paper, we refer to the force applied in the shear 
center as the "first problem" (Figure 3a) and the force applied outside the shear center as the "second problem" 
(Figure 3b). We used [6, 7] to perform analytical calculations and [8] to produce graphics. 

 

 
 

Figure 2 Beam subjected to transverse force 
 
These two problems may have different normal stress, and certainly they will have different shear stress 

because of the torsional effect of the second problem. Shear stress is calculated using the shear flow method. The 
shear flow represents the change in the shear stress gradient, similar to the flow gradient in fluid mechanics 0. On 
average, shear flow may seem difficult to calculate when dealing with asymmetric cross-sections and cross-sections 
that have principal axis not parallel to the local axis. Warping and the problems of restrained torsion shall be 
analyzed using Vlaslov's theory (1940). 

Source:                  : http://feal.ba/reference                                               http://filmingincroatia.hr/hr/regije/slavonija/osijek/arhitektura                

(a) Load applied in the shear center                                (b) Load applied outside the shear center 

http://feal.ba/reference
http://filmingincroatia.hr/hr/regije/slavonija/osijek/arhitektura
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Figure 3 Position of loading, depending on the position of the shear center 

 

2 GEOMETRICAL CHARACTERISTICS 

The geometrical center of the angle section in Figure 4a is 𝑦 =
𝑎

4
, 𝑧 =

𝑎

4
. The force 𝐹 is at an arbitrary 

distance 𝑒 from the right end, and will cause a reaction 𝑅𝑦. The force equilibrium in the 𝑦 direction produces: 

 
 

∑ 𝐹𝑦 = 0 ⟹  −𝐹 + 𝑅𝑦 = 0 ⟹ 𝐹 = 𝑅𝑦 (1) 

 
 

Figure 4 Illustrations of some geometrical characteristics 
 
Thus, in a torsional free section, the sum of the moments on the right end must be zero: 

 

∑ 𝑀 = 0 ⟹  −𝑅𝑦 ∙ 𝑎 + 𝐹 ∙ 𝑒 = 0 

𝑅𝑦𝑎 = 𝐹𝑒 ⟹ 𝐹𝑎 = 𝐹𝑒 
     𝑒 = 𝑎 

 

(2) 

Thus, the shear center is located at the intersection of the two flanges. 
Note that transverse force is 𝑉 = 𝐹. The principal axes 𝑦′ and 𝑧′ are located at 45° from the local axis, so 

the moments of inertia about the principal axis are obtained as: 

 
 

𝐼𝑦′ = 2 [
1

3
(

𝑡

cos 45°
) (𝑎 cos 45°)

3
] =

1

3
𝑡𝑎3 (3) 

 
 

𝐼𝑧′ = 2 [
1

12
(

𝑡

cos 45°
) (𝑎 cos 45°)

3
] =

1

12
𝑡𝑎3 (4) 

The torsional moment of inertia is: 

 𝐼𝑇 =
1

3
∑ ℎ𝑡3 =

2

3
𝑎𝑡3 (5) 

(a) First problem                                             (b) Second problem 

                  (a) Shear center                                                (b) Sectoral moments of inertia 

Ry 
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The main sectorial coordinates are: 

 𝜔0 = 0; 𝜔1 = −𝑎 sin(45) ∙ 𝑎 cos(45) = −
𝑎2

2
;  𝜔2 = 𝑎 sin(45) ∙ 𝑎 cos(45) =

𝑎2

2
 (6) 

 
Hence, the main sectorial moment of inertia (Figure 3b) are: 

 𝐼𝜔 = ∫ 𝜔2𝑑𝐴 = 𝑡 ∙ 2 ∙ (

𝑎2

2
∙ 𝑎

2
∙

2

3
∙

𝑎2

2
) =

𝑡𝑎5

6
            

 

𝐴

 (7) 

3 FIRST PROBLEM 

3.1 Shear stress 

Using superposition, the transverse force 𝑽 can be divided onto the principal axes, producing 𝑽
𝒚′

and 𝑽𝒛′. For 

𝑽𝒚′, rotate the section so that the 𝒚′ axis is the vertical axis, and imagine the cross-section as a pipe (hollow 

interior). Now, imagine pouring water into its ends. The flow of water represents the shear flow from 𝑽𝒚′ (Figure 

5a). Repeat this process for the 𝒛′ axis, obtaining the shear flow from 𝑽𝒛′ (Figure 5b). 

