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Abstract:

Nano-electro-mechanical systems (NEMS) require
perforated beams for structural integrity. Hole sizes, hole
numbers, and scale effects need to be modelled
appropriately in their design. This paper presents a new
finite element model to investigate the modal behaviour
of longitudinally perforated nanobeams (LPNBs) using
the classical Euler—Bernoulli beam theory. A symmetric
array of holes arranged parallel to the length direction of
the beam with equal spacing was assumed for the
perforation. The non-local Eringen’s differential form
was used to incorporate the nanoscale sizes. The
accuracy of the proposed model was verified by
comparing the obtained results with the available
analytical solutions for fully filled nanobeams. The
effects of aspect ratios, non-local parameters, boundary
conditions, and perforation characteristics on the modal
behaviour of LPNBs were investigated. The non-local
parameter reduced the natural frequency owing to a
decrease in the stiffness of the structures. However, the
perforation filling ratio led to higher values of the
fundamental frequency. Furthermore, compared with
other boundary conditions, clamped—-clamped boundary
conditions demonstrated the best performance in terms
of the maximum frequency.
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1 Introduction

Micro-/nano-structured devices have become a prominent focus of research in engineering
and materials science owing to rapid progress in nanoscience and nanotechnology.
Nanobeams are characterised by their unique structural properties and have widespread
applications in various fields, such as Nano systems, nanodevices, atomic force microscopes,
biosensors, nanoprobes, nanowires, nanoactuators, and nano-electro-mechanical systems
(NEMS). In the framework of Eringen’s non-local theory of elasticity, the stress experienced by
a specific point within an elastic continuum is influenced by the surrounding strains, as opposed
to classical mechanics, in which the stress is solely dependent on the strain at that point.
Considering these developments, the analysis of perforated nanobeams has garnered
significant attention from the scientific community owing to their diverse applications in areas,
such as heat exchangers, nuclear power plants, filtration systems, and NEMS.

Abdelrahman et al. [1] performed a dynamic analysis of perforated nanobeams under the
action of a moving mass using a non-local strain gradient theory. Almitani et al. [2] developed
a closed-form solution to study the static bending and critical buckling of a nanobeam
perforated by a square hole, including the surface energy impacts. Using an analytical
approach, Abdelrahman et al. [3] examined the combined influence of the microstructure and
surface energy on the bending behaviour of perforated nanobeams (PNBs). Esen et al. [4]
proposed a modified continuum mathematical model based on the modified coupled stress
theory to study the dynamic behaviour of Timoshenko perforated microbeams subjected to
moving loads. Eltaher and Abdelrahman [5] conducted an analytical study on the bending and
buckling stability of square cut-out nanobeams, considering the incorporation of nanoscale
effects through surface energy properties. Eltaher and Mohamed [6] examined the effects of
long-range atomic interactions, hole perforation size, and the number of hole rows on the
vibration response of non-local PNBs under various boundary conditions. Abdelrahman and
Eltaher [7] investigated the static deflection and stability behaviour of PNBs by considering the
impact of the surface energy and different beam theories. Eltaher et al. [8, 9] employed
numerical methods and the finite element technique to investigate the static deflection and
natural frequencies of a piezoelectric non-local Euler—Bernoulli PNB. This study also focused
on exploring the influence of nanoscale effects and surface energy on the behaviour of the
beam. Abdelrahman et al. [10] introduced an integrated model and analytical approach to
investigate the free and forced vibration behaviours of perforated slender/short beams. Eltaher
et al. [11, 12] conducted analytical studies on the mechanical bending, buckling, and vibration
responses of simply supported non-local PNBs using the modified Euler—Bernoulli and
Timoshenko beam theories. Bourouina et al. [13] investigated the impact of thermal loads and
size effects on the vibration characteristics of slender non-local PNBs featuring an array of
square holes. A theoretical analysis of vibration, buckling, and bending of nanoplates and
nanobeams has been carried out by Chakraverty and Behera [14]. Luschi and Pieri [15] derived
analytical expressions for the equivalent bending stiffness of Euler—Bernoulli beams with
perforations. They also utilised a previous study to calculate the resonance frequencies of
perforated beams [16, 17].

The studies presented herein have significantly advanced the understanding of the behaviour
of transversally PNBs characterised by cut-outs oriented in the transverse direction. These
investigations provided valuable insights into the dynamic and static responses of nanobeams
under various conditions. However, the absence of prior studies that specifically address the
dynamic analysis of longitudinally perforated nanobeams (LPNBs) underscores the
importance of further research in this domain.

