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 Abstract: 
Nano-electro-mechanical systems (NEMS) require 
perforated beams for structural integrity. Hole sizes, hole 
numbers, and scale effects need to be modelled 
appropriately in their design. This paper presents a new 
finite element model to investigate the modal behaviour 
of longitudinally perforated nanobeams (LPNBs) using 
the classical Euler–Bernoulli beam theory. A symmetric 
array of holes arranged parallel to the length direction of 
the beam with equal spacing was assumed for the 
perforation. The non-local Eringen’s differential form 
was used to incorporate the nanoscale sizes. The 
accuracy of the proposed model was verified by 
comparing the obtained results with the available 
analytical solutions for fully filled nanobeams. The 
effects of aspect ratios, non-local parameters, boundary 
conditions, and perforation characteristics on the modal 
behaviour of LPNBs were investigated. The non-local 
parameter reduced the natural frequency owing to a 
decrease in the stiffness of the structures. However, the 
perforation filling ratio led to higher values of the 
fundamental frequency. Furthermore, compared with 
other boundary conditions, clamped–clamped boundary 
conditions demonstrated the best performance in terms 
of the maximum frequency. 
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1 Introduction 

Micro-/nano-structured devices have become a prominent focus of research in engineering 
and materials science owing to rapid progress in nanoscience and nanotechnology. 
Nanobeams are characterised by their unique structural properties and have widespread 
applications in various fields, such as Nano systems, nanodevices, atomic force microscopes, 
biosensors, nanoprobes, nanowires, nanoactuators, and nano-electro-mechanical systems 
(NEMS). In the framework of Eringen’s non-local theory of elasticity, the stress experienced by 
a specific point within an elastic continuum is influenced by the surrounding strains, as opposed 
to classical mechanics, in which the stress is solely dependent on the strain at that point. 
Considering these developments, the analysis of perforated nanobeams has garnered 
significant attention from the scientific community owing to their diverse applications in areas, 
such as heat exchangers, nuclear power plants, filtration systems, and NEMS. 
Abdelrahman et al. [1] performed a dynamic analysis of perforated nanobeams under the 
action of a moving mass using a non-local strain gradient theory. Almitani et al. [2] developed 
a closed-form solution to study the static bending and critical buckling of a nanobeam 
perforated by a square hole, including the surface energy impacts. Using an analytical 
approach, Abdelrahman et al. [3] examined the combined influence of the microstructure and 
surface energy on the bending behaviour of perforated nanobeams (PNBs). Esen et al. [4] 
proposed a modified continuum mathematical model based on the modified coupled stress 
theory to study the dynamic behaviour of Timoshenko perforated microbeams subjected to 
moving loads. Eltaher and Abdelrahman [5] conducted an analytical study on the bending and 
buckling stability of square cut-out nanobeams, considering the incorporation of nanoscale 
effects through surface energy properties. Eltaher and Mohamed [6] examined the effects of 
long-range atomic interactions, hole perforation size, and the number of hole rows on the 
vibration response of non-local PNBs under various boundary conditions. Abdelrahman and 
Eltaher [7] investigated the static deflection and stability behaviour of PNBs by considering the 
impact of the surface energy and different beam theories. Eltaher et al. [8, 9] employed 
numerical methods and the finite element technique to investigate the static deflection and 
natural frequencies of a piezoelectric non-local Euler–Bernoulli PNB. This study also focused 
on exploring the influence of nanoscale effects and surface energy on the behaviour of the 
beam. Abdelrahman et al. [10] introduced an integrated model and analytical approach to 
investigate the free and forced vibration behaviours of perforated slender/short beams. Eltaher 
et al. [11, 12] conducted analytical studies on the mechanical bending, buckling, and vibration 
responses of simply supported non-local PNBs using the modified Euler–Bernoulli and 
Timoshenko beam theories. Bourouina et al. [13] investigated the impact of thermal loads and 
size effects on the vibration characteristics of slender non-local PNBs featuring an array of 
square holes. A theoretical analysis of vibration, buckling, and bending of nanoplates and 
nanobeams has been carried out by Chakraverty and Behera [14]. Luschi and Pieri [15] derived 
analytical expressions for the equivalent bending stiffness of Euler–Bernoulli beams with 
perforations. They also utilised a previous study to calculate the resonance frequencies of 
perforated beams [16, 17]. 
The studies presented herein have significantly advanced the understanding of the behaviour 
of transversally PNBs characterised by cut-outs oriented in the transverse direction. These 
investigations provided valuable insights into the dynamic and static responses of nanobeams 
under various conditions. However, the absence of prior studies that specifically address the 
dynamic analysis of longitudinally perforated nanobeams (LPNBs) underscores the 
importance of further research in this domain. 
This paper presents a thorough investigation of the modal behaviour of LPNBs through the 
development of a new finite element model. This model characterises LPNBs with a symmetric 
array of holes arranged parallel to the length of the beam with equal spacing. Nanoscale sizes 
are incorporated using the non-local Eringen’s differential form. The proposed model is 
validated via a comparison with existing analytical solutions for fully filled nanobeams, which 
demonstrates excellent agreement. Furthermore, finite element numerical results are provided 
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in both tabular and graphical formats to examine the influence of various factors, such as the 
aspect ratios, non-local parameters, boundary conditions, and perforation characteristics, on 
the modal behaviour of the LPNBs.  
The presented results serve as a valuable reference for future research on LPNBs and 
contribute significantly to the field. 