 

Figure 5 Shear flow due to 𝑽 
 
 The shear stress from 𝑽𝒚′ is obtained by considering point 𝒎: 

𝒚′̅̅ ̅̅ =
𝒂−𝒚

𝟐
𝐜𝐨𝐬 𝟒𝟓° + 𝒚 𝐜𝐨𝐬 𝟒𝟓° −

𝒂

𝟐
𝐜𝐨𝐬 𝟒𝟓° =

𝒚

𝟐
𝐜𝐨𝐬 𝟒𝟓°               (8) 

 The first moment of area is: 

      𝑺𝒚′ = 𝒕(𝒂 − 𝒚)𝒚′̅̅ ̅̅ =
𝟏

𝟐
𝒕(𝒂 − 𝒚)𝒚 𝐜𝐨𝐬 𝟒𝟓°      (9) 

 Thus, the shear stress from 𝑽𝒚′is: 

        𝝉𝟏 =
𝑽

𝒚′
∙𝑺𝒚′

𝑰
𝒚′

∙𝒕
=

𝟑𝑽(𝒂−𝒚)𝒚 

𝒕𝒂𝟑         (10)  

Equivalently, point 𝒏 will have the same function, which depends on 𝒛:  𝝉𝟏 =
𝟑𝑽(𝒂−𝒛)𝒛 

𝒕𝒂𝟑  

 Similarly, to obtain the shear stress from 𝑉𝑧′ , consider point 𝒎: 

      𝒛′̅̅ ̅̅ =
𝒂−𝒚

𝟐
𝐜𝐨𝐬 𝟒𝟓° + 𝒚 𝐜𝐨𝐬 𝟒𝟓° =

𝒚+𝒂

𝟐
𝐜𝐨𝐬 𝟒𝟓°     (11) 

(a) Shear flow due to 𝑉𝑦′                                                (b) Shear flow due to 𝑉𝑧′  
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 The first moment of area is: 

 𝑺𝒛′ = 𝒕(𝒂 − 𝒚)𝒛′̅ = 𝒕(𝒂 − 𝒚)
𝒚 + 𝒂

𝟐
𝐜𝐨𝐬 𝟒𝟓° =

𝒕

𝟐
(𝒂𝟐 − 𝒚𝟐) 𝐜𝐨𝐬 𝟒𝟓° (12) 

 The shear stress is: 

 𝝉𝟐 =
𝑽𝒛′ ∙ 𝑺𝒛′

𝑰𝒛′ ∙ 𝒕
=

𝟑𝑽(𝒂𝟐 − 𝒚𝟐) 

𝟒𝒕𝒂𝟑  (13) 

 Similarly, point 𝒏 will have the same function, which depends on 𝒛:  𝝉𝟐 =
𝟑𝑽(𝒂𝟐−𝒛𝟐) 

𝟒𝒕𝒂𝟑 . 

 The total stress of the vertical flange is obtained by referring to the shear flow vectors 𝝉𝟏 and 𝝉𝟐 at a point 
𝒎 (Figure 6), where they have the same direction. Thus, it can be written as: 

 𝝉𝒎 = 𝝉𝟏 + 𝝉𝟐 =
𝟑𝑽(𝒂 − 𝒚)(𝒂 + 𝟓𝒚) 

𝟒𝒕𝒂𝟑 , 𝒚 ∈ [𝟎, 𝒂] (14) 

 The total stress of the horizontal flange is obtained by referring to shear flow vectors 𝝉𝟏 and 𝝉𝟐 at a point 
𝒏 (Figure 6), where they have opposite directions. Thus, it can be written as: 