This paper presents a thorough investigation of the modal behaviour of LPNBs through the
development of a new finite element model. This model characterises LPNBs with a symmetric
array of holes arranged parallel to the length of the beam with equal spacing. Nanoscale sizes
are incorporated using the non-local Eringen’s differential form. The proposed model is
validated via a comparison with existing analytical solutions for fully filled nanobeams, which
demonstrates excellent agreement. Furthermore, finite element numerical results are provided
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in both tabular and graphical formats to examine the influence of various factors, such as the
aspect ratios, non-local parameters, boundary conditions, and perforation characteristics, on
the modal behaviour of the LPNBs.

The presented results serve as a valuable reference for future research on LPNBs and
contribute significantly to the field.

2  Problem formulation
2.1 Geometrical adaptation

To investigate the mechanical behaviour of LPNBs efficiently, it is imperative to incorporate
periodicity into their mathematical model. Figure 1 illustrates the geometric characteristics of
an LPNB. The cross-sectional area of the nanobeam consists of regularly spaced square cut-
outs, characterised by parameters, such as the number of hole rows per cross-section (N),
perforation filling ratio (a), spatial perforation period (Is), spatial period (ts), and the side length
of the holes (Is-ts). Luschi and Pieri’'s formula [17] provides an expression for the perforation
filling ratio of perforated beams as follows:

ts
a=l—,0SaS1 (1)
S

b

Figure 1. Geometry of a longitudinally perforated squared PNB

The perforation filling ratio of a PNB, as indicated by Eq. (1), is crucial: When the spatial period
(ts) approaches zero, and consequently, the perforation filling ratio (a) also tends to zero, it
represents a scenario of a fully PNB. Conversely, as ts approaches Is, and a approaches unity,
it signifies a fully filled solid nanobeam, eliminating any perforations.

2.2 Euler—-Bernoulli beam theory
The displacement field of the classical Euler—Bernoulli beam theory can be expressed as:

owy(x, t)

I (2a)

u(x,z,t) = ug(x,t) — z
w(x, z,t) = wy(x,t) (2b)

where up and wp represent the axial and transverse displacements of any point on the mid-
plane, respectively, and t denotes the time. The only non-zero strain according to the Euler—
Bernoulli beam theory is defined as:
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€ 6u0 Za2W0 =l —zK0 (3)
xx T 5y 9x2 xx xx

Where &, presents the extensional strain, and k" signifies the bending strain.
2.3 Equation of motion

Hamilton’s principle [18] states that:

* (68U — 8T) dt = 0 4)

ty

The virtual strain energy and virtual kinetic energy are given by:

+h/2 +h/2
SU = bff_h Oy 0y dzdx = bff_h Oy (€0, — z6K%,)dzdx
2 2

(5a)
= bj(N&s,?x — M&k2,) dx
ST = bff-'-h/z OZWO 66u0 626W0 +(3W0 66W0 dzd
o a0 g\t " P amx ) tar e |
auo 65u0 aWO 65W0) auo 626W0 n 62W0 66110 ] (Sb)
B bfl 9t ot ot ot ) *\Cotr atox « otox ot |dx
0%wq 028w, I
"2 5t0x atax |
where b is the beam width.
The resultant force and moment are expressed as follows:
+h/2
N =f Oyrdz (6a)
~h/2
+h/2
M = f 20y dz (6b)
h/2

The mass moment of inertia is formulated as follows:
Io +h/2 1
11 = f P { Z dz (GC)
L -h/2 ;2
By substituting Eqg. (5) into Eq. (4), the Euler—Lagrange equation is obtained as follows:
oON 0%u, 3w,
=1 — I
0x at? 0xot?
0’M 16W0+I d3ug I *wy,
axz ~ % at2 ' 'oxat2  ?ox20t?

(7)

2.4 Non-local continuum beam model

In the classical elasticity theory, the stress at a point depends only on the strain at that point.
In contrast, the non-local elasticity theory asserts that stress at a point is influenced by strains
across the entire continuum.

The formula for the non-local stress tensor at a particular point X’ can be found in reference
[19].
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o= fK(|x'—x|,T) T(x')dx' (8a)

T(x) = C(x):e(x) (8b)

Where T(x) is the classic macroscopic stress tensor at point X, €(x) is the strain tensor, C(x) is
the fourth-order elasticity tensor and denotes the ‘double-dot product’, K(|x' — x|, t) is the non-
local modulus or attenuation function incorporating into the constitutive equations the non-local
effects at the reference point x produced by the local strain at the source X, |xX' — x| is the
Euclidean distance, 1= eea/l is defined as a small scale factor, where eq is a constant to adjust
the model to match the reliable results obtained by experiments or other models, a is the
internal characteristic length (e.qg. lattice parameter, C—C bond length, granular distance, crack
length, wavelength), and | is the external length.