2 Problem formulation  

2.1 Geometrical adaptation 

To investigate the mechanical behaviour of LPNBs efficiently, it is imperative to incorporate 
periodicity into their mathematical model. Figure 1 illustrates the geometric characteristics of 
an LPNB. The cross-sectional area of the nanobeam consists of regularly spaced square cut-
outs, characterised by parameters, such as the number of hole rows per cross-section (N), 
perforation filling ratio (α), spatial perforation period (ls), spatial period (ts), and the side length 
of the holes (ls-ts). Luschi and Pieri’s formula [17] provides an expression for the perforation 
filling ratio of perforated beams as follows: 

𝛼 =
𝑡𝑠
𝑙𝑠
, 0 ≤ 𝛼 ≤ 1 (1) 

 

 

Figure 1. Geometry of a longitudinally perforated squared PNB 

The perforation filling ratio of a PNB, as indicated by Eq. (1), is crucial: When the spatial period 
(ts) approaches zero, and consequently, the perforation filling ratio (α) also tends to zero, it 
represents a scenario of a fully PNB. Conversely, as ts approaches ls, and α approaches unity, 
it signifies a fully filled solid nanobeam, eliminating any perforations. 

2.2 Euler–Bernoulli beam theory 

The displacement field of the classical Euler–Bernoulli beam theory can be expressed as: 

𝑢(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧
𝜕𝑤0(𝑥, 𝑡)

𝜕𝑥
 (2a) 

𝑤(𝑥, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑡)
 

(2b) 

where u0 and w0 represent the axial and transverse displacements of any point on the mid-
plane, respectively, and t denotes the time. The only non-zero strain according to the Euler–
Bernoulli beam theory is defined as: 
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𝜀𝑥𝑥 =
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕2𝑤0
𝜕𝑥2

= 𝜀𝑥𝑥
0 − 𝑧𝜅𝑥𝑥

0

 

(3) 

Where εxx
0 presents the extensional strain, and κxx

0 signifies the bending strain. 

2.3 Equation of motion 

Hamilton’s principle [18] states that: 

∫ (𝛿𝑈 − 𝛿𝑇)
𝑡2

𝑡1

𝑑𝑡 = 0
 

(4) 

The virtual strain energy and virtual kinetic energy are given by: 

𝛿𝑈 = 𝑏∫∫ 𝜎𝑥𝑥

+ℎ/2

−ℎ
2

𝛿𝜀𝑥𝑥𝑑𝑧𝑑𝑥 = 𝑏∫∫ 𝜎𝑥𝑥

+ℎ/2

−ℎ
2

(𝛿𝜀𝑥𝑥
0 − 𝑧𝛿𝜅𝑥𝑥

0 )𝑑𝑧𝑑𝑥 

= 𝑏∫(𝑁𝛿𝜀𝑥𝑥
0 −𝑀𝛿𝜅𝑥𝑥

0 ) 𝑑𝑥
 

(5a) 

𝛿𝑇 = 𝑏∫∫ 𝜌
+ℎ/2

−ℎ/2

[(
𝜕𝑢0
𝜕𝑡

− 𝑧
𝜕2𝑤0
𝜕𝑡𝜕𝑥

)(
𝜕𝛿𝑢0
𝜕𝑡

− 𝑧
𝜕2𝛿𝑤0
𝜕𝑡𝜕𝑥

) +
𝜕𝑤0
𝜕𝑡

𝜕𝛿𝑤0
𝜕𝑡

]𝑑𝑧𝑑𝑥 

= 𝑏∫

[
 
 
 
 𝐼0 (

𝜕𝑢0
𝜕𝑡

𝜕𝛿𝑢0
𝜕𝑡

+
𝜕𝑤0
𝜕𝑡

𝜕𝛿𝑤0
𝜕𝑡

) − 𝐼1 (
𝜕𝑢0
𝜕𝑡

𝜕2𝛿𝑤0
𝜕𝑡𝜕𝑥

+
𝜕2𝑤0
𝜕𝑡𝜕𝑥

𝜕𝛿𝑢0
𝜕𝑡

) +

𝐼2
𝜕2𝑤0
𝜕𝑡𝜕𝑥

𝜕2𝛿𝑤0
𝜕𝑡𝜕𝑥 ]

 
 
 
 

𝑑𝑥
 

(5b) 

where b is the beam width. 
The resultant force and moment are expressed as follows: 

𝑁 = ∫ 𝜎𝑥𝑥𝑑𝑧
+ℎ/2

−ℎ/2  
(6a) 

𝑀 = ∫ 𝑧𝜎𝑥𝑥𝑑𝑧
+ℎ/2

−ℎ/2  
(6b) 

The mass moment of inertia is formulated as follows: 

{

𝐼0
𝐼1
𝐼2

} = ∫ 𝜌
+ℎ/2

−ℎ/2

{
1
𝑧
𝑧2
} 𝑑𝑧

 
(6c) 