 𝝉𝒏 = 𝝉𝟏 − 𝝉𝟐 =
𝟑𝑽(𝒂 − 𝒛)(𝒂 − 𝟑𝒛) 

𝟒𝒕𝒂𝟑 , 𝒛 ∈ [𝟎, 𝒂] (15) 

 For the position of the maximum stress at the vertical flange, solving 
𝒅

𝒅𝒚
𝝉𝒎 gives 𝒚 =

𝟐𝒂

𝟓
; thus, the 

maximum stress is: 

 𝝉𝒎,𝒎𝒂𝒙 =
𝟐𝟕𝑽

𝟐𝟎𝒂𝒕
 (16) 

 For the position of the maximum stress at the horizontal flange, solving 
𝒅

𝒅𝒛
𝝉𝒏 gives 𝒛 =

𝟐𝒂

𝟑
; thus, the 

maximum stress is: 

 𝝉𝒏,𝒎𝒂𝒙 = −
𝑽

𝟒𝒂𝒕
 (17) 

 The horizontal flange has two opposite shear flows, and there is a point where they cancel. By solving 𝝉𝒏 =

𝟎, this point is obtained as: 𝒛 =
𝒂

𝟑
. 

 
Figure 6 Resulting shear flow and stress 

3.2 Normal stress 

Using superposition, 𝑴𝒚 is divided onto the principal axes, thus obtaining stress from 𝑴
𝒚′

 and 𝑴
𝒛′

: 

𝝈𝒙

𝑴
𝒚′

=
𝑴𝒚′

𝑰𝒚′

∙ 𝒛′ = −
𝑭𝒙 𝐜𝐨𝐬(𝟒𝟓°)  

𝑰𝒚′

∙ 𝒛′, 𝒛′ ∈ [−𝒂 𝐬𝐢𝐧(𝟒𝟓°);  𝒂 𝐜𝐨𝐬(𝟒𝟓°) ], 𝒙 ∈ [𝟎; 𝑳] (18) 

𝝈𝒙

𝑴
𝒛′

=
𝑴𝒛′

𝑰𝒛′

∙ 𝒚′ =
𝑭𝒙 𝐬𝐢𝐧(𝟒𝟓°)  

𝑰𝒛′

∙ 𝒚′,  𝒚′ ∈ [−
𝒂

𝟐
𝐬𝐢𝐧(𝟒𝟓°);  

𝒂

𝟐
𝐬𝐢𝐧(𝟒𝟓°) ] , 𝒙 ∈ [𝟎; 𝑳] (19) 

 For the remainder of this paper, focus will be on the extreme values, i.e. 𝒙 =  𝑳. 

(a) Shear flow                                                  (b) Shear stress 
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 The stress from 𝑴
𝒛′

 at points 1 and 3 are 𝒚′ =
𝒂

𝟐
𝐬𝐢𝐧(𝟒𝟓°) ; note that 𝐬𝐢𝐧(𝟒𝟓°) = 𝐜𝐨𝐬(𝟒𝟓°) : 

 𝝈
𝒙,𝟏

𝑴
𝒛′

= 𝝈
𝒙,𝟑

𝑴
𝒛′

=
𝑭 ∙ 𝑳 𝐜𝐨𝐬(𝟒𝟓°)

𝟏

𝟏𝟐
𝒕𝒂𝟑

∙
𝒂

𝟐
𝐬𝐢𝐧(𝟒𝟓°) =

𝟑𝑭𝑳

𝒂𝟐𝒕
  (20) 

 Similarly, the stress at point 2 is 𝒚′ = −
𝒂

𝟐
𝐬𝐢𝐧(𝟒𝟓°) ⇒  𝝈𝒙,𝟐

𝑴
𝒛′ = −

𝟑𝑭𝑳

𝒂𝟐𝒕
 

 The stress from 𝑴𝒚′ at point 1 is 𝒛 = −𝒂 𝐬𝐢𝐧(𝟒𝟓°)  

