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Abstract: This paper presents a numerical analysis of a reinforced concrete beam in which the concrete and 
reinforcement are above the yield strength of the material. Further, the procedure for determining the relationship 
between the cross-sectional forces and the deformations of the layered cross-section of a rod is described. For a 
short rod with reduced stiffness of the EI and EA cross-sections, a stiffness matrix with variable members is formed. 
The applicability of the proposed analysis method for the material nonlinearity in a beam calculation is demonstrated 
through a numerical example. The aim of the present paper is to show the flow of plastification and the load-
deformation of the system nodes. Finally, the results of the manual deformation calculation system are compared 
with the results from SCIA software.  
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NUMERIČKA ANALIZA NOSIVOSTI ARMIRANOBETONSKOG NOSAČA U 
RAVNINI   
 
Sažetak: U radu je pokazana numerička analiza armiranobetonskog nosača kada je ponašanje betona i armature 
iznad granice popuštanja materijala. Prikazan je postupak određivanja odnosa između presječnih sila i deformacija 
slojevitog poprečnog presjeka štapa. Za kratak štap s reduciranim krutostima poprečnog presjeka EI i EA formirana 
je matrica krutosti štapa s varijabilnim članovima. Aplikativnost predloženog postupka analize materijalne 
nelinearnosti pri proračunu nosača prikazana je u numeričkom primjeru. Cilj rada je prikazati tijek plastifikacije i 
odnose opterećenje - deformacija čvorova sustava. Na kraju su uspoređeni dobiveni rezultati manualnog proračuna 
deformacija sustava s rezultatima programskog paketa SCIA. 
 
Ključne riječi: numerička analiza; materijalna nelinearnost; armiranobetonska greda; matrica krutosti  



Number 18, Year 2019         Page 36-47 
 
Numerical analysis of reinforced concrete beam in two-dimensional form  

   

Demirović, B, Osmić, N 

https://doi.org/10.13167/2019.18.4  37 

1 INTRODUCTION 

The development of the finite element method and numerical calculation methods have influenced the application 
of nonlinear analysis in construction calculations. With nonlinear analysis, it is important to know the behavior of 
the stress material described in the adopted models. Models of the theory of plasticity that describe the behavior of 
a material are shown in [1]. The Tresca-in model, Von Mises, Mohr–Columb, and Drucer–Prager models of the 
material behavior are used in the SCIA software package to control the results of the proposed calculation. 

In [2] and [3], a mathematical formulation of the finite element is introduced, in which the nonlinear behavior 
of the material is included. In [2], the nonlinearity of a material was introduced under the von Mises yield criterion, 
whereas in [3], such nonlinearity is introduced through a model of the contact elements implemented between the 
finite elements. 

The finite elements for the elastic behavior of a material are used in [4]. Nonlinearity is achieved by reducing 
the stiffness of the elements for a predefined plastic cross-sectional load. The rigidity of the elements is reduced 
until the forces in the two iterative steps become approximately equal. All approaches in nonlinear analysis of way 
constructions by numerical calculation methods, which solve nonlinear equations systems. The reason for this is 
that the behavior is based on conventional construction materials under a load to failure, which is a nonlinear 
process. 

The behavior of conventional construction materials under load to failure is nonlinear. Material and geometric 
nonlinear problems are described through nonlinear equations, the solutions to which are complex. However, a 
small number of nonlinear equations have an analytic solution. Rational shows a numerical approach to a solution 
that can have a large number of numerical data, due to the large number of final elements needed in the 
discretization of the bearing system [5]. Contributions to an iterative solution to the problem of a large number of 
nonlinear equations in individual loading increments are described in [6] and [7]. 