By substituting Eq. (5) into Eq. (4), the Euler–Lagrange equation is obtained as follows: 

𝜕𝑁

𝜕𝑥
= 𝐼0

𝜕2𝑢0
𝜕𝑡2

− 𝐼1
𝜕3𝑤0
𝜕𝑥𝜕𝑡2

 

𝜕2𝑀

𝜕𝑥2
= 𝐼0

𝜕2𝑤0
𝜕𝑡2

+ 𝐼1
𝜕3𝑢0
𝜕𝑥𝜕𝑡2

− 𝐼2
𝜕4𝑤0
𝜕𝑥2𝜕𝑡2 

(7) 

2.4 Non-local continuum beam model 

In the classical elasticity theory, the stress at a point depends only on the strain at that point. 
In contrast, the non-local elasticity theory asserts that stress at a point is influenced by strains 
across the entire continuum.  
The formula for the non-local stress tensor at a particular point ‘x’ can be found in reference 
[19]. 
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𝜎 = ∫𝐾(|𝑥 ′ − 𝑥|, 𝜏)
𝑉

𝑇(𝑥 ′)𝑑𝑥 ′ (8a) 

𝑇(𝑥) = 𝐶(𝑥): 𝜀(𝑥) (8b) 

Where T(x) is the classic macroscopic stress tensor at point x, ε(x) is the strain tensor, C(x) is 

the fourth-order elasticity tensor and denotes the ‘double-dot product’, K(|x’ – x|, τ) is the non-

local modulus or attenuation function incorporating into the constitutive equations the non-local 
effects at the reference point x produced by the local strain at the source x’, |x’ – x| is the 
Euclidean distance,  τ = e0a/l is defined as a small scale factor, where e0 is a constant to adjust 

the model to match the reliable results obtained by experiments or other models, a is the 
internal characteristic length (e.g. lattice parameter, C–C bond length, granular distance, crack 
length, wavelength), and l is the external length. 
In a beam structure, the shortness and width are significantly smaller than the length. 
Therefore, the integral constitutive relations can be represented in an equivalent differential 
form as: 

(1 − 𝜏2𝑙2𝛻2)𝜎 = 𝑡 (9) 

For a non-local Euler–Bernoulli beam, Eq. (9) can be written as: 

𝜎𝑥𝑥 − 𝜇
𝜕2𝜎𝑥𝑥

𝜕𝑥2
= 𝐸𝜀𝑥𝑥,  𝜇 = 𝑎

2𝑒0
2 (10) 

By integrating Eq. (10) across the cross-sectional area of the beam, the axial force–strain 
relationship is obtained as follows: 

𝑁 − 𝜇
𝜕2𝑁

𝜕𝑥2
= 𝐸𝐴𝜀𝑥𝑥

0  (11a) 

By multiplying Eq. (10) by ‘z’ and integrating it across the cross-sectional area, the moment–
curvature relation is obtained as follows: 

𝑀− 𝜇
𝜕2𝑀

𝜕𝑥2
= 𝐸𝐼𝜅𝑥𝑥

0  (11b) 

Differentiating Eq. (7a) once with respect to ‘x’ and substituting the outcome into Eq. (10-a) 
yields: 

𝑁 = 𝐸𝐴
𝜕𝑢0
𝜕𝑥

+ 𝜇 [𝐼0
𝜕3𝑢0
𝜕𝑥𝜕𝑡2

− 𝐼1
𝜕4𝑤0
𝜕𝑥2𝜕𝑡2

] (12a) 

By substituting the second derivative of M from Eq. (7-b) into Eq. (10-b), the moment can be 
obtained as follows: 

𝑀 = 𝐸𝐼
𝜕2𝑤0
𝜕𝑥2

+ 𝜇 [𝐼0
𝜕2𝑤0
𝜕𝑡2

+ 𝐼1
𝜕3𝑢0
𝜕𝑥𝜕𝑡2

− 𝐼2
𝜕4𝑤0
𝜕𝑥2𝜕𝑡2

] (12b) 

3 Numerical formulation 

Based on Hamilton’s principle, the substitution of Eq. (12) into Eq. (5), and the substitution of 
the resulting expression into Eq. (4), the following deduced variational statement for the non-
local Euler–Bernoulli beam is obtained: 
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∫ ∫

{
 
 
 

 
 