In a beam structure, the shortness and width are significantly smaller than the length.
Therefore, the integral constitutive relations can be represented in an equivalent differential
form as:

1-1212v¥)o =t 9)

For a non-local Euler—Bernoulli beam, Eqg. (9) can be written as:
azaxx _ _ 2 2 10
Oxx —H 7352 =Eexy, u=aceg (10)

By integrating Eq. (10) across the cross-sectional area of the beam, the axial force—strain
relationship is obtained as follows:

‘N 0 11
N —po— = EAeR, (11a)

By multiplying Eq. (10) by ‘Z’ and integrating it across the cross-sectional area, the moment—
curvature relation is obtained as follows:

62
0x2

Differentiating Eq. (7a) once with respect to ‘X’ and substituting the outcome into Eq. (10-a)
yields:

M—u = EIx?, (11b)

N—EAau0+ ; d3ug *wy,
=50 TH %0tz T 1 ox2ar2

By substituting the second derivative of M from Eq. (7-b) into Eqg. (10-b), the moment can be
obtained as follows:

(12a)

2

%w, 0%w,
M= El—+ |l

0t2

A (12b)

0x0t2 2 0x20t?

d3uq 0*w,
0x

3 Numerical formulation

Based on Hamilton’s principle, the substitution of Eq. (12) into Eq. (5), and the substitution of
the resulting expression into Eq. (4), the following deduced variational statement for the non-
local Euler—Bernoulli beam is obtained:
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( 4 dug ddu, N Elazwo 926w, Oug ddu, 3uy 06uy\ )
ox ox 9x?  0x? 5t o Mo5ezax ox
t L aWO 66W0 OZWO 028W0 aZWO 626W0 64W0 aZWO
fo fo <<I° o o M9z axz T 2%mx acox M2 9t20x2 o >+ dxdt (13)
02wy d8u, 03ug 9%6w, 08uy 026wy 0*w, 0%6u,
1 + 235} 2 2 1 + Hiq 2 2
\\ ~ Jdtdx OJt ot%dx Ox ot OJOtdx ot?0x? 0x /)

3.1 Numerical results and discussion

This section is divided into two sub-sections: The first is devoted mainly to comparing the
proposed model with those previously published for fully filled nanobeams. The second sub-
section focuses on an analysis of LPNBs.

3.1.1 Model validation

This section is primarily dedicated to the verification of the proposed model via a comparison
with previously published models. The finite element system of equations can be succinctly
represented as:

[KI{U} = w?[M]{U} (14)

where {U} represents the degree of freedom vector, [M] and [K] denote the mass and stiffness
matrices, respectively, and w denotes the circular frequency. The geometrical and material
properties of the non-local beam used in this section adhere to those established by Behera
and Chakraverty [14].

To assess the validity of the proposed methodology, the dimensionless fundamental frequency

(A:wLZ \/%) was obtained and compared with the results obtained by Behera and

Chakraverty [14] for various non-local parameters and different boundary conditions for fully
filled nanobeams (Table 1). The comparison presented in Table 1 demonstrates a favourable
agreement between the predicted values obtained using the current method and the
corresponding values reported by Behera and Chakraverty [14] using the dynamic quadrature
method.

Table 1. Comparison of the dimensionless fundamental frequency 2 of a fully filled
Euler—-Bernoulli nanobeam (L=10 m, E=30 MPa,p=1,h=0,1,v=10,3)

Non-local parameter
u=0 u=1 u=2 u=3 u=4 u=5
3,1416 3,0738 3,0128 2,9574 2,9574 2,8601
3,1416 3,0685 3,0032 2,9444 2,8908 2,8418

Chakravert cc | 47423 4,6008 4,4776 4,3690 4,2722 4,1850
Verty, 4,7300 4,5945 4,4758 4,3707 4,2766 41917
S. and Behera,

L. [14] c_s 3,9361 3,8274 3,7321 3,6473 3,5712 3,5023
3,9266 3,8209 3,7278 3,6448 3,5701 3,5024
1,8769 1,8555 1,8352 1,8158 1,7973 1,7797
1,8751 1,8792 1,8833 1,8876 1,8919 1,8964

Methodology | BCs

S-S

C-F

3.1.2 Parametric study

After the validation of the fully filled nanobeam, the modal behaviour of the LPNBs for various
end-boundary conditions, aspect ratios, non-local parameters, and perforation filling ratios is
studied.

The material properties are defined as follows: Young’s modulus (E) = 30 MPa, Poisson’s ratio
(v) = 0,3; density (p) = 1, and beam dimensions (b = h =0,1).
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Figure 2. Beam geometry details with various opening positions

The variation of the first three dimensionless frequency parameters is presented, considering
various aspect ratios (L/h = 10, 20, 100), non-local parameters (L =0, 1, 2, 3, 4, and 5), and
perforation filling ratios (a = 0,16; 0,33; 0,5, and 1 (see Figure 2)) of the PNB as shown in
Tables 2-7. For a constant perforation filling ratio and aspect ratio, an increase in the non-local
parameter leads to a decrease in the first three frequencies, because introducing the non-
locality effect leads to a softening effect, resulting in smaller values of the fundamental
frequency parameters. Note that the short nanobeam (L/h = 10) is more affected by the non-
local parameters than the slender nanobeams (L/h = 20, 100). Furthermore, the influence of
the perforation filling ratio on the fundamental frequency parameter is more prominent for the
short nanobeam (L/h = 10) than for the slender nanobeams (L/h = 20, 100). Nevertheless, the
Euler—Bernoulli model tends to underestimate the third mode for the short nanobeam (L/h =
10).