Determining the static and deformation states, owing to the external load in the elastic region of a material 
behavior, is known as a Theory of Structures procedure based on the linear theory of elasticity. The area above 
the boundary of the elasticity of the connection between the stress and deformation becomes nonlinear. A nonlinear 
relationship between the stress and deformation causes a nonlinear connection between the force and 
displacement. By modeling the nonlinear relationship of the stress-deformation of the material into the calculation, 
a material non-linearity is introduced. The relationship between the stress and deformation of a material in the 
calculation is introduced by means of constituent equations. Elasticity theories use linear constituent equations, 
which have usage restrictions up to the limit of the material yield. After the yield limit, the expressions from which 
the solution to the problem of material nonlinearity arises should be adapted to the nonlinear state of the behavior 
of the material. In a stress-deformation (σs-εs) diagram of the behavior of the reinforcement, there are three areas 
that are obtained by examining the tightening of the corresponding samples: the area of elasticity, part of the 
material flow, and curing to the maximum tensile stress. The dependence of the stress-deformation (σc-εc) on 
concrete is generally nonlinear. In [8], the nonlinear stress–strain dependence of the concrete behavior in an 
analysis of the damage of reinforced concrete structures is used. The functional behavior of the materials is 
approximated using numerical methods, which are also used for the calculation. The nonlinear behavior of concrete 
and a reinforcement influences the change in stiffness of the support elements [9]. Therefore, it is necessary to 
define a diagram of the strength of reinforced concrete in the form of M-N-κ. In determining the cross-sectional 
profile diagram, the following assumptions are adopted: a) The cross-sections remain flat and are governed along 
the axis of the carrier after deformation, b) concrete does not participate in the tensile load capacity, c) no slip 
occurs between the concrete and reinforcement, and the impact of the transversal forces on the load capacity is 
neglected, and d) the fork bending capacity is ignored. After defining the capacity of the cross-section of the staff, 
calculations of the transient forces and deformations take place through incrementally iterative procedures. The 
load is applied in steps from zero to the final value, in which a breakdown of the material of the characteristic 
section, or a loss of the stability of the element, occurs.  
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2 CAPACITY OF REINFORCED CONCRETE CROSS-SECTION 

In the analysis of the material nonlinearity of the system, the load capacity of the reinforced concrete section is 
determined based on the given combination of internal forces and the dependence of the stress–deformation of 
concrete (σc-εc) and reinforcement (σc-εc). By varying the bending moment and normal forces at the center of the 
cross-section, the deformation of the cross-section is determined. 

The cross-section is loaded by the moment of bending around the axis and the normal force, which interact 
with the normal intensities of the section. A concrete behavior diagram was adopted in the form of polynomials, and 
the reinforcement was applied as a bilinear dependence of the stress–deformation, without taking into account the 
material safety coefficients (Figures 1e and 1f) [10]. In the combination of the bending moment and the normal force 
at each point of the section, normal stresses occur depending on the deformation of the cross-section. A solution 
to the problem of the cross-sectional load problem is sought out iteratively for the adopted load increment. The 
deformations of the section in the zeroth iterative step are described through the expansion ε(0) and curve κ(0), which 
are determined at the cross-sectional point according to the following expressions [11]: 

 

 = =


(0) (0) i

i i

MN
;

EA E
 

(1) 

 
where EAi is the axial stiffness of the cross-section of the rod, and EIi is the rigidity of its bending. The described 

stiffness of the section is determined based on the initial modulus of the material elasticity and the surface of the 
entire cross-section of the concrete and reinforcement. When nonlinear stress–strain relationships are used, a 
stiffness of the cross-section of the rod and an increase in the strain of the rod occur. In the n-th iterative step, the 
increments Δε and Δκ are of the following form: 
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where Et

(n)∙Ai
(n) is the reduced axial rigidity of the cross-section of the rod in the nth iterative step, and Et

(n)∙ Ii(n) is the 

reduced stiffness required to bend the cross-section of the rod in the n-th iterative step. The increment of the 
transient forces and the bending moment are determined through the following expression (3): 

 
− − = −  = −(n) (n 1) (n) (n 1)

i i iN N N ; M M M  (3) 

 
and the deformation size of the rod takes the following form (4): 