 (−𝐸𝐴

𝜕𝑢0
𝜕𝑥

𝜕𝛿𝑢0
𝜕𝑥

+ 𝐸𝐼
𝜕2𝑤0
𝜕𝑥2

𝜕2𝛿𝑤0
𝜕𝑥2

) + (𝐼0
𝜕𝑢0
𝜕𝑡

𝜕𝛿𝑢0
𝜕𝑡

− 𝜇𝐼0
𝜕3𝑢0
𝜕𝑡2𝜕𝑥

𝜕𝛿𝑢0
𝜕𝑥

) +

(𝐼0
𝜕𝑤0
𝜕𝑡

𝜕𝛿𝑤0
𝜕𝑡

+ 𝜇𝐼0
𝜕2𝑤0
𝜕𝑡2

𝜕2𝛿𝑤0
𝜕𝑥2

+ 𝐼2
𝜕2𝑤0
𝜕𝑡𝜕𝑥

𝜕2𝛿𝑤0
𝜕𝑡𝜕𝑥

− 𝜇𝐼2
𝜕4𝑤0
𝜕𝑡2𝜕𝑥2

𝜕2𝑤0
𝜕𝑥2

) +

(𝐼1
𝜕2𝑤0
𝜕𝑡𝜕𝑥

𝜕𝛿𝑢0
𝜕𝑡

+ 𝜇𝐼1
𝜕3𝑢0
𝜕𝑡2𝜕𝑥

𝜕2𝛿𝑤0
𝜕𝑥2

− 𝐼1
𝜕𝛿𝑢0
𝜕𝑡

𝜕2𝛿𝑤0
𝜕𝑡𝜕𝑥

+ 𝜇𝐼1
𝜕4𝑤0
𝜕𝑡2𝜕𝑥2

𝜕2𝛿𝑢0
𝜕𝑥

)
}
 
 
 

 
 
 

𝑑𝑥𝑑𝑡
𝐿

0

𝑡

0

 (13) 

3.1 Numerical results and discussion 

This section is divided into two sub-sections: The first is devoted mainly to comparing the 
proposed model with those previously published for fully filled nanobeams. The second sub-
section focuses on an analysis of LPNBs. 

3.1.1 Model validation 

This section is primarily dedicated to the verification of the proposed model via a comparison 
with previously published models. The finite element system of equations can be succinctly 
represented as: 

[𝐾]{𝑈} = 𝜔2[𝑀]{𝑈} (14) 

where {U} represents the degree of freedom vector, [M] and [K] denote the mass and stiffness 
matrices, respectively, and ω denotes the circular frequency. The geometrical and material 
properties of the non-local beam used in this section adhere to those established by Behera 
and Chakraverty [14]. 
To assess the validity of the proposed methodology, the dimensionless fundamental frequency   

(𝜆 = 𝜔𝐿2√
𝜌𝐴

𝐸𝐼
) was obtained and compared with the results obtained by Behera and 

Chakraverty [14] for various non-local parameters and different boundary conditions for fully 
filled nanobeams (Table 1). The comparison presented in Table 1 demonstrates a favourable 
agreement between the predicted values obtained using the current method and the 
corresponding values reported by Behera and Chakraverty [14] using the dynamic quadrature 
method. 

Table 1. Comparison of the dimensionless fundamental frequency √𝝀 of a fully filled 
Euler–Bernoulli nanobeam (L = 10 m, E = 30 MPa, ρ = 1, h = 0,1, ν = 0,3) 

Methodology BCs 
Non-local parameter 

μ = 0 μ = 1 μ = 2 μ = 3 μ = 4 μ = 5 

Chakraverty, 
S. and Behera, 
L. [14] 

S–S 
3,1416 
3,1416 

3,0738 
3,0685 

3,0128 
3,0032 

2,9574 
2,9444 

2,9574 
2,8908 

2,8601 
2,8418 

C–C 
4,7423 
4,7300 

4,6008 
4,5945 

4,4776 
4,4758 

4,3690 
4,3707 

4,2722 
4,2766 

4,1850 
4,1917 

C–S 
3,9361 
3,9266 

3,8274 
3,8209 

3,7321 
3,7278 

3,6473 
3,6448 

3,5712 
3,5701 

3,5023 
3,5024 

C–F 
1,8769 
1,8751 

1,8555 
1,8792 

1,8352 
1,8833 

1,8158 
1,8876 

1,7973 
1,8919 

1,7797 
1,8964 

3.1.2 Parametric study 

After the validation of the fully filled nanobeam, the modal behaviour of the LPNBs for various 
end-boundary conditions, aspect ratios, non-local parameters, and perforation filling ratios is 
studied.  
The material properties are defined as follows: Young’s modulus (E) = 30 MPa, Poisson’s ratio 
(ν) = 0,3; density (ρ) = 1, and beam dimensions (b = h = 0,1). 
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Figure 2. Beam geometry details with various opening positions 

The variation of the first three dimensionless frequency parameters is presented, considering 
various aspect ratios (L/h = 10, 20, 100), non-local parameters (µ = 0, 1, 2, 3, 4, and 5), and 
perforation filling ratios (α = 0,16; 0,33; 0,5, and 1 (see Figure 2)) of the PNB as shown in 
Tables 2-7. For a constant perforation filling ratio and aspect ratio, an increase in the non-local 
parameter leads to a decrease in the first three frequencies, because introducing the non-
locality effect leads to a softening effect, resulting in smaller values of the fundamental 
frequency parameters. Note that the short nanobeam (L/h = 10) is more affected by the non-
local parameters than the slender nanobeams (L/h = 20, 100). Furthermore, the influence of 
the perforation filling ratio on the fundamental frequency parameter is more prominent for the 
short nanobeam (L/h = 10) than for the slender nanobeams (L/h = 20, 100). Nevertheless, the 
Euler–Bernoulli model tends to underestimate the third mode for the short nanobeam (L/h = 
10). 

