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Abstract: Nature has always been an example of perfection and inspiration. In nature, everything has reasons why 
it is happening exactly the way it does. Nature-inspired optimization algorithms have become a rapidly growing 
area of research in all areas of life. Ant colonies find the shortest path to food, the evolution of the living world  
shows adaptation to the world around it. For example, bees find the optimal path to food and back to the hive. 
Optimization algorithms contribute significantly to solving many complex issues and achieving optimal results. This 
research paper outlines nature-inspired optimization algorithms, such as ant colonies, artificial immune systems, 
artificial neural networks, flocks of bats, bee swarms, firefly algorithms, genetic algorithms, and particle swarms. 
The purpose of this brief overview is to provide an easy-to-understand list of the basic features of the most common 
nature-inspired optimization algorithms as well as the potential applications of the aforementioned algorithms in 
civil engineering. 
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PREGLED OPTIMIZACIJSKIH ALGORITAMA NADAHNUTIH PRIRODOM, 
PRIMIJENJENIH U GRAĐEVINARSTVU 
 
Sažetak: Priroda je oduvijek bila primjer savršenosti i nadahnuća. Sve što se događa u prirodi, događa se na taj 
način s određenim razlogom. Prirodom nadahnuti optimizacijski algoritmi postaju brzo rastuće područje istraživanja 
u svim područjima života. Kolonije mrava pronalaze najkraći put do hrane, evolucija živog svijeta pokazuje 
prilagođavanje svijetu koji ga okružuje, pčele pronalaze optimalan put do hrane i natrag do košnica itd. 
Optimizacijski algoritmi daju veliki poticaj za rješavanje mnogo složenih problema te pronalaženje optimalnog 
rezultata. U ovom radu, ukratko će se prikazati prirodom inspirirani optimizacijski algoritmi kao što su kolonije 
mrava, umjetni imunološki sustav, umjetne neuronske mreže, jato šišmiša, roj pčela, algoritam krijesnica, genetski 
algoritam i roj čestica. Svrha ovog kratkog pregleda je dati lagano shvatljivi popis te osnovne karakteristike 
najčešćih optimizacijskih algoritama koji imaju nadahnuće u prirodi te moguću primjenu prethodno navedenih 
algoritama u građevinarstvu. 
 
Ključne riječi: algoritam; građevinarstvo; heuristike; prirodom nadahnuti; optimizacija 
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1 INTRODUCTION 

Nature is a great source of inspiration in the development of intelligent systems, and it also enables the solution of 
complex problems [1]. This is why so many researchers are attracted to nature. The algorithms developed with 
inspiration from nature are known as nature-inspired algorithms. Nature-inspired algorithms (also known as 
biological systems) have become very popular because of their ability to adapt to any changing environment [2]. 
Further, nature-inspired algorithms have gained popularity in the optimization of complex problems [3] because 
optimization problems in the real world are often very challenging to solve [4]. An optimization problem consists of 
maximization or minimization of a function in relation to a set, which represents the possibility of available choices 
in a given situation. The function allows the comparison of different choices, so that one can decide which choice 
might be the best [5].  

To solve optimization problems that are very difficult to solve, complex and “fuzzy” (they cannot be well-
formulated mathematically) [6] heuristic and metaheuristic techniques (algorithms) are used. Heuristic techniques 
can be used to solve a wide variety of optimization problems [7]. The term “heuristic technique” implies any 
technique that is used to find a specific acceptable solution to the observed problem. However, the solution found 
does not have to be optimal, but must be permissible, and it is considered that such a technique can find a solution 
much quicker than if the exact solution is sought using some other technique. Moreover, if there is more than one 

solution, heuristic methods are used to find only some of these solutions, but not all possible solutions. Hence, 
heuristic methods seek the balance between optimality, completeness, and accuracy of a solution on one hand and 
the time of execution on the other hand. The quality of a specific heuristic method used depends on the above-
mentioned factors [8]. Heuristic methods that are not specially designed for a particular problem, but are, with 
certain adaptations, applicable to a large number of problems, are called metaheuristic methods [8]. In addition, as 
extensions to main heuristic methods, hyperheuristic and stochastic techniques are known [7]. The term 
“metaheuristics” was first coined by Glover in 1986 [9]. 