 

     − −= + = +(n) (n 1) (n) (n) (n 1) (n);  (4) 

 
To determine the surface Ai as well as the moment of inertia Ii and the cross-section, the concrete part and 
longitudinal reinforcement are pressed. When the stress changes, the tangent modulus of the material is changed 
by the height of the cross-section, depending on σ and ε. In this case, the deformation quantities ε and κ in 
expression (2) are defined by the functional dependence of the stress and deformation. The calculation of the 
deformation quantities with complex functions can be simplified by dividing the cross-section into layers. Each j-th 
layer of the cross-section at its center corresponds to the stress, deformation, and tangent modulus of the material 
[5]. 
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Figure 1 a) Cross section, b) elementary part of the rod length dx, c) distribution of the 

deformations, d) stresses and intensities, e) dependence diagram of the σc-εc armature, and f) a 
dependence diagram of σc-εc concrete 

  
Static and geometric quantities are determined in relation to the ideal cross-sectional area of Ti. The steel 

used in the cross-section of the EtAi and EtIi rods are determined by layer in relation to the ideal focus on the terms: 
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Based on the deformation quantities ε and κ, the distribution of the deformations along the height of the cross-

section is as follows:  
 

( ) ( )     = +  − = +  −cj ci i j s ci i sy y ; y y  (6) 

  

Plastification of the section is based on the uniform properties of the materials [4]. For the deformation of the 
cross-sectional layers from the stress–deformation dependence diagram, the stress of the σcj layers of concrete 
and the σs reinforcement is determined. Based on the strain of the concrete and reinforcement obtained, the forces 
Fcj of the concrete layers and Fs of the reinforcement are determined. Under equilibrium of all forces in the axis x-
axis, and using the sum of all moments around the x-axis at the center of the cross-section, the moments of bending 
Mi and force and N are obtained, which are unbalanced with the given intersecting forces. Owing to the increase in 
stress in the layers of concrete and reinforcement, there are changes in the static and geometric characteristics of 
the cross-section. In the next iterative step, the growth of the deformation quantities Δε and Δκ, and the distribution 
of deformations along the height of the cross-section [12], are determined for the new position of the center of 
gravity and the static characteristics of the section. The deformation increment is determined through expression 
(2) owing to the difference between the given transient forces and the force in the (n-1) iterative step. The flow of 
the iterative process of the force balancing and deformation of the cross-section is shown in Figure 2. 
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Figure 2 a) Flow of the iterative procedure of the relationship M-κ and b) the iterative process of 

dependence N-ε 

3 MODELING OF MATERIAL NONLINEARITY OF A ROD 

An analysis of the static and deformation sizes is carried out on a rod with the right axis exposed to a uniform 
amount of stress. The effect of the transverse forces on the movement of the rod is ignored. The rod has two nodes 
with three general displacements, totaling six degrees of movement and rotation at the ends of the rod [1]. Each 
generalized displacement [q] corresponds to the generalized force [R]. The relationship between generalized forces 
and displacement has the following form: 

 

     = R k q  (7) 

  

where [k] is the matrix of the stiffness of the rod. The members of the rod stiffness matrix are constants of the 
rod dependent on EI, EA, and L. They are obtained as forces induced through a unit-generalized displacement, 

whereas the remaining generalized displacements are equal to zero [13]. In the nonlinear behavior of the material, 
the stiffness of the cross sections of the EI and EA rods are variable along the rod (Figures 3b and 3c), which 

causes a change in the stiffness matrix of the members. If a stick is split into fewer elements, without major errors 
occurring in the results of the calculation, the same geometric and static characteristics of the cross-sections of the 
a-b shape can be adopted: 

 
 +    +  

=  =t,a i,a t,b i,b t,a i,a t,b i,b

t i,ab t i,ab

E A E A E E
E A ; E

2 2
 (8) 

  