Table 2. Variation of the first three dimensionless frequency parameters (A1, A2, and A3)
for different slenderness ratios (L/h) and perforation filling ratios (a) for a simply
supported nanobeam (u = 0)

L/h A a=0,16 a=0,33 o =0,50 a=1,00
i=1 9,9814 9,9225 9,9138 9,9105
10 i=2 33,1086 40,3501 40,2545 40,1489
i=3 41,3679 47,9234 50,1843 54,4810
i=1 9,8972 9,8827 9,8816 9,8798
20 i=2 39,9259 39,6902 39,6714 39,6418
i=3 66,1660 89,9568 89,8573 89,7022
i=1 9,8707 9,8701 9,8701 9,8700
100 i=2 39,4963 39,4871 39,4864 39,4852
i=3 88,9533 88,8827 88,8768 88,8681

Table 3. Variation of the first three dimensionless frequency parameters (A1, A2, and As)
for different slenderness ratios (L/h) and perforation filling ratios (a) for a simply
supported nanobeam (p = 1)

L/h A a=0,16 a=0,33 o = 0,50 a=1,00
i=1 9,5031 9,4573 9,4497 9,4479
10 i=2 32,7074 33,7438 33,7021 33,6723
i=3 34,1105 47,3417 49,5752 53,8201
i=1 9,7759 9,7624 9,7613 9,4238
20 i=2 38,0130 37,8293 37,8147 33,4898
i=3 65,9629 81,0798 81,0232 64,9419
i=1 9,8658 9,8653 9,8652 9,4162
100 i=2 39,4185 39,4093 39,4086 33,4309
i=3 88,5608 88,4899 88,4841 64,7265
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Table 4. Variation of the first three dimensionless frequency parameters (A1, A2, and As)
for different slenderness ratios (L/h) and perforation filling ratios (a) for a simply
supported nanobeam (u = 2)

L/h A a=0,16 a=0,33 a=0,50 a=1,00
i=1 9,0876 9,0518 9,0453 9,0445
10 i=2 29,6704 29,5884 29,5698 29,5716
i=3 32,3191 46,7834 48,9920 53,0244
i=1 9,6591 9,6464 9,6453 9,0257
20 i=2 36,3514 36,2081 36,1967 29,5256
i=3 65,7620 74,4327 74,4006 53,2074
i=1 9,8610 9,8604 9,8604 9,0197
100 i=2 39,3411 39,3320 39,3313 29,5139
i=3 88,1734 88,1023 88,0966 53,4363

Table 5. Variation of the first three dimensionless frequency parameters (A1, A2, and A3)
for different slenderness ratios (L/h) and perforation filling ratios (a) for a simply
supported nanobeam (u = 3)

L/h A a=0,16 a=0,33 a=0,50 a=1,00
i=1 8,7222 8,6944 8,6887 8,6887
10 i=2 26,6153 26,6668 26,6603 26,6776
i=3 31,9455 45,7909 45,8482 45,9714
i=1 9,5464 9,5344 9,5334 8,6741
20 i=2 34,8906 34,7792 34,7703 26,7025
i=3 65,5637 69,2088 69,1920 46,2448
i=1 9,8561 9,8556 9,8555 8,6695
100 i=2 39,2641 39,2551 39,2544 26,7113
i=3 87,7911 87,7197 87,7141 46,3990

Table 6. Variation of the first three dimensionless frequency parameters (A1, A2, and As)
for different slenderness ratios (L/h) and perforation filling ratios (a) for a simply
supported nanobeam (p = 4)

L/h 4 a=0,16 o=0,33 a=0,50 o=1,00
i=1 8,3976 8,3763 8,3712 8,3719
10 i=2 24,3439 24,4689 24,4692 24,4950
i=3 31,5856 40,9609 41,0163 41,1441
i=1 9,4375 9,4262 9,4253 8,3606
20 i=2 33,5932 33,5075 33,5006 24,5599
i=3 65,0553 64,9596 64,9527 41,4439
i=1 9,8513 9,8507 9,8507 8,3571
100 i=2 39,1876 39,1787 39,1780 24,5816
i=3 87,4136 87,3422 87,3367 41,6277

Table 7. Variation of the first three dimensionless frequency parameters (A1, A2, and As)
for different slenderness ratios (L/h) and perforation filling ratios (a) for a simply
supported nanobeam (u = 5)