A metaheuristic is a high-level problem-independent algorithmic framework that provides a set of guidelines 
or strategies to develop heuristic optimization algorithms. The term is also used to refer to a problem -specific 
implementation of a heuristic optimization algorithm according to the guidelines expressed in such a framework 
[10]. Most heuristic and metaheuristic methods (if not all of them) are listed in the paper authored by Venkrbec, 
Galić, and Klanšek [7] and in the paper authored by Fister et al. [4] Therefore, for the purpose of further study, it is 
advisable to read the two aforementioned papers. The described heuristic and metaheuristic methods are used to 
solve real-world optimization problems, the so-called NP-hard problems. To solve such problems, optimization 
techniques should be used, though there is no guarantee that the optimal solution can be obtained. In fact, for NP-
problems, there are no efficient algorithms at all [4]. 

Optimization is applicable and useful in many areas of human life. Obviously, the goal of an optimization can 
vary, such as minimizing energy consumption and costs, maximizing profit, minimizing the project completion time, 
minimizing risk, maximizing the effects of a machine. As resources, time, and money are always limited in real life, 
our job is to find solutions that optimally use these valuable resources under different conditions [11].  

Generally, an optimization algorithm is an iterative process, starting from some initial assumption. After a 
certain (sufficiently large) number of iterations, the solution begins to converge towards a stable solution, ideally 
the optimal solution of the observed problem [12-14]. In essence, an algorithm is a set of symbols and a general 
procedure, which explains how to solve a task stepwise. Many algorithms are of iterative nature. Correct steps and 
procedures depend on the algorithm used and the area of interest [11]. Among nature-inspired algorithms, a special 
type of algorithm has been developed with inspiration by swarm intelligence (SI). Algorithms based on SI are among 
the most popular ones [4]. SI is the collective behavior of natural or artificial decentralized, self-organizing systems. 

SI systems are usually made of populations of simple agents (particles) that communicate with each other and with 
their environment [15]. To find the optimum solution in the solution space for each particle, particle swarm 
optimization (PSO) allows the particles to communicate; each particle that is a candidate for the solution seeks an 
optimal solution simultaneously using mutual interaction and cognitive knowledge [16-18].  

The rest of this paper provides the selected nature-inspired optimization algorithms, some of which are more 
or less known. The main objective of this paper is to provide a list of some (more frequent) optimization algorithms, 
their possible application in civil engineering, and the most basic characteristics thereof, without elaborating on any 
of them, because the length of such a paper would exceed the expected length of a review paper. Moreover, one 
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of the main goals of this paper is to familiarize potential users with optimization algorithms and to arouse their 
interest encouraging them to use the algorithms to a greater extent as compared to their present use. 

2 SELECTED NATURE-INSPIRED OPTIMIZATION ALGORITHMS 

2.1 Ant colony optimization 

Ant colony optimization (ACO) is a method inspired by natural systems [19, 20]. The ACO algorithm is based on 
the hypothetical behavior of an ant collective when the ants are looking for food [21-23]. If there are no available 
traces of pheromones, the ants move randomly. However, if the pheromones are present, the ants follow the trace 
of the pheromones [24]. During their search for food, the ants secrete pheromones in order to mark their path, but 
the pheromones evaporate over time. In nature, ants use the shortest path to reach their colony as quick as 
possible, so this (the shortest, i.e., the fastest) path is marked by a higher concentration of pheromones. This path 
serves as bait for other ants, and over time all ants from a specific colony choose this optimal (shortest) path [21- 
23]. The amount of released pheromones is proportional to the quality of the solution, which affects the probability 
that other ants will use the components (portions) of that solution in creating their own, personal solution. This 
contributes to the global search for a solution in the ACO algorithm [25]. 

The key to the success of the ACO is in its construction of new solutions [26]. The ACO algorithm was first 
introduced by Dorigo et al. in the 1990's [27, 28]. ACO algorithms are shown to be effective problem-solving 
strategies for a wide range of problem domains, including multiple-objective optimization [29]. 