Table 2. Variation of the first three dimensionless frequency parameters (λ1, λ2, and λ3) 
for different slenderness ratios (L/h) and perforation filling ratios (α) for a simply 

supported nanobeam (μ = 0) 

L/h i  α = 0,16 α = 0,33 α = 0,50 α = 1,00 

10 
i = 1 
i = 2 
i = 3 

9,9814 
33,1086 
41,3679 

9,9225 
40,3501 
47,9234 

9,9138 
40,2545 
50,1843 

9,9105 
40,1489 
54,4810 

20 
i = 1 
i = 2 
i = 3 

9,8972 
39,9259 
66,1660 

9,8827 
39,6902 
89,9568 

9,8816 
39,6714 
89,8573 

9,8798 
39,6418 
89,7022 

100 
i = 1 
i = 2 
i = 3 

9,8707 
39,4963 
88,9533 

9,8701 
39,4871 
88,8827 

9,8701 
39,4864 
88,8768 

9,8700 
39,4852 
88,8681 

Table 3. Variation of the first three dimensionless frequency parameters (λ1, λ2, and λ3) 
for different slenderness ratios (L/h) and perforation filling ratios (α) for a simply 

supported nanobeam (μ = 1) 

L/h i  α = 0,16 α = 0,33 α = 0,50 α = 1,00 

10 
i = 1 
i = 2 
i = 3 

9,5031 
32,7074 
34,1105 

9,4573 
33,7438 
47,3417 

9,4497 
33,7021 
49,5752 

9,4479 
33,6723 
53,8201 

20 
i = 1 
i = 2 
i = 3 

9,7759 
38,0130 
65,9629 

9,7624 
37,8293 
81,0798 

9,7613 
37,8147 
81,0232 

9,4238 
33,4898 
64,9419 

100 
i = 1 
i = 2 
i = 3 

9,8658 
39,4185 
88,5608 

9,8653 
39,4093 
88,4899 

9,8652 
39,4086 
88,4841 

9,4162 
33,4309 
64,7265 
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Table 4. Variation of the first three dimensionless frequency parameters (λ1, λ2, and λ3) 
for different slenderness ratios (L/h) and perforation filling ratios (α) for a simply 

supported nanobeam (μ = 2) 

L/h i  α = 0,16 α = 0,33 α = 0,50 α = 1,00 

10 
i = 1 
i = 2 
i = 3 

9,0876 
29,6704 
32,3191 

9,0518 
29,5884 
46,7834 

9,0453 
29,5698 
48,9920 

9,0445 
29,5716 
53,0244 

20 
i = 1 
i = 2 
i = 3 

9,6591 
36,3514 
65,7620 

9,6464 
36,2081 
74,4327 

9,6453 
36,1967 
74,4006 

9,0257 
29,5256 
53,2074 

100 
i = 1 
i = 2 
i = 3 

9,8610 
39,3411 
88,1734 

9,8604 
39,3320 
88,1023 

9,8604 
39,3313 
88,0966 

9,0197 
29,5139 
53,4363 

Table 5. Variation of the first three dimensionless frequency parameters (λ1, λ2, and λ3) 
for different slenderness ratios (L/h) and perforation filling ratios (α) for a simply 

supported nanobeam (μ = 3) 

L/h i  α = 0,16 α = 0,33 α = 0,50 α = 1,00 

10 
i = 1 
i = 2 
i = 3 

8,7222 
26,6153 
31,9455 

8,6944 
26,6668 
45,7909 

8,6887 
26,6603 
45,8482 

8,6887 
26,6776 
45,9714 

20 
i = 1 
i = 2 
i = 3 

9,5464 
34,8906 
65,5637 

9,5344 
34,7792 
69,2088 

9,5334 
34,7703 
69,1920 

8,6741 
26,7025 
46,2448 

100 
i = 1 
i = 2 
i = 3 

9,8561 
39,2641 
87,7911 

9,8556 
39,2551 
87,7197 

9,8555 
39,2544 
87,7141 

8,6695 
26,7113 
46,3990 

Table 6. Variation of the first three dimensionless frequency parameters (λ1, λ2, and λ3) 
for different slenderness ratios (L/h) and perforation filling ratios (α) for a simply 

supported nanobeam (μ = 4) 

L/h i  α = 0,16 α = 0,33 α = 0,50 α = 1,00 

10 
i = 1 
i = 2 
i = 3 

8,3976 
24,3439 
31,5856 

8,3763 
24,4689 
40,9609 

8,3712 
24,4692 
41,0163 

8,3719 
24,4950 
41,1441 

20 
i = 1 
i = 2 
i = 3 

9,4375 
33,5932 
65,0553 

9,4262 
33,5075 
64,9596 

9,4253 
33,5006 
64,9527 

8,3606 
24,5599 
41,4439 

100 
i = 1 
i = 2 
i = 3 

9,8513 
39,1876 
87,4136 

9,8507 
39,1787 
87,3422 

9,8507 
39,1780 
87,3367 

8,3571 
24,5816 
41,6277 

Table 7. Variation of the first three dimensionless frequency parameters (λ1, λ2, and λ3) 
for different slenderness ratios (L/h) and perforation filling ratios (α) for a simply 

supported nanobeam (μ = 5) 