 
Figure 3 a) Rod A-B, b) change in stiffness of the bending section, c) change in axial stiffness of the 

section, and d) generalized movement of the a-b rod 



Number 18, Year 2019         Page 36-47 
 
Numerical analysis of reinforced concrete beam in two-dimensional form  

   

Demirović, B, Osmić, N 

https://doi.org/10.13167/2019.18.4  41 

The stiffness matrix of a-b in accordance with the adopted generalized displacements shown in Figure 3d has 
the following form:  

 

−
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−
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The equation of the equilibrium of nodes in matrix form is in the following form: 
 

      + =
nel

K q Q 0  (10) 

  

where [K] is a non-global material with a nonlinear matrix of the stiffness of the system, [q] is a matrix 
deformation of the nodes, and [Q] is a vector of the equivalent knot load. The solution to the system equations (10) 
is sought iteratively because the stiffness matrix of the system is nonlinear. During the iterative process, the 
changes in the static and geometric quantities of EtIi, ab, EtAi, and ab are carried out according to the relations M-

κ and N-ε. The iterative procedure is carried out until reaching m iterations at which the stiffness of the rods in the 
system becomes approximately constant. 

4 EXAMPLE 

In the example used, the static–deformation state of the frame under a load to failure is analyzed. The input data 
for the material are as follows: C25/30 concrete, Ec = 3 x 107 kN/m2; and B 500 N reinforcement, Es = 2 x 108 kN/m2. 
The stress–deformation dependence of the reinforcement was adopted in the form of a bilinear diagram (Figure 
4b), and for concrete as a third-degree polynomial (Figure 4c). For a non-linear analysis, the mechanical properties 
of the materials are adopted without safety coefficients. Based on the material behavior diagram, the balance of 
force and the moment of bending of the cross-section of the column and beam from the received initial value of the 
force to the breaking point were generated. It is assumed that the failure of the cross-section occurs when the 
stress is exceeded in one layer of the cross-section. The diagrams of this relationship are the bending-curvature 
sections of the section describing the change in stiffness of the cross-section of the rods. Describing the change in 
stiffness of the rod rods is advantageous by dividing the rods into smaller pieces. In the nodes, the generalized 
displacements in Figure 4a are numbered, approximating the deformation method. The initial load q = 16 kN/m is 
multiplied by the factor f in five load increments until breaking. For each load increment, the calculation is carried 
out using an iterative Newton–Raphson tangent stiffness procedure. The force–displacement dependence is 
approximately linear to the load factor f = 1. In this area, the reinforcement is located in an elastic area of behavior, 
and the concrete is partially coated. By increasing the load, which leads to the plastic behavior of the reinforcement 
and concrete, there is a significant decrease in the stiffness of the elements upon bending and an increase in strain 
in relation to the amount of stress. The first plastic joint appears from f = 1,55 in node I. After the opening of the 
wrist in node I, the static system changes with a redistribution of the static influences. For a small load increment 
with factor f =1,60, plastic joints 2 and 3 are opened in nodes VIII and V. With the three joints, the system becomes 
a mechanism. The results of the budget are controlled using the SCIA software package, in which the elements are 
modeled in 2D [14]. 
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Figure 4 a) Example of a frame, b) dependency diagram σs-εs, c) dependency diagram σc-εc, d) cross-

section of the rods, and e) dependency diagram M-κ 
 
For the normal force effect of the element, a change in the action of the bending moment is made in the cross-

section of the rod until the limit value is reached. Each intensity of the bending moment corresponds to the 
deformation of the section. Based on the dependence of the bending moment and curvature, the stiffness in the 
bending of the cross-section of the rod was obtained, as shown in Tables 1 and 2. 