 
2.2 Artificial immune system 

The natural immune system is a complex system adapted to the identification of pathogens, foreign 
microorganisms. It protects the body from various foreign pathogens such as bacteria or viruses [30-32]. One of 
the main purposes of the immune system is to keep the organism healthy [33]. An artificial immune system (AIS) 
appeared in the 1990's as a new branch in computational (artificial) intelligence. AISs are inspired by immunology, 
the immune function, and principles observed in nature [32, 34, 35]. AISs mimic biological principles of clone 
generation, proliferation, and maturation. The main steps of AISs based on the clonal selection principle are the 
activation of antibodies, proliferation, and differentiation on the encounter of cells with antigens, maturation by 
carrying out the affinity maturation process, elimination of old antibodies to maintain the diversity of antibodies and 
to avoid premature convergence, and selection of those antibodies whose affinities with the antigen are greater  
[36].  

The field of AISs is a diverse area of research, which bridges the disciplines of immunology and engineering. 

AIS algorithms are typically developed from the abstraction of immune system theories, processes, and agents, 
and they are applied to a wide variety of engineering applications including computer security, fault tolerance, data 
mining [37] and optimization [37-39].  

 
2.3 Artificial neural network 

An artificial neural network (ANN) can be described as a massive, parallel, distributed data-processing system that 
consists of simple elements and has a natural tendency to store experiential knowledge, which can be used later, 
and is similar to the brain in the way it acquires and stores knowledge [40, 41]. The study of neural networks was 
started by the publication by McCulloch and Pitts [42]. In their work [42], they created a computational model for 
neural networks based on mathematics and algorithms called threshold logic. Single-layer networks, with threshold 
activation functions, were introduced by Rosenblatt. These types of networks are called perceptrons. In the 1960’s, 
it was experimentally shown that perceptrons could solve many problems, but many problems, which did not seem 
to be more difficult, could not be solved. Neural networks make an attempt to simulate the human brain [43]. 

In 1986, a group of three authors described a new learning procedure, back-propagation, for networks of 
neuron-like units [44]. ANNs offer an alternative to classic computation for the real-world problems that use natural 
knowledge (which may be uncertain, imprecise, inconsistent, and incomplete) and for which the development of a 
conventional program that covers all possibilities and eventualities is unlikely or at least very laborious and 
expensive [45]. 
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2.4 Bat algorithm 

Bat algorithms (BAs) belong to a class of SI algorithms [46, 47]. The BA was developed by Yang [48, 49]. BAs are 
based on the echolocation behavior of microbats [49, 50] with varying pulse rates of emission and loudness. A 
multi-objective BA was developed to solve design optimization problems such as welded beam design problems 

[51]. Bats use a type of sonar, the so-called echolocation, to detect their prey, avoid obstacles, and locate cracks 
where they live in the dark. Bats emit a very loud sound pulse and listen for the echo that bounces back from the 
surrounding objects [51, 52]. During roaming, microbats emit short pulses; however, when a potential prey is 
nearby, their pulse emission rates increase and the frequency is tuned up [49]. They have the ability to automatically 
adjust the wavelength or frequency of the pulses, and can automatically control the degree of pulse transmission 
depending on the distance between them and the prey [52, 53]. The increase of the frequency, namely frequency-
tuning, together with the speedup of the pulse emission shortens the wavelength of echolocations and thus 
increases the detection accuracy [49].  

BAs are successfully applied to a number of very different problems such as large-scale optimization problems 
[54, 55], multi-objective optimization [51], economic load and emission dispatch problems, data mining [54], etc. 

 
2.5 Bee colony optimization  

Teodorović et al. developed a method of bee colony optimization (BCO) [56-58]. The basic idea of BCO is to create 
a colony of artificial bees that will be able to solve difficult combinatorial optimization problems effectively. A swarm 
of artificial bees is flying in the space of possible solutions, seeking possible, favorable solutions. Each bee 
generates one solution to the problem. In order to find good solutions, artificial bees cooperate and exchange 
information [59, 60]. Using collective knowledge and sharing information between themselves, bees concentrate 
on better solution spaces and slowly leave worse solutions [61]. Artificial bees create and improve their solutions 
together [59]. The BCO algorithm, based on the principles of SI [62, 63], provides excellent, promising results for 
solving complex engineering problems [57].  