L/h i  α = 0,16 α = 0,33 α = 0,5 α = 1 

10 
i = 1 
i = 2 
i = 3 

8,1068 
22,5683 
31,2348 

8,0907 
22,7380 
37,3897 

8,0861 
22,7426 
37,4459 

8,0874 
22,7732 
37,5683 

20 
i = 1 
i = 2 
i = 3 

9,3322 
32,4272 
61,0984 

9,3216 
32,3660 
61,4131 

9,3207 
32,3608 
61,4131 

8,0789 
22,8621 
37,8798 

100 
i = 1 
i = 2 
i = 3 

9,8464 
39,1115 
87,0410 

9,8459 
39,1027 
86,9694 

9,8458 
39,1020 
86,9641 

8,0762 
22,8915 
38,0788 



Ziou, H. and Guenfoud, M. Modal behaviour of longitudinally perforated nanobeams 

 

ACAE | 2023, Vol. 14, Issue No. 27 

 

Page | 151  

 

Figures 3-5 present a comprehensive analysis of the impact of the perforation filling ratio and 
non-local parameter on the first three dimensionless frequency parameters of the nanobeams. 
The study considers various beam aspect ratios under simply supported boundary conditions. 
The figures provide valuable insights into how these factors influence the vibrational 
characteristics of the nanobeams, clarifying their mechanical behaviour and performance. 
Based on the findings in Figure 3, it can be deduced that the first frequency exhibits a slight 
decrease within the perforation filling ratio range of 0,16 to 0,33, whereas it decreases less 
significantly within the perforation filling ratio range of 0,33 to 1,00. Additionally, the first 
frequency experiences a gradual decrease at a low rate, as the non-locality parameter 
increases from 0 to 5. On the other hand, the second frequency shows a substantial increase 
within the perforation filling ratio range of 0,16 to 0,33, compared with that within the range of 
0,33 to 1,00. Furthermore, the effect of non-locality on the second frequency diminishes as the 
non-locality parameter increases. In addition, the influence of the non-locality parameter on 
the third frequency is relatively weaker compared with that on the first and second frequencies. 
However, the perforation filling ratio remains effective across the entire range of 0,16 to 1,00 
while maintaining a constant non-local parameter. 

 

Figure 3. Effect of the perforation filling ratio and non-local parameter on the first three 
dimensionless frequency parameters for a simply supported nanobeam (L/h = 10) 

The data in Figure 4 reveal that the first two frequencies remain constant in the perforation 
filling ratio range of 0,16 to 0,50. However, noticeable effects of the perforation filling ratio are 
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observed only in the higher range of 0,5 to 1,0. In contrast, the third frequency shows a notable 
increase for the perforation filling ratio range of 0,16 to 0,33, but experiences a significant 
decrease in the range of 0,5 to 1,0. This demonstrates the high sensitivity of the third frequency 
to changes in the perforation filling ratio. 

 

Figure 4. Effect of the perforation filling ratio and non-local parameter on the first three 
dimensionless frequency parameters for a simply supported nanobeam (L/h = 20) 

Figure 5 illustrates the variation in the first three fundamental frequencies with changes in the 
non-locality parameter and perforation filling ratio at L/h = 100. For µ = 0, there is no significant 
variation in the frequencies with respect to the change in the perforation filling ratio. For all 
other values of the non-local parameter, the frequencies demonstrate a notable and abrupt 
decrease when the perforation filling ratio is within the range of 0,5 to 1,0. 
Tables 8-10 provide insights into the influence of the non-local parameter and perforation filling 
ratio on the first three dimensionless frequencies for the clamped–clamped (C–C), clamped–
simply supported (C–S), and clamped–free (C–F) short nanobeams. Increasing the filling ratio 
results in a decrease in the fundamental frequency. Similarly, with an increase in the non-local 
parameter, the frequencies also decrease. Notably, the effects of the perforation filling ratio on 
the second and third frequencies differ, indicating a high sensitivity of higher frequencies to 
changes in the perforation filling ratio. 
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Figure 5. Effect of the perforation filling ratio and non-local parameter on the first three 
dimensionless frequency parameters for a simply supported nanobeam (L/h = 100) 

Table 8. Variation of the first three dimensionless frequency parameters (λ1, λ2, and λ3) 
for different slenderness ratios (L/h) and perforation filling ratios (α) for a clamped–

clamped nanobeam 

 

μ i  α = 0,16 α = 0,33 α = 0,50 α = 1,00 

0 
i = 1 
i = 2 
i = 3 

22,6909 
65,1587 
66,4214 

22,5237 
63,2761 
96,1479 

22,5012 
63,1047 
100,684 

22,4896 
62,9065 
109,3086 

1 
i = 1 
i = 2 
i = 3 

21,2674 
51,3324 
63,3482 

21,1846 
51,1589 
84,9962 

21,1694 
51,1238 
85,0393 

21,1676 
51,1222 
85,1969 

2 
i = 1 
i = 2 
i = 3 

20,0772 
43,6651 
60,7050 

20,0544 
44,0542 
68,1568 

20,0444 
44,0674 
68,3081 

20,0497 
44,1334 
68,6179 
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i = 1 
i = 2 
i = 3 

19,0635 
38,6358 
55,8437 

19,0845 
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19,0785 
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58,5126 

19,0888 
39,3816 
58,8748 
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i = 3 