L/h A a=0,16 a=0,33 a=0,5 a=1
i=1 8,1068 8,0907 8,0861 8,0874
10 i=2 22,5683 22,7380 22,7426 22,7732
i=3 31,2348 37,3897 37,4459 37,5683
i=1 9,3322 9,3216 9,3207 8,0789
20 i=2 32,4272 32,3660 32,3608 22,8621
i=3 61,0984 61,4131 61,4131 37,8798
i=1 9,8464 9,8459 9,8458 8,0762
100 i=2 39,1115 39,1027 39,1020 22,8915
i=3 87,0410 86,9694 86,9641 38,0788
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Figures 3-5 present a comprehensive analysis of the impact of the perforation filling ratio and
non-local parameter on the first three dimensionless frequency parameters of the nanobeams.
The study considers various beam aspect ratios under simply supported boundary conditions.
The figures provide valuable insights into how these factors influence the vibrational
characteristics of the nanobeams, clarifying their mechanical behaviour and performance.
Based on the findings in Figure 3, it can be deduced that the first frequency exhibits a slight
decrease within the perforation filling ratio range of 0,16 to 0,33, whereas it decreases less
significantly within the perforation filling ratio range of 0,33 to 1,00. Additionally, the first
frequency experiences a gradual decrease at a low rate, as the non-locality parameter
increases from 0 to 5. On the other hand, the second frequency shows a substantial increase
within the perforation filling ratio range of 0,16 to 0,33, compared with that within the range of
0,33 to 1,00. Furthermore, the effect of non-locality on the second frequency diminishes as the
non-locality parameter increases. In addition, the influence of the non-locality parameter on
the third frequency is relatively weaker compared with that on the first and second frequencies.
However, the perforation filling ratio remains effective across the entire range of 0,16 to 1,00
while maintaining a constant non-local parameter.

10,0 42

— =0 — =0
918'_ll=1 40'—},[:1
96 "~ 811"
— =3 I
9,4 1 p=4 36 =4
924 ** u{
907 321
8,8 30 1
8,6 1 28
8,4 1 26
8,2 1 24
810 T T T T 22 T T T T T T T T T
0,0 0,2 04 0,6 08 1,C 0,0 0,2 04 0,6 08 1.
The perforation filling ratio (o) The perforation filling ratio (c)
56 T—— =y
54 1 el
524 — 2
504 — =3
48 1 p=4
46—
44 4
<42 1
40
38
36
344
32+
30 T T T T T T T T T
0,0 0.2 04 0,6 08 1,0

The perforation filling ratio ()

Figure 3. Effect of the perforation filling ratio and non-local parameter on the first three
dimensionless frequency parameters for a simply supported nanobeam (L/h = 10)

The data in Figure 4 reveal that the first two frequencies remain constant in the perforation
filling ratio range of 0,16 to 0,50. However, noticeable effects of the perforation filling ratio are

ACAE | 2023, Vol. 14, Issue No. 27 Page | 151



Ziou, H. and Guenfoud, M. Modal behaviour of longitudinally perforated nanobeams

observed only in the higher range of 0,5 to 1,0. In contrast, the third frequency shows a notable
increase for the perforation filling ratio range of 0,16 to 0,33, but experiences a significant
decrease in the range of 0,5 to 1,0. This demonstrates the high sensitivity of the third frequency
to changes in the perforation filling ratio.

10,0 42

RS ]J.:O
9,84 40— p=1
9,6 K 381 b2
_ u:_o,
941 R \
9,2 <78
< 901 <32+
884 — =0 301
864 ! 28
_ ”=2
841 — =3 26 1
8,2 ued 24 4
— s
8,0 T T T T 22 T T T T
0,0 0,2 04 0,6 08 1,0 0,0 0.2 04 0,6 08 10
The perforation filling ratio (c) The perforation filling ratio (o)
95 T—— o
90—
85— =2
80— k=3
75
— =5
0] "
65 1
<
60
55
50
45+
40+
35 T T T T
0,0 0,2 0,4 0,6 08 1,0

The perforation filling ratio (c)

Figure 4. Effect of the perforation filling ratio and non-local parameter on the first three
dimensionless frequency parameters for a simply supported nanobeam (L/h = 20)

Figure 5 illustrates the variation in the first three fundamental frequencies with changes in the
non-locality parameter and perforation filling ratio at L/h = 100. For p = 0, there is no significant
variation in the frequencies with respect to the change in the perforation filling ratio. For all
other values of the non-local parameter, the frequencies demonstrate a notable and abrupt
decrease when the perforation filling ratio is within the range of 0,5 to 1,0.