BCO has many applications in several different fields. One of the most interesting applications is the training 
of neural networks [64]. BCO was also used by some researchers for solving discrete optimization problems in the 
design of trusses [64, 65], for minimizing the weight of lattice structures [56], etc. 

 
2.6 Firefly algorithm 

In the firefly algorithm (FA or also called FFA), the objective function of a given optimization problem is based on 
differences in light intensity. It helps fireflies to move towards brighter and more attractive locations in order to 
obtain optimal solutions [66]. In the FA, there are two important variables: light intensity and attractiveness [67]. 
The movement of a firefly is determined by a brighter firefly (than itself) to which it is attracted [67, 68].  

Multiple fireflies are randomly distributed in the whole search space, and all fireflies have their light intensity, 
corresponding to the fitness value of the optimization problem. Then each individual flies following the firefly with 
higher light intensity in its visual range. After multi-iterations, all individuals gather around the best firefly, which 

represents the final optimization [69]. The FA is a swarm-based metaheuristic algorithm introduced by Yang [70-
72].  

 
2.7 Genetic algorithm 

The genetic algorithm (GA) is an algorithm based on natural selection and mechanisms of population genetics [73]. 
It was proposed (invented) by Holland in the early seventies [74, 75]. The GA is a stochastic technique to find a 
solution that mimics the principles of natural genetics [76, 77]. The GA is inspired by biological evolution, Charles 
Darwin's theory of natural evolution [78], which uses propagation, random mutation, genetic diversity, and natural 
selection [79]. This algorithm reflects the process of natural selection where the best individuals are selected for 
breeding to give offspring in the next generation [72].  

The advantage of the GA compared to conventional solution-searching techniques is that it starts with an 
initial set of random solutions of the named populations. Each individual in the population is called a chromosome, 
and represents a solution to a problem [77]. 
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2.8 Particle swarm optimization 

Particle swarm optimization (PSO) is one of the most popular nature-inspired optimization algorithms because of 
its simplicity and ease of use [80, 81]. This algorithm is inspired by the movement of birds and fish in their groups, 
i.e., the social behavior of feeding birds and fish [82, 83]. PSO solves optimization problems through a series of 

searches performed by a group of individuals [82, 84]. In PSO, potential solutions, called particles, fly through the 
space, in which a solution to a problem is searched by following the current optimal particle [85].  

In nature, there is always a leader (the main bird or fish) that leads a flock of birds or fish. PSO is successfully 
applied in many areas such as optimization of functions, training of ANNs, system control, optimization of time and 
cost in project execution, etc. [85]. 

Table 1 lists some of the main characteristics (including the algorithm name and its abbreviation, the source 
of inspiration, and its authors, year, and reference) of the aforementioned nature-inspired algorithms. 

 
Table 1 Short list of the selected nature-inspired algorithms in alphabetical order 
Algorithm Inspiration Authors Year Reference 

Ant colony optimization, ACO behavior of ant colonies  
Colorni, Dorigo, and 

Maniezzo 
1991 [28] 

Artificial immune system, AIS 
human immune system 

function 
Kephart 1994 [86] 

Artificial neural network, ANN 
biological neural networks and 

brain 
McCulloch and Pitts 1943 [42] 

Bat algorithm, BA 
echolocation behavior of 

microbats 
Yang 2010 [48] 

Bee colony optimization, BCO bees’ foraging principles Lučić and Teodorović 2001 [58] 

Firefly algorithm, FA or FFA 
flashing characteristics of 

fireflies 
Yang 2010 [70] 

Genetic algorithm, GA 
natural mechanisms of 

population genetics 
Holland 1975 [75] 

Particle swarm optimization, PSO 
social behavior of feeding birds 

and fish 
Kennedy and 

Eberhart 
1995 [82] 

 

3 APPLICATION OF NATURE-INSPIRED OPTIMIZATION ALGORITHMS IN CIVIL 
ENGINEERING 

The applications of nature-inspired optimization algorithms in civil engineering are widespread. Civil engineering is 
a professional engineering discipline, which deals with the design, construction, and maintenance of physical and 
naturally built environments, including houses, skyscrapers, canals, bridges, dams, airports, sewerage systems, 
pipelines, roads and railways, schools, hospitals, etc. [87, 88].  