18,1872 
35,0159 
49,4578 

18,2408 
35,7366 
51,9339 

18,2378 
35,7826 
52,1310 

18,2519 
35,8912 
52,4956 
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5 
i = 1 
i = 2 
i = 3 

17,4200 
32,2514 
44,8746 

17,4984 
33,0211 
47,2902 

17,4978 
33,0726 
47,4859 

17,5148 
33,1873 
47,8448 

Table 9. Variation of the first three dimensionless frequency parameters (λ1, λ2, and λ3) 
for different slenderness ratios (L/h) and perforation filling ratios (α) for a clamped–

simply supported nanobeam 

μ i  α = 0,16 α = 0,33 α = 0,50 α = 1,00 

0 
i = 1 
i = 2 
i = 3 

15,6225 
33,1085 
52,5824 

15,5149 
47,9233 
51,1690 

15,5000 
50,1842 
51,0388 

15,4929 
50,8912 
54,4808 

1 
i = 1 
i = 2 
i = 3 

14,7368 
32,7067 
42,4215 

14,6645 
42,0875 
47,3416 

14,6528 
42,0449 
49,5750 

14,6497 
42,0224 
53,8196 

2 
i = 1 
i = 2 
i = 3 

13,9842 
32,3191 
36,5075 

13,9381 
36,5886 
46,7807 

13,9287 
36,5804 
48,9878 

13,9286 
36,6055 
53,1823 

3 
i = 1 
i = 2 
i = 3 

13,3347 
31,9450 
32,5449 

13,3084 
32,8083 
46,2401 

13,3009 
32,8168 
48,4220 

13,3030 
32,8637 
52,2719 

4 
i = 1 
i = 2 
i = 3 

12,7669 
29,6495 
31,5838 

12,7560 
30,0058 
45,7198 

12,7499 
30,0232 
46,4440 

12,7537 
30,0812 
46,6897 

5 
i = 1 
i = 2 
i = 3 

12,2653 
27,4102 
31,2341 

12,2663 
27,8213 
42,2239 

12,2615 
27,8439 
42,3511 

12,2666 
27,9078 
42,5947 

Table 10. Variation of the first three dimensionless frequency parameters (λ1, λ2, and 
λ3) for different slenderness ratios (L/h) and perforation filling ratios (α) for a clamped–

free nanobeam 

μ i  α = 0,16 α = 0,33 α = 0,50 α = 1,00 

0 
i = 1 
i = 2 
i = 3 

3,5346 
22,8855 
33,1086 

3,5248 
22,4296 
47,9299 

3,5226 
22,3847 
50,1942 

3,5228 
22,3386 
54,5003 

1 
i = 1 
i = 2 
i = 3 

3,4538 
19,6056 
32,7238 

3,4449 
19,3563 
47,0785 

3,4428 
19,3287 
47,0029 

3,4431 
19,3060 
46,9337 

2 
i = 1 
i = 2 
i = 3 

3,3677 
17,2610 
39,1071 

3,3697 
17,2794 
39,1279 

3,3677 
17,2610 
39,1071 

3,3680 
17,2502 
39,1184 

3 
i = 1 
i = 2 
i = 3 

3,3064 
15,8537 
31,9856 

3,2989 
15,7708 
34,3464 

3,2969 
15,7578 
34,3488 

3,2973 
15,7539 
34,3906 

4 
i = 1 
i = 2 
i = 3 

3,2389 
14,6616 
30,6439 

3,2320 
14,6165 
31,0501 

3,2302 
14,6070 
31,0637 

3,2306 
14,6073 
31,1191 

5 
i = 1 
i = 2 
i = 3 

3,1751 
13,7187 
28,1310 

3,1688 
13,6987 
28,5895 

3,1671 
13,6915 
28,6091 

3,1675 
13,6945 
28,6710 

Figure 6 shows a comprehensive examination of the influence of the perforation filling ratio 
and non-local parameter on the fundamental frequency of a short nanobeam (L/h = 10) under 
various boundary conditions. Notably, the highest fundamental frequency is observed when 
the non-local parameter µ is set to 0. As the non-local parameter increases, the fundamental 
frequencies decrease for all end-boundary conditions, underscoring the significant role played 
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by the non-local parameter in softening the fundamental frequency. Additionally, the maximum 
fundamental frequency is attained at a perforation filling ratio of α = 0,16, which can be 
attributed to a more rapid decrease in the equivalent mass of the system at this specific ratio. 
Moreover, the boundary conditions have a noticeable impact on the flexibility and frequency of 
the nanobeam. Specifically, the C–F end condition results in a more flexible nanobeam with 
lower frequency values, whereas the C–C end condition exhibits higher frequencies compared 
with the other boundary conditions. These findings indicate that both the mass and stiffness 
characteristics of the system play pivotal roles in determining the frequencies of the short 
nanobeams under consideration. 