Tables 8-10 provide insights into the influence of the non-local parameter and perforation filling
ratio on the first three dimensionless frequencies for the clamped-clamped (C-C), clamped-
simply supported (C-S), and clamped—free (C—F) short nanobeams. Increasing the filling ratio
results in a decrease in the fundamental frequency. Similarly, with an increase in the non-local
parameter, the frequencies also decrease. Notably, the effects of the perforation filling ratio on
the second and third frequencies differ, indicating a high sensitivity of higher frequencies to
changes in the perforation filling ratio.

ACAE | 2023, Vol. 14, Issue No. 27 Page | 152



Ziou, H. and Guenfoud, M. Modal behaviour of longitudinally perforated nanobeams

10,0 42

—_— Pl:O
9,8 1 40— p=1
9,6 8 "2
—_— H:3
9,4 1 36 p=4
9,2 /B
< 9,0 1 321
884 — =0 30 1
8,6 b=l 28
— u:z
841 — =3 26
8,2 ped 24 1
— s
8,0 T T T T 22 T T T T T T T T T
0,0 0.2 04 0,6 08 1,0 0,0 0,2 04 0,6 08 1(
The perforation filling ratio («) The perforation filling ratio (o)
95 —— =
90 1— H=1
85— =2
80+ #3
754
— =5
0] "
65 1
<
60
55
50
45+
40 4
35 T T T T T T T T T
0,0 0,2 04 0,6 08 1,0

The perforation filling ratio (e

Figure 5. Effect of the perforation filling ratio and non-local parameter on the first three
dimensionless frequency parameters for a simply supported nanobeam (L/h = 100)

Table 8. Variation of the first three dimensionless frequency parameters (A1, A2, and As)
for different slenderness ratios (L/h) and perforation filling ratios (a) for a clamped-
clamped nanobeam

T} A a=0,16 a=0,33 a=0,50 a=1,00
i=1 22,6909 22,5237 22,5012 22,4896
0 i=2 65,1587 63,2761 63,1047 62,9065
i=3 66,4214 96,1479 100,684 109,3086
i=1 21,2674 21,1846 21,1694 21,1676
1 i=2 51,3324 51,1589 51,1238 51,1222
i=3 63,3482 84,9962 85,0393 85,1969
i=1 20,0772 20,0544 20,0444 20,0497
2 i=2 43,6651 44,0542 44,0674 44,1334
i=3 60,7050 68,1568 68,3081 68,6179
i=1 19,0635 19,0845 19,0785 19,0888
3 i=2 38,6358 39,2508 39,2861 39,3816
i=3 55,8437 58,3200 58,5126 58,8748
i=1 18,1872 18,2408 18,2378 18,2519
4 i=2 35,0159 35,7366 35,7826 35,8912
i=3 49,4578 51,9339 52,1310 52,4956
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i=1 17,4200 17,4984 17,4978 17,5148
5 i=2 32,2514 33,0211 33,0726 33,1873
i=3 44,8746 47,2902 47,4859 47,8448

Table 9. Variation of the first three dimensionless frequency parameters (A1, A2, and As)
for different slenderness ratios (L/h) and perforation filling ratios (a) for a clamped-
simply supported nanobeam

T} A a=0,16 a=0,33 a=0,50 a=1,00
i=1 15,6225 15,5149 15,5000 15,4929
0 i=2 33,1085 47,9233 50,1842 50,8912
i=3 52,5824 51,1690 51,0388 54,4808
i=1 14,7368 14,6645 14,6528 14,6497
1 i=2 32,7067 42,0875 42,0449 42,0224
i=3 42,4215 47,3416 49,5750 53,8196
i=1 13,9842 13,9381 13,9287 13,9286
2 i=2 32,3191 36,5886 36,5804 36,6055
i=3 36,5075 46,7807 48,9878 53,1823
i=1 13,3347 13,3084 13,3009 13,3030
3 i=2 31,9450 32,8083 32,8168 32,8637
i=3 32,5449 46,2401 48,4220 52,2719
i=1 12,7669 12,7560 12,7499 12,7537
4 i=2 29,6495 30,0058 30,0232 30,0812
i=3 31,5838 45,7198 46,4440 46,6897
i=1 12,2653 12,2663 12,2615 12,2666
5 i=2 27,4102 27,8213 27,8439 27,9078
i=3 31,2341 42,2239 42,3511 42,5947

Table 10. Variation of the first three dimensionless frequency parameters (A1, A2, and
\;) for different slenderness ratios (L/h) and perforation filling ratios (a) for a clamped-
free nanobeam