This section will provide a brief overview of some potential applications of nature-inspired optimization 
algorithms in the field of civil engineering. The names of specific algorithms, studied problems, main findings and 
conclusions, and their origin are shown in alphabetical order (of algorithms) in Table 2.  

To keep the overview as recent as possible and of an appropriate length (not too long), it will be limited to the 
time period from 2010 to onward. In addition, approximately five applications will be provided for each nature-
inspired algorithm found in the available literature.  
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Table 2 List of the selected nature-inspired algorithms and some of applications in civil engineering 
Algorithm Studied problem Main findings and conclusions Origin 

A
n

t c
o

lo
n

y 
o

p
tim

iz
a

tio
n

, A
C

O
 

optimal design of storm sewer 
networks 

The applicability and efficiency of ACO in the studied 

problem are excellent. The used methods are shown 
to be very effective in locating the optimal solution 
and in terms of the convergence characteristics of the 
resulting algorithms.  

[89] 

efficient routing of piping networks 

ACO provides a powerful means of performing 
network optimization through the shortest-path 
calculations, as it is able to construct the shortest-
path solutions efficiently. Moreover, ACO exhibits 

quick convergence to the final solution. 

[90] 

performance-based optimal 
seismic design of frame structures 

The results obtained indicate that the ACO algorithm 
can find the optimum seismic design of structures 
successfully. 

[91] 

determination of the ultimate 
bearing capacity of shallow 
foundations on granular soil 

The algorithm will find wide application in the 
calculation of the ultimate bearing capacity of 
foundations. 

[92] 

solving the stochastic time–cost 
trade-off optimization problem 

The model attempts to minimize the time and cost of 

a project as two objectives. The results show that the 
algorithm is adequately reliable. 

[93] 

decision-support system for 
construction time–cost 
optimization 

The results show that the model based on the ant 
colony system techniques can generate better 
solutions without utilizing excessive computational 
resources. The model provides an efficient means to 
support planners and managers in making better 
time–cost decisions efficiently. 

[94] 

optimization of the pumping 
schedule in water distribution 
networks 

The optimization results showed that the proposed 
heuristic approaches considerably improved the 
quality of solutions and enhanced the navigation of 
the optimization process. 

[95] 

A
rt

ifi
ci

a
l i

m
m

u
n

e
 s

ys
te

m
, A

IS
 

flexible job-shop scheduling 
problem 

The proposed algorithm was tested on 162 
benchmark problems and results showed that the 
presented algorithm is effective in overcoming those 
problems. 

[31] 

project scheduling problem under 
resource constraints 

The computational results show that the proposed 
algorithm has competitive results of solving real-world 
problems compared to the existing benchmark 
algorithms. 

[96] 

analysis of structural integrity of a 
building 

The results obtained using the present method are 
efficient, robust, and accurate. The paper presented a 
new method to analyze failures in structures. 

[97] 

structural health monitoring (SHM) 

The high success rate shown by this approach has 

great potential for SHM tasks. The results showed 
that the proposed AIS could reach a relatively high 
accuracy with limited training antigens. 

[98] 

A
rt

ifi
ci

a
l 

n
e

u
ra

l 

n
e

tw
o

rk
, A

N
N

 

methodology for determining the 
execution time and cost of 
earthworks 

The results presented in the paper confirm the fact 
that trained ANNs can be used in designing earthwork 
organization in construction to determ ine the time 
necessary to carry out earthworks and to calculate 
the costs involved. 

[99] 
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determination of the ultimate 

bearing capacity of shallow 
foundations on granular soil 

The algorithm will find wide application in the 

calculation of the ultimate bearing capacity of 
foundations. 

[92] 

damage identification in civil 
engineering structures 

Compared with modal-based approaches, the used 
method requires much less post-processing of the 
recorded data. Especially, there is no need for 
manual processing, which makes the developed 
method more suitable for on-line health monitoring. 

[100] 

energy analysis of a building 

Results presented in this paper confirm the potential 

of ANNs as a design tool in many areas of building 
service engineering. 

[101] 

measuring and predicting 

construction-labor productivity 

A model for measuring and predicting labor 
productivity in construction projects was developed by 
utilizing ANNs. The developed model was successful. 