 𝝈
𝒙,𝟏

𝑴
𝒚′

= − 
𝑭 ∙ 𝑳 𝐬𝐢𝐧(𝟒𝟓°)

𝟏

𝟑
𝒕𝒂𝟑

∙ (−𝒂 𝐬𝐢𝐧(𝟒𝟓°) ) =
𝟑𝑭𝑳

𝟐𝒂𝟐𝒕
  (21) 

 Similarly, the stress at point 3 is 𝒛 = 𝒂 𝐬𝐢𝐧(𝟒𝟓°) ⇒  𝝈𝒙,𝟑

𝑴
𝒚′

= −
𝟑𝑭𝑳

𝟐𝒂𝟐𝒕
 

 At point 2: = 𝟎 ⇒  𝝈𝒙,𝟐

𝑴
𝒚′

= 𝟎. 

 The total normal stresses (Figure 7) at various points are: 

 Point 1: 𝝈𝒙,𝟏 = 𝝈
𝒙,𝟏

𝑴
𝒛′

+ 𝝈
𝒙,𝟏

𝑴
𝒚′

=
𝟗𝑭𝑳

𝟐𝒂𝟐𝒕
 (22) 

 Point 2: 𝝈𝒙,𝟐 = 𝝈
𝒙,𝟐

𝑴
𝒛′

+ 𝝈
𝒙,𝟐

𝑴
𝒚′

= −
𝟑𝑭𝑳

𝒂𝟐𝒕
 (23) 

 Point 3: 𝝈𝒙,𝟑 = 𝝈
𝒙,𝟑

𝑴
𝒛′

+ 𝝈
𝒙,𝟑

𝑴
𝒚′

=
𝟑𝑭𝑳

𝟐𝒂𝟐𝒕
 (24) 

 The neutral axis is: 

 𝐭𝐚𝐧 ∅ =
𝑰𝒛′

𝑰𝒚′

𝐭𝐚𝐧 𝜽 ⇒ ∅ = 𝟏𝟒. 𝟎𝟑𝟔𝟐° (25) 

 
Figure 7 Schematic of the total normal stress 

4 SECOND PROBLEM 

4.1 Shear stress 

In most types of open cross-sections under restrained torsion, the bars warp, increasing normal stress [2]  . 

However, the diagrams of sectorial moment of inertia are directly proportional to the distance from the point 𝑴 
(Figure 4b). This means there will be plane deformations but not longitudinal deformations. Therefore, L sections 
do not warp, so the bimoment and moment of torsional warp are zero: 𝑩𝝎 = 𝑴𝝎 =  𝟎. No warp connotation is 
typical for radial sections because the flanges or webs intersect at exactly one point [2]  . Torsional moment can be 
divided onto pair of moment: 

 𝑻 = 𝑴𝒕 = 𝑴𝒕𝒔 + 𝑴𝝎 ⇒ 𝑴𝒙 = 𝑴𝒕 = 𝑴𝒕𝒔 (26) 
 where 𝑴𝒕𝒔 is the pure torsional moment. Equation 26 shows that the torsional moment is the same as the 
pure torsional moment. 
 Due to the force eccentricity from the shear center, equivalent substitution of a force and moment is made 
(Figure 8). Hence, 𝑻 =  𝑭 ∙ 𝒂, and 𝑽 = 𝑭. 
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 The transverse force is placed at the shear center, producing the same stress as in the first problem (Sec. 
3.1), plus additional stress due to torsion. 
 The maximum shear stress from torsion will occur on the section’s borders: 

 
 

𝝉𝒎𝒂𝒙 =
𝑻 ∙ 𝝆

𝑰𝑻

=
𝑻 ∙ 𝒕

𝑰𝑻

=
𝟑𝑭

𝟐𝒕𝟐
 (27) 

 Where 𝝆 is the distance measured from the centerline through the flange thickness. Note that the stress is 
the same for the horizontal and vertical flanges (Figure 9). 