T} A a=0,16 a=0,33 a=0,50 a=1,00
i=1 3,5346 3,5248 3,5226 3,5228
0 i=2 22,8855 22,4296 22,3847 22,3386
i=3 33,1086 47,9299 50,1942 54,5003
i=1 3,4538 3,4449 3,4428 3,4431
1 i=2 19,6056 19,3563 19,3287 19,3060
i=3 32,7238 47,0785 47,0029 46,9337
i=1 3,3677 3,3697 3,3677 3,3680
2 i=2 17,2610 17,2794 17,2610 17,2502
i=3 39,1071 39,1279 39,1071 39,1184
i=1 3,3064 3,2989 3,2969 3,2973
3 i=2 15,8537 15,7708 15,7578 15,7539
i=3 31,9856 34,3464 34,3488 34,3906
i=1 3,2389 3,2320 3,2302 3,2306
4 i=2 14,6616 14,6165 14,6070 14,6073
i=3 30,6439 31,0501 31,0637 31,1191
i=1 3,1751 3,1688 3,1671 3,1675
5 i=2 13,7187 13,6987 13,6915 13,6945
i=3 28,1310 28,5895 28,6091 28,6710

Figure 6 shows a comprehensive examination of the influence of the perforation filling ratio
and non-local parameter on the fundamental frequency of a short nanobeam (L/h = 10) under
various boundary conditions. Notably, the highest fundamental frequency is observed when
the non-local parameter p is set to 0. As the non-local parameter increases, the fundamental
frequencies decrease for all end-boundary conditions, underscoring the significant role played
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by the non-local parameter in softening the fundamental frequency. Additionally, the maximum
fundamental frequency is attained at a perforation filling ratio of a = 0,16, which can be
attributed to a more rapid decrease in the equivalent mass of the system at this specific ratio.
Moreover, the boundary conditions have a noticeable impact on the flexibility and frequency of
the nanobeam. Specifically, the C—F end condition results in a more flexible nanobeam with
lower frequency values, whereas the C—C end condition exhibits higher frequencies compared
with the other boundary conditions. These findings indicate that both the mass and stiffness
characteristics of the system play pivotal roles in determining the frequencies of the short
nanobeams under consideration.
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Figure 6. Variation of the fundamental frequency A1 with the perforation filling ratio
and non-local parameter of the short nanobeam (L/h = 10) for different boundary
conditions (S-S; C-C; C-S; C-F)

The impacts of the non-local parameter and perforation filling ratio on the first three
dimensionless frequencies of the clamped-clamped (C-C), clamped—simply supported (C-S),
and clamped—free (C—F) slender nanobeams are presented in Tables 11-13 and Figure 7. As
the perforation filling ratio increases, the fundamental frequency decreases slightly. Similarly,
as the non-local parameter increases, the frequencies decrease slightly. These observations
indicate that the influences of both the perforation filling ratio and non-local parameter on the
fundamental frequency of the slender nanobeams are practically negligible. Moreover, the
boundary conditions have a noticeable impact on the flexibility and frequency values of the
nanobeam. The C—F end condition results in a flexible nanobeam with lower frequency values,
whereas the C—C end condition displays higher frequencies compared with the other boundary
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conditions. For the S-S end condition, at p = 0, there is no significant variation in the
fundamental frequency with respect to the change in the perforation filling ratio. For all other
values of the non-local parameter, the frequency demonstrates a notable and abrupt decrease
when the perforation filling ratio is within the range of 0,5 to 1,0.

Table 11. Variation of the first three dimensionless frequency parameters (A1, A2, and
A;) for different slenderness ratios (L/h) and perforation filling ratios (a) for a clamped-
clamped nanobeam

7] A a=0,16 a=0,33 a=0,50 a=1,00
i=1 22,3764 22,3748 22,3747 22,3745
0 i=2 61,7059 61,6891 61,6878 61,6857
i=3 121,0466 120,9759 120,9702 120,9613
i=1 22,3627 22,3611 22,3609 22,3607
1 i=2 61,5639 61,5474 61,5461 61,5440
i=3 120,4491 120,3805 120,3749 120,3663
i=1 22,3489 22,3473 22,3472 22,3470
2 i=2 61,4228 61,4066 61,4053 61,4032
i=3 119,8603 119,7937 119,7883 119,7799
i=1 22,3352 22,3336 22,3335 22,3333
3 i=2 61,2827 61,2667 61,2654 61,2634
i=3 119,2800 119,2153 119,2101 119,2020
i=1 22,3215 22,3199 22,3198 22,3196
4 i=2 61,1436 61,1278 61,1265 61,1245
i=3 118,7080 118,6452 118,6402 118,6323
i=1 22,3078 22,3059 22,3061 22,3059
5 i=2 61,0053 60,9865 60,9885 60,9865
i=3 118,1441 118,0706 118,0783 118,0706

Table 12. Variation of the first three dimensionless frequency parameters (A1, A2, and
As) for different slenderness ratios (L/h) and perforation filling ratios (a) for a clamped-
simply supported nanobeam