[102] 

calibration of a microsimulation 
traffic model 

Presented results clearly show that a neural network 
is not an alternative to a microsimulation model. The 
neural network accurately predicted the traveling 

time, but not the queue parameters. 

[103] 

B
a

t a
lg

o
ri

th
m

, B
A

 

capacitated vehicle routing 
problem (CVRP) 

In this paper, a hybrid BA with path relinking for 
solving the CVRP was presented. Results show that 
the methodology is able to provide fine-quality 
solutions, which can compete with the ones provided 
by some exact and heuristic approach. 

[104] 

layout optimization of steel frames 
with steel plate walls 

The results reveal the effectiveness of the proposed 
method for optimization of steel frames with steel 

plate walls. 
[105] 

size optimization of skeletal 
structures consisting of truss and 
frame structures 

Results presented in the paper show the suitability 
and efficiency of the present algorithm for optimal 
design of skeletal structures. 

[106] 

optimum design of large-scale 
truss structures 

The paper presents an improved BA for optimizing 
large-scale structures. The capability of the algorithm 
is examined by comparing the resulting design 
parameters and structural weight with those of other 

methods from the literature. 

[107] 

B
e

e
 c

o
lo

n
y 

o
p

tim
iz

a
tio

n,
 B

C
O

 

production scheduling for 
dispatching ready-mixed concrete 

(RMC) trucks 

The experimental results showed that the BCO 
approach can quickly generate efficient and flexible 
solutions to dispatch RMC trucks. Furthermore, the 
obtained results had higher quality solutions and 
faster computational time than those obtained from 
the conventional approaches. 

[108] 

job-shop scheduling 

problems 

In this study, three modifications of BCO are 

proposed, i.e., global evolution of some bees, 
dynamic parameters of the colony, and special 
treatment of the best bee. The computer simulation 
shows that the modified BCO performs quite better 
than the BCO for some job-shop scheduling 
problems. 

[109] 

transit network design 

The numerical experiments are performed on known 
benchmark problems. The approach, based on the 

BCO algorithm, is competitive with other approaches 
in the literature, and it can generate high-quality 
solutions. 

[59] 
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F
ire

fly
 a

lg
o

rit
h

m
, F

F
A

 
optimal design of truss structures 

Numerical results indicate the robustness and 

efficiency of the proposed method in the optimum 
design of truss structures. 

[110] 

determining the optimum design 
of tower-shaped structures 

This method is effective in improving the convergence 
and also suitable for expensive optimization tasks 
such as large‐scale structures. Three tower structures 

are selected to evaluate the performance of the 
algorithm. The results are better than other results 
proposed in the literature and confirm the validity of 
the proposed algorithm. 

[111] 

optimization of queueing systems 

In this paper authors have tested FFA to the 
multiobjective maximization problem of cost function. 

The FFA is a very powerful technique used to solve 
the problems of queueing system optimization. 

[66] 

shape and size optimization of 
truss structures considering 

dynamic constraints 

FFA could find the optimal solution in a relatively 
short computational time. For the tested examples, 
considering the same number of iterations, harmony 
search (HS) found the optimal solution in a slightly 
shorter time than FFA; however, in all cases, FFA 
found solutions slightly better than HS. 

[112] 

minimum weight design of new-
generation steel beams with 
sinusoidal openings 

The results obtained by the application of firefly 
search algorithms demonstrate that new-generation 

sinusoidal steel beams produce a more cost-effective 
solution than other two beams as a result of their 
sleek, transparent, and flexible geometry, and they 
increase the efficacy of the relation capacity. 

[68] 

G
e

n
e

tic
 a

lg
o

ri
th

m
, G

A
 

optimum cost of prestressed and 
reinforced concrete beams 

The comparison showed that the GA models were 
efficient in moving towards the beam optimum cost. [113] 

optimization model for generating 
optimal schedules for repetitive 
projects 

A GA optimization model was developed for 

generating optimal schedules for repetitive projects. 

This developed model is capable of offering valuable 
support to project team members in minimizing the 
overall cost of the project. 