 
Figure 8 Force equivalent substitution 

 
Figure 9 Shear flows caused by torsion 

 In theory of thin-walled structures, structure’s thickness is much smaller than its other dimensions. Thus, the 
stress change through the thickness is negligible [2]  . However, for torsion, the stress is clearly linearly changeable 
through the thickness due to 𝝆 (Figure 9). When merging these two problems, it is reasonable to assume that the 
shear stress caused by the transverse force is constant through the thickness [3]  . 
Vertical flange, left corner Referring to the flow vectors 𝝉𝟏, 𝝉𝟐 (Figure 6), they clearly have the same direction. 
However, the flow vector 𝝉𝒕,𝒎𝒂𝒙 (Figure 9) has the opposite direction: 

 
 𝝉𝒎,𝒍 = 𝝉𝟏 + 𝝉𝟐 − 𝝉𝒕,𝒎𝒂𝒙 =

𝟑𝑽(−𝟐𝒂𝟑 + 𝒂𝟐𝒕 + 𝟒𝒂𝒕𝒚 − 𝟓𝒕𝒚𝟐)

𝟒𝒂𝟑𝒕𝟐
, 𝒚 ∈ [𝟎, 𝒂] (28) 

 Vertical flange, right corner Referring to the flow vectors 𝝉𝟏, 𝝉𝟐, and 𝝉𝒕,𝒎𝒂𝒙 (Figures 6 and 9b), they all have 

the same direction: 

 
 𝝉𝒎,𝒅 = 𝝉𝟏 + 𝝉𝟐 + 𝝉𝒕,𝒎𝒂𝒙 =

𝟑𝑽(𝟐𝒂𝟑 + 𝒂𝟐𝒕 + 𝟒𝒂𝒕𝒚 − 𝟓𝒕𝒚𝟐)

𝟒𝒂𝟑𝒕𝟐
, 𝒚 ∈ [𝟎, 𝒂] (29) 

 Horizontal flange, upper corner Referring to the flow vectors 𝝉𝟐, 𝝉𝒕,𝒎𝒂𝒙, they have the same direction. 

However, the flow vector 𝝉𝟏 has the opposite direction: 

 
 𝝉𝒏,𝒈 = 𝝉𝟏 − 𝝉𝟐 − 𝝉𝒕,𝒎𝒂𝒙 =

𝟑𝑽 (
𝒕(𝒂−𝟑𝒛)(𝒂−𝒛)

𝒂𝟑
− 𝟐)

𝟒𝒕𝟐
, 𝒛 ∈ [𝟎, 𝒂] (30) 

 Horizontal flange, lower corner Referring to the flow vectors 𝝉𝟏, 𝝉𝒕,𝒎𝒂𝒙 (Figures 6 and 9b), they have the 

same direction. However, the flow vector 𝝉𝟐 (Figure 6) has the opposite direction: 

(a) Shear flow throughout thickness                     (b) Position of outer maximum shear stress 
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 𝝉𝒏,𝒊 = 𝝉𝟏 − 𝝉𝟐 + 𝝉𝒕,𝒎𝒂𝒙 =
𝟑𝑽 (

𝒕(𝒂−𝒛)(𝒂−𝟑𝒛)

𝒂𝟑
+ 𝟐)

𝟒𝒕𝟐
, 𝒛 ∈ [𝟎, 𝒂] (31) 

 The stress at 𝒚 = 𝟎, right corner, vertical flange is: 

 𝝉𝒅,𝒚=𝟎 =
𝟑𝑽(𝟐𝒂 + 𝒕)

𝟒𝒂𝒕𝟐
 (32) 

 The stress at 𝒚 = 𝟎, left corner, vertical flange is: 

 𝝉𝒍,𝒚=𝟎 =
𝟑𝑽(𝒕 − 𝟐𝒂)

𝟒𝒂𝒕𝟐
 (33) 

 The stress at 𝒛 = 𝟎, lower corner, horizontal flange is: 