Table 1 Numerical values of the change in stiffness and curvature of a beam cross-section depending on 
the bending moment 

Beam (N = -20 kN) 

M [kNm] 0 50 75 100 125 135 140 150 

EI [kNm2] 83002,80 18305,83 18215,58 18116,31 18007,71 1739,15 1529,24 932,98 

κ [1/m] 0 0,002617 0,004026 0,005461 0,006928 0,012316 0,023955 0,062833 

 

Table 2 Numerical values of change in stiffness and curvature of a transverse pole depending on the 
bending moment 

Column (N = -200 kN) 

M [kNm] 0 50 75 80 82,5 

EI [kNm2] 11006,80 4008,26 3734,13 3668,33 567,52 

κ [1/m] 0 0,011577 0,021269 0,02393 0,031222 

 
The system stiffness matrix shown in Figure 4 has the following form: 
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(14) 
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(15) 

 
An equivalent nodal load vector is in the following form: 

 
2 2

T

2

q 1,5 q 1,5
Q 0 0 0 0 F q 1,5 0 q 1,5 0 q 1,5 0 0 0 0 0 0

12 12

  
= − − −  −  −  
 

 (16) 

 

The results of the horizontal displacement calculation are shown in Figure 5. 

 
Figure 5 Results of horizontal displacement of a frame and the formation of plastic joints 

 
Table 3 Numerical values of horizontal displacement of a frame 

Horizontal displacement of node IV [cm]  

f 0 1 1,25 1,50 1,55 1,60 

Linear 0 0,99 1,24 1,49 1,54 1,60 

Manual calculation 0 3,03 4,11 6,10 8,07 14,29 

Program SCIA 0 2,68 3,37 5,04 - 12,26 

 
Figure 6 shows an incremental-iterative procedure for the calculation of the horizontal displacement of node IV. 
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Figure 6 Incremental-iterative procedure of horizontal displacement of node IV 

 
Table 4 Iterative calculation procedure of static-deformation nodal parameters 

Iteration 0. 1. 2. 3. 4. 

Nodes Et∙Ii [kNm2] 

I 11006,80 4651,02 4064,84 3501,60 3208,84 

II 11006,80 4807,13 4593,79 4390,25 4293,37 

III 11006,80 4878,79 4810,37 4819,50 4848,23 

IV 11006,80 83002,80 11006,80 83002,80 4451,38 18311,66 4248,80 18311,66 4093,92 18311,66 

V 83002,80 18311,66 18311,66 18311,66 18311,66 

VI 83002,80 18311,66 18311,66 18311,66 18311,66 

VII 83002,80 18311,66 18311,66 18311,66 18311,66 

VIII 83002,80 11006,80 83002,80 11006,80 18311,66 4205,47 18311,66 3636,70 18311,66 3302,23 

IX 11006,80 4770,28 4247,05 3897,31 3975,02 

X 11006,80 4844,12 4608,44 4469,84 4510,24 

XI 11006,80 11006,80 11006,80 11006,80 11006,80 

                      

  k [1/m] 

I -0,0051 -0,0098 -0,0131 -0,0136 -0,0135 

II -0,0022 -0,0041 -0,0057 -0,0057 -0,0055 

III 0,0007 0,0014 0,0006 0,0008 0,0009 

IV 0,0037 0,0005 0,0051 0,0008 0,0075 0,0019 0,0075 0,0019 0,0077 0,0019 

V 0,0009 0,0034 0,0035 0,0036 0,0036 

VI 0,0008 0,0030 0,0033 0,0034 0,0034 

VII 0,0003 0,0007 0,0011 0,0012 0,0012 

VIII -0,0006 -0,0043 -0,0012 -0,0084 -0,0029 -0,0129 -0,0029 -0,0129 -0,0029 -0,0129 

IX -0,0029 -0,0091 -0,0083 -0,0080 -0,0080 

X -0,0014 -0,0045 -0,0039 -0,0038 -0,0038 

XI 0,0000 0,0000 0,0000 0,0000 0,0000 

                      

  M [kNm] 