[114] 

optimization design of high-
performance concrete 

The GA could reduce the cost, save the energy, and 
provide better use value in the engineering practice. [115] 

overall cost optimization of 
prestressed concrete (PC) bridges 

It is concluded that the GA can be effectively used in 
the overall cost optimization of PC bridges. [116] 

multi-objective optimization for 
scheduling a multi-storey building 

The developed model enables construction planners 
to generate, from a set of feasible alternatives, 
optimal/near-optimal construction plans that minimize 
project duration, number of synchronized crews, and 
crew work interruptions. The transparency of the 
model and its versatile performance will hopefully 
encourage project managers to utilize it in the 
planning of repetitive projects. 

[117] 

construction project schedule 

In this paper, the authors demonstrate a novel 

approach of retrieving enough information from the 
building information model (BIM) of a project and then 
develop construction sequencing for the installation of 
the project elements. 

[118] 
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multi-objective construction site 
layout planning 

The evaluation indicates that the proposed model 

provides effective and rational solutions, in response 
to decision parameters and problem constraints, and 
that it results in more robust layout planning than 
previous methods both qualitatively and 
quantitatively. 

[119] 

P
a

rt
ic

le
 s

w
ar

m
 o

p
tim

iz
at

io
n,

 P
S

O
 

structural truss mass optimization 
on size and shape with dynamic 
constraints 

The results show that the particle swarm algorithm 
performed similar to other methods and even better in 
some cases. 

[120] 

beam-slab layout design problems 

The results from the example problem show the 
validity of the proposed algorithm. PSO can be a 
good alternative to the GA for solving the beam-slab 
layout design problem. 

[121] 

optimum design of unbraced steel 
frames to load and resistance 
factor design, American Institute 
of Steel Construction 

The efficiency of the algorithm is demonstrated 
considering a number of design examples, and it is 
satisfactory. 

[122] 

determination of optimum time 
and costs 

The PSO method can be successfully used for 
optimizing the realization of construction projects. The 
use of this method is recommended for optimization 
of global critical path diagrams for projects with 
smaller number of project-significant activities. 

[81] 

PSO-trained neural network for 
structural failure prediction of 
multistoried reinforced concrete 
(RC) buildings 

The work proposed a PSO-based approach to train a 
neural network (NN). PSO is employed to find the 
weight vector with the minimum root-mean-square 

error for the NN. The experimental results established 
the dominance of the proposed model for detecting 
the structural status of a multistoried RC building 
structure. 

[123] 

4 SUMMARY AND CONCLUSION 

In this paper, the following optimization algorithms are briefly presented: ACO, AIS, ANN, BA, BCO, FFA, GA, and 
PSO. The purpose of an optimization is to find the best, optimal, solution to a specific observed problem, meaning 
a solution that will mostly satisfy the conflicting objectives. Nature-inspired optimization algorithms help to solve 
many complicated problems we face in real life. The common feature of all the aforementioned algorithms is that 
they are inspired by the behavior of the living world in nature, such as ants and bees, which find the shortest path 
to food and back to the nest, and then the functioning of the immune system, etc.  

In the above-mentioned work (Section 2), the intention was to explain the basic concept of the optimization 
algorithms as briefly as possible, whereas for the further study, it is recommended to use the references listed in 
the bibliography section at the end of this paper. Section 3 provides an overview of the potential applications of 
nature-inspired algorithms in civil engineering. Papers related to the selected algorithms, found in the period from 
2010 until now, are briefly presented. As they clearly show, each subsequent year brought new metaheuristics, and 
the existing metaheuristics are improved every year. However, it is important to emphasize that the development 

and improvement of metaheuristics come with the necessity to preserve the simplicity of their operational principles. 
One of the aims of this paper is to fill in the void that is present in the literature regarding the application of nature-
inspired algorithms in civil engineering.  

In addition, the purpose of this overview is to inform the readers about nature-inspired optimization algorithms 
and to arouse their interest in further research of this topic. The potential users should be more thoroughly 
introduced into nature-inspired algorithms and their potential applications, not only in the field of civil engineering, 
but in all areas of human activity. Artificial intelligence and the related technologies (including optimization 
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algorithms) are changing every day, and as computers become more popular and more advanced, the use of 
optimization algorithms is expected to increase in all areas of human life, as well as in civil engineering. 
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