 𝝉𝒈,𝒛=𝟎 =
𝟑𝑽 (

𝒕

𝒂
+ 𝟐)

𝟒𝒕𝟐
 (34) 

 The stress at z = 0, upper corner, horizontal flange is: 

 𝝉𝒊,𝒛=𝟎 =
𝟑𝑽 (

𝒕

𝒂
− 𝟐)

𝟒𝒕𝟐
 (35) 

 The stress given by Eq. 34 is also the maximum stress at the lower corner of the horizontal flange (see Figure 

10). The position of the maximum stress of the vertical flange, right corner is found by solving 
𝒅

𝒅𝒚
𝝉𝒎,𝒅 ⇒ 𝒚 =

𝟐𝒂

𝟓
. 

Thus, the stress is: 

 𝝉𝒎,𝒎𝒂𝒙,𝒅 =
𝟑𝑽(𝟏𝟎𝒂 + 𝟗𝒕)

𝟐𝟎𝒂𝒕𝟐
 (36) 

 The position of minimum stress on the vertical flange, left corner is 
𝒅

𝒅𝒚
𝝉𝒎,𝒍 ⇒ 𝒚 =

𝟐𝒂

𝟓
. Thus, the stress is: 

 𝝉𝒎,𝒎𝒊𝒏,𝒍 = −
𝟑𝑽(𝟐𝟓𝒂𝟐 − 𝟐𝟐𝒂𝒕 + 𝟐𝟓𝒕)

𝟓𝟎𝒂𝟐𝒕
𝟐  (37) 

 
 

Figure 10 Total shear stress 

The position of maximum stress on the horizontal flange, upper corner is 
𝒅

𝒅𝒛
𝝉𝒏,𝒈 ⇒ 𝒛 =

𝟐𝒂

𝟑
 . Thus, the stress is: 

 𝝉𝒏,𝒎𝒂𝒙,𝒈 = −
𝑽(𝟔𝒂 + 𝒕)

𝟒𝒂𝒕𝟐
 (38) 

The position of minimum stress on the horizontal flange, lower corner is 
𝒅

𝒅𝒛
𝝉𝒏,𝒊 ⇒ 𝒛 =

𝟐𝒂

𝟑
. Thus, the stress is: 

 𝝉𝒏,𝒎𝒊𝒏,𝒊 = −
𝑽(𝒕 − 𝟔𝒂)

𝟒𝒂𝒕𝟐
 (39) 

(a) Maximum shear stress of the horizontal flange 

(b) Maximum shear stress of the vertical flange 
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4.2 Normal stress 

As explained in Sec 4.1, there is no additional normal stress, so the equations of restrained torsion become: 

 𝝈𝒙 =
𝑴𝒛′

𝑰𝒛′

𝒚′ +
𝑴𝒚′

𝑰𝒚′

𝒛′ +
𝑩𝝎

𝑰𝝎

𝝎 ⇒ 𝝈𝒙 =
𝑴𝒛′

𝑰𝒛′

𝒚′ +
𝑴𝒚′

𝑰𝒚′

𝒛′ (40) 

 This stress is the same as that in problem one, described in Sec. 3.2. 

5 NUMERICAL SIMULATIONS 

To test the analytical calculations calculated using [6] with no warping connotation, we performed six numerical 
simulations in AutoDesk: Robot Structural Analysis Professional 2014 [9]  . The initial parameters given were: 𝑳 =
 𝟑𝟎𝟎𝟎 𝐦𝐦, 𝒂 =  𝟐𝟎𝟎 𝐦𝐦, 𝒕 =  𝟏𝟎 𝐦𝐦, 𝑭 =  𝟏𝟎𝟎𝟎 𝐍, structural steel S275. The main model 
characteristics are as follows. 