I -56,05 -45,70 -56,30 -56,23 -55,67 

II -23,94 -19,47 -26,78 -26,15 -25,56 

III 8,17 6,76 2,74 3,94 4,56 

IV 40,27 40,27 32,99 32,99 32,25 32,25 34,02 34,02 34,67 34,67 

V 72,29 62,42 64,33 66,08 66,58 

VI 68,30 55,84 60,40 62,14 62,50 

VII 28,31 13,27 20,48 22,20 22,42 

VIII -47,68 -47,68 -65,31 -65,31 -55,45 -55,45 -53,74 -53,74 -53,67 -53,67 

IX -31,78 -43,54 -36,97 -35,83 -35,78 

X -15,89 -21,77 -18,48 -17,91 -17,89 

XI 0,00 0,00 0,00 0,00 0,00 

 
In each iterative step, for a reduced stiffness to bend the cross-section of the rod an unbalanced load ΔM 

(Δq) and deformation Δk (Δu) are obtained. The iteration procedure is continued until the contribution of the 
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unbalanced load or displacement vectors is less than the set criteria. The results of the iterative procedure for 
changes in stiffness, curvature, bending moments, and displacements for the nodes of the system calculation are 
shown in Tables 4 and 5. 

 
Table 5 Iterative procedure for calculation of nodal displacement 

Iteration 0. 1. 2. 3. 4. 

Generalized 
displacement 

Nodal displacement [cm]   

1 0,21 0,40 0,54 0,59 0,62 
3 0,64 1,20 1,69 1,82 1,87 

5 0,99 1,93 2,78 2,96 3,03 

7 0,27 0,78 1,00 1,04 1,05 
9 0,33 1,02 1,23 1,27 1,28 

11 0,21 0,61 0,74 0,77 0,78 
13 0,99 1,93 2,78 2,96 3,03 
15 0,90 1,88 2,54 2,70 2,75 
17 0,52 1,14 1,45 1,53 1,56 

 

5 CONCLUSION 

This paper presented the procedure for a numerical calculation of a reinforced concrete beam after reaching the 
material yield limit. After the yield strength is reached, the stress–deformation and force–displacement become 
nonlinear. The problem of nonlinearity of the material affects the stiffness of the rods, which changes during the 
load increment. 

In the nonlinear region of a material behavior, the stiffness of the section significantly decreases with respect 
to the stiffness in the elastic region. The decrease in the stiffness of the rods causes a redistribution of the transient 
forces and a greater increase in the deformation of the nodes in relation to the load. 

By dividing into sections, it is possible to analyze the cross-sections that are loaded at the level of various 
geometric shapes, types, and quantities of the reinforcement. A concrete behavior diagram is given in the form of 
a polynomial, and the reinforcement in the form of a bilinear diagram. The dependence of the strain-deformation of 
concrete and reinforcement in other forms can be estimated. 

The number of system nodes can be changed depending on the division of the rod into parts. The calculation 
results show the actual state of deformation through the load-bearing process, based upon which the load capacity 
and functionality of the structure can be seen. The calculation model is applicable in the analysis of the earthquake 
resistance of a structure. From the calculation, it can be concluded that there is a failure of individual nodes and 
the appearance of joints, which does not mean a failure of the entire system. A collapse of the carriage occurs 
when the joint that causes the mechanism of the system opens. The advantage of the illustrated calculation is that 
the deformations of the system can be controlled after the opening of the joint caused by the mechanism because 
the condition of the cross-sectionality is shown in relation to the bending moment-curvature of the cross section for 
N ≠ 0. 

Based on the described method of a nonlinear analysis of reinforced concrete structures, it is possible to 
analyze the damaged elements of the system after a fire. In damaging the structure, the material of the system 
elements changes the mechanical properties. In doing so, the characteristics of the concrete and reinforcement 
can be taken into account and the limit load is determined through an incrementally iterative process. 

By comparing the load and displacement ratio, it can be concluded that there is a greater displacement of the 
beams with a reduced stiffness of the rods. The presented numerical calculation method  provides a real distribution 
of transient forces taking into account the material nonlinearity of the individual parts of the beam. 
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