T} A a=0,16 a=0,33 a=0,50 a=1,00
=1 15,4202 15,4192 15,4191 15,4190
0 1=2 49,9896 49,9769 49,9759 49,9743
1=3 104,3750 104,3067 104,3018 104,2943
i=1 15,4113 15,4103 15,4102 15,4101
1 i=2 49,8825 49,8700 49,8690 49,8674
i=3 103,8853 103,8187 103,8139 103,8066
i=1 15,4025 15,4014 15,4014 15,4012
2 i=2 49,7760 49,7637 49,7627 49,7611
i=3 103,4025 103,3375 103,3328 103,3257
i=1 15,3936 15,3926 15,3925 15,3924
3 i=2 49,6703 49,6581 49,6571 49,6556
i=3 102,9262 102,8629 102,8583 102,8514
i=1 15,3848 15,3838 15,3837 15,3836
4 i=2 49,5652 49,5531 49,5522 49,5507
i=3 102,4565 102,3947 102,3903 102,3835
i=1 15,3760 15,3750 15,3749 15,3748
5 i=2 49,4608 49,4489 49,4479 49,4464
i=3 101,9932 101,9330 101,9287 101,9221
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Table 13. Variation of the first three dimensionless frequency parameters (A1, A2, and
A;) for different slenderness ratios (L/h) and perforation filling ratios (a) for a clamped-
free nanobeam

T} A a=0,16 a=0,33 a=0,50 a=1,00
i=1 3,5162 3,5161 3,5161 3,5161
0 i=2 22,0426 22,0384 22,0380 22,0375
i=3 61,7534 61,7252 61,7229 61,7194
i=1 3,5154 3,5153 3,5153 3,5153
1 i=2 22,0069 22,0027 22,0024 22,0019
i=3 61,5155 61,4878 61,4855 61,4820
i=1 3,5146 3,5145 3,5145 3,5145
2 i=2 21,9714 21,9672 21,9669 21,9664
i=3 61,2803 61,2530 61,2509 61,2474
i=1 3,5138 3,5137 3,5136 3,5136
3 i=2 21,9360 21,9319 21,9316 21,9311
i=3 61,0478 61,0210 61,0188 61,0155
i=1 3,5129 3,5128 3,5128 3,5128
4 i=2 21,9009 21,8967 21,8964 21,8959
i=3 60,8179 60,7915 60,7894 60,7861
i=1 3,5121 3,5120 3,5120 3,5120
5 i=2 21,8658 21,8617 21,8614 21,8609
i=3 60,5906 60,5647 60,5626 60,5593
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Figure 7. Variation of the fundamental frequency A1 with the perforation filling ratio
and non-local parameter of slender nanobeams (L/h = 100) for different boundary
conditions (S-S; C-C; C-S; C-F)
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4  Conclusions

This study conducted a comprehensive investigation of the modal behaviour of LPNBs by
developing a new finite element model. This model characterises LPNBs with a symmetric
array of holes arranged parallel to the length of the beam with equal spacing. A non-local
Eringen differential model was applied to address the nanoscale dimensions. This paper
presented novel numerical solutions and explicit formulas that have not been previously
reported, which significantly contribute to the understanding of the modal behaviour of LPNBs.
The study also examined the effects of the aspect ratios, non-local parameters, boundary
conditions, and perforation characteristics on the modal behaviour of LPNBs.

Based on the above study, the following conclusions can be drawn:

o For a constant perforation filling ratio and aspect ratio, an increase in the non-local
parameter leads to a decrease in the first three frequencies because introducing the
non-locality effect leads to a softening effect, resulting in smaller values of the
fundamental frequency parameters.

o The short nanobeam (L/h = 10) is more affected by the non-local parameters than the
slender nanobeams (L/h = 20, 100).

o The influence of the perforation filling ratio on the fundamental frequency parameter is
more prominent for the short nanobeam (L/h = 10) than for the slender nanobeams (L/h
= 20, 100).

o The influences of both the perforation filling ratio and non-local parameter on the
fundamental frequency of the slender nanobeams (L/h = 20, 100) are practically
negligible.

o The maximum fundamental frequency is attained at a perforation filling ratio of a = 0,16;
which can be attributed to a more rapid decrease in the equivalent mass of the system
at this specific ratio.

o Moreover, the boundary conditions have a noticeable impact on the flexibility and
frequency of the nanobeam. Specifically, the C—C end condition exhibits higher
frequencies compared with the other boundary conditions, whereas the C—F end
condition results in a more flexible nanobeam with lower frequency values. Hence, both
the mass and stiffness characteristics of the system play pivotal roles in determining
the frequencies of the nanobeams under consideration.

In the design of NEMS, an appropriate selection of the perforation filling ratio, hole numbers,
boundary conditions, aspect ratio, and non-local parameter enables the tailoring of the
geometrical characteristics to achieve the desired goal of minimising frequencies in a
perforated-beam-type structure.

Overall, this study provides valuable insights into the modal behaviours of LPNBs and offers
guidance for optimising their design and performance in various applications.
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