Model 1: Composed of two thin plates, shear force applied in shear center, computed by membrane theory 
Model 2: Modeled in thin-walled section designer, shear force applied in shear center 
Model 3: Modeled in solid section designer, applied shear force 
Model 4: Modeled in solid section designer, applied torsion 
Model 5: A volumetric model, loaded by shear force in the shear center 
Model 6: A volumetric model, loaded by shear force outside the shear center 

 Note that all models were analyzed for normal stress, observed at each section’s midline. The stress was 
read at the following positions (Figure 11Figure 1) (𝒛; 𝒚): 1 (0; 200), 2 (0; 80), 3 (0; 0), 4 (133.33; 0), 5 (200; 0). In 
addition, the 3D models were read for shear stress at the midpoint of their span, and read for normal stress at the 
end of their span. Stress was read in the solid sections at their midline. 

 
Figure 11 Positions of stress readings in numerical models 

 Tables 1, 2 and 3 compare the analytical and numerical models in the points specified above, with their 
average difference as a percentage. Table 1 (and Figure 12) compares the shear stresses of the first problem.  
Table 2 (and Figure 13) compares the stresses of the second problem; note that this table is split in two, comparing 
model 6 (the volumetric model) and model 4 (a solid section model loaded only with torsion) with equivalent 
analytical stress. Table 3 (and Figure 14), however, compares models normal stresses, considering only the 1st, 
3rd and 5th points (Figure 11). 

 
Figure 12 Average difference of the first problem between analytical and numerical models 
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Figure 13 Average difference of the second problem between analytical and numerical models 

 
Figure 14  Average difference between the normal stresses of the analytical and numerical models 

Table 1 Difference between shear stresses of the first problem for 𝑭 = 𝟏𝟎𝟎𝟎. 𝟎𝟎 𝑵 

Simulation Position Stress value N/mm2 Difference Average difference 

A
na

ly
tic

al
ly

 1 0.00 0.00% 

0.00% 

2 0.34 0.00% 

3 0.19 0.00% 

4 0.06 0.00% 

5 0.00 0.00% 

1.
 M

od
el

 

1 0.00 0.00% 

2.54% 

2 0.34 1.70% 

3 0.17 7.34% 

4 0.06 3.68% 

5 0.00 0.00% 

2.
 M

od
el

 

1 0.00 0.00% 

0.56% 

2 0.34 0.15% 

3 0.19 0.27% 

4 0.06 2.40% 

5 0.00 0.00% 

3.
 M

od
el

 

1 0.14 100.00% 

58.02% 

2 0.16 51.70% 

3 0.14 24.80% 

4 0.07 13.60% 

5 0.16 100.00% 

5.
 M

od
el

 

1 0.16 100.00% 

67.64% 

2 0.33 2.22% 

3 0.09 52.00% 

4 0.01 84.00% 

5 0.05 100.00% 

 
 

0,00%
86,78%
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Table 2 Difference between shear stress of the second problem 𝑭 = 𝟏𝟎𝟎𝟎. 𝟎𝟎 𝑵 

Simulation Position 
Stress value inner 

side N/mm2 
Stress value outer 

side N/mm2 
Difference 

Average 
difference 

A
na

ly
tic

al
ly

 
1 3.75 3.75 0.00% 

0.00% 

2 3.42 4.09 0.00% 

3 3.56 3.56 0.00% 

4 3.56 3.69 0.00% 

5 3.75 3.75 0.00% 

6.
 M

od
el

 

1 0.27 0.27 92.80% 

86.78% 
2 0.32 0.95 90.64% 

3 0.44 0.76 87.64% 

4 0.47 0.67 86.81% 

5 0.90 0.90 76.00% 
Pure torsion 

Analytical maximum stress 3.75 3.75  0.00% 

4. Model 3.63 3.63  3.20% 

 

Table 3 Difference between normal stresses of the first and second problem 𝑭 = 𝟏𝟎𝟎𝟎. 𝟎𝟎 𝑵 

Model Position Stress value N/mm2 Difference Average difference 

A
na

ly
tic

ity
 1 16.89 0.00% 

0.00% 3 11.25 0.00% 

5 5.63 0.00% 

1.
 

1 18.51 9.70% 
4.06% 3 12.01 6.79% 

5 5.84 3.81% 

2.
 

1 16.74 0.00% 

0.57% 3 11.13 1.05% 

5 5.52 1.80% 

3.
 

1 18.37 8.86% 
7.23% 3 13.69 21.69% 

5 5.94 5.60% 

5.
 

1 17.83 2.94% 
7.08% 3 11.07 19.17% 

5 5.15 13.30% 

6.
 

1 15.99 5.24% 
3.89% 3 11.10 1.33% 

5 6.35 12.89% 
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6 DISSCUSION AND CONCLUSION 

We expected that the shear stress given by the numerical simulations would strongly differ due to shear flow. 
However, Tables 1 and 2 show that three numerical simulations (1st, 2nd, and 4th) match well with the analytical 
calculation, confirming that the analytical calculation is accurate. Mismatches were found in the solid (volumetric) 
models, except for pure torsion in model 4 (see Table 2). We believe the solid-volumetric models yielded inaccurate 
data because it must account for thickness, while the thin-walled calculations do not. Nonetheless, accounting for 
thickness is essential for determining stress caused by torsion; therefore, model 4 yielded values equivalent to the 
analytical model. However, regardless of the model type, the normal stress matched excellently. This result 
confirms that the solid models were modeled correctly. Note that, in the models of the second problem, introducing 
restrained torsion did not significantly increase the normal stress; at some points, it even decreased. This result 
confirms the belief that no warping occurs in this case.   
 Comparing first and second problem clearly very different values of shear stress. The difference between the 
maximum stresses on the horizontal flange is as follows: 

 ∆𝝉𝑯 = 𝝉𝒏,𝒎𝒂𝒙,𝒈 − 𝝉𝒏,𝒎𝒂𝒙 = 𝟑. 𝟕𝟑 − 𝟎. 𝟎𝟔𝟐𝟓 = 𝟑. 𝟔𝟕 𝑵 𝒎𝒎𝟐⁄  (41) 

 Expressed by the ratio: 

 
𝝉𝒏,𝒎𝒂𝒙,𝒈 ∶ 𝝉𝒏,𝒎𝒂𝒙 

        𝟑. 𝟕𝟑 ∶ 𝟎, 𝟎𝟔𝟐𝟓 
𝟓𝟗. 𝟔𝟖 ∶ 𝟏      

(42) 

 The difference between maximum shear stresses on the vertical flange is: 

 ∆𝝉𝑽 = 𝝉𝒎,𝒎𝒂𝒙,𝒅 − 𝝉𝒎,𝒎𝒂𝒙 = 𝟒. 𝟎𝟗 − 𝟎. 𝟑𝟑𝟕𝟓 = 𝟑. 𝟕𝟓𝟐𝟓 𝑵 𝒎𝒎𝟐⁄  (43) 

 Expressed by the ratio: 

 
𝝉𝒎,𝒎𝒂𝒙,𝒅 ∶ 𝝉𝒎,𝒎𝒂𝒙 

        𝟒. 𝟎𝟗 ∶ 𝟎. 𝟑𝟑𝟕𝟓 
𝟏𝟐. 𝟏𝟏 ∶ 𝟏  

(44) 

 It is clear that a force outside the shear center increases the shear stress by up to 60 times on the horizontal 
flange, and up to 12 times on the vertical flange. We conclude that the eccentricity from the shear center cannot be 
ignored. However, for restrained torsion, the L section does not warp, producing no additional normal stress. In 
accordance with stated, shifting the transversal load from the shear center along the transversal axis will not 
increase the normal stresses. Considering the numerical models, we found that the plane models are superior for 
thin-walled analysis. Unfortunately, they could not be subjected to torsion (particular software [9]  ). However, solid 
models subjected to pure torsion gave accurate results (Table 2). Thus, for loading outside shear center, one must 
combine a plane models (for stress from shear force) and solid models (for stress from torsion). In addition, both 
plane and solid models are suitable for normal stress analysis (Table 3). 
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