 

Figure 6. Variation of the fundamental frequency λ1 with the perforation filling ratio 
and non-local parameter of the short nanobeam (L/h = 10) for different boundary 

conditions (S–S; C–C; C–S; C–F) 

The impacts of the non-local parameter and perforation filling ratio on the first three 
dimensionless frequencies of the clamped–clamped (C–C), clamped–simply supported (C–S), 
and clamped–free (C–F) slender nanobeams are presented in Tables 11-13 and Figure 7. As 
the perforation filling ratio increases, the fundamental frequency decreases slightly. Similarly, 
as the non-local parameter increases, the frequencies decrease slightly. These observations 
indicate that the influences of both the perforation filling ratio and non-local parameter on the 
fundamental frequency of the slender nanobeams are practically negligible. Moreover, the 
boundary conditions have a noticeable impact on the flexibility and frequency values of the 
nanobeam. The C–F end condition results in a flexible nanobeam with lower frequency values, 
whereas the C–C end condition displays higher frequencies compared with the other boundary 
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conditions. For the S–S end condition, at µ = 0, there is no significant variation in the 
fundamental frequency with respect to the change in the perforation filling ratio. For all other 
values of the non-local parameter, the frequency demonstrates a notable and abrupt decrease 
when the perforation filling ratio is within the range of 0,5 to 1,0. 

Table 11. Variation of the first three dimensionless frequency parameters (λ1, λ2, and 
λ3) for different slenderness ratios (L/h) and perforation filling ratios (α) for a clamped–

clamped nanobeam 

μ i  α = 0,16 α = 0,33 α = 0,50 α = 1,00 

0 
i = 1 
i = 2 
i = 3 

22,3764 
61,7059 

121,0466 

22,3748 
61,6891 

120,9759 

22,3747 
61,6878 

120,9702 

22,3745 
61,6857 
120,9613 

1 
i = 1 
i = 2 
i = 3 

22,3627 
61,5639 

120,4491 

22,3611 
61,5474 

120,3805 

22,3609 
61,5461 

120,3749 

22,3607 
61,5440 
120,3663 

2 
i = 1 
i = 2 
i = 3 

22,3489 
61,4228 

119,8603 

22,3473 
61,4066 

119,7937 

22,3472 
61,4053 

119,7883 

22,3470 
61,4032 
119,7799 

3 
i = 1 
i = 2 
i = 3 

22,3352 
61,2827 

119,2800 

22,3336 
61,2667 

119,2153 

22,3335 
61,2654 

119,2101 

22,3333 
61,2634 
119,2020 

4 
i = 1 
i = 2 
i = 3 

22,3215 
61,1436 

118,7080 

22,3199 
61,1278 

118,6452 

22,3198 
61,1265 

118,6402 

22,3196 
61,1245 
118,6323 

5 
i = 1 
i = 2 
i = 3 

22,3078 
61,0053 

118,1441 

22,3059 
60,9865 

118,0706 

22,3061 
60,9885 

118,0783 

22,3059 
60,9865 
118,0706 

Table 12. Variation of the first three dimensionless frequency parameters (λ1, λ2, and 
λ3) for different slenderness ratios (L/h) and perforation filling ratios (α) for a clamped–

simply supported nanobeam 

μ i  α = 0,16 α = 0,33 α = 0,50 α = 1,00 

0 
i =1 
i =2 
i =3 

15,4202 
49,9896 

104,3750 

15,4192 
49,9769 

104,3067 

15,4191 
49,9759 

104,3018 

15,4190 
49,9743 
104,2943 

1 
i = 1 
i = 2 
i = 3 

15,4113 
49,8825 

103,8853 

15,4103 
49,8700 

103,8187 

15,4102 
49,8690 

103,8139 

15,4101 
49,8674 
103,8066 

2 
i = 1 
i = 2 
i = 3 

15,4025 
49,7760 

103,4025 

15,4014 
49,7637 

103,3375 

15,4014 
49,7627 

103,3328 

15,4012 
49,7611 
103,3257 

3 
i = 1 
i = 2 
i = 3 

15,3936 
49,6703 

102,9262 

15,3926 
49,6581 

102,8629 

15,3925 
49,6571 

102,8583 

15,3924 
49,6556 
102,8514 

4 
i = 1 
i = 2 
i = 3 

15,3848 
49,5652 

102,4565 

15,3838 
49,5531 

102,3947 

15,3837 
49,5522 

102,3903 

15,3836 
49,5507 
102,3835 

5 
i = 1 
i = 2 
i = 3 

15,3760 
49,4608 

101,9932 

15,3750 
49,4489 

101,9330 

15,3749 
49,4479 

101,9287 

15,3748 
49,4464 
101,9221 
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Table 13. Variation of the first three dimensionless frequency parameters (λ1, λ2, and 
λ3) for different slenderness ratios (L/h) and perforation filling ratios (α) for a clamped–

free nanobeam 

μ i  α = 0,16 α = 0,33 α = 0,50 α = 1,00 

0 
i = 1 
i = 2 
i = 3 

3,5162 
22,0426 
61,7534 

3,5161 
22,0384 
61,7252 

3,5161 
22,0380 
61,7229 

3,5161 
22,0375 
61,7194 

1 
i = 1 
i = 2 
i = 3 

3,5154 
22,0069 
61,5155 

3,5153 
22,0027 
61,4878 

3,5153 
22,0024 
61,4855 

3,5153 
22,0019 
61,4820 

2 
i = 1 
i = 2 
i = 3 

3,5146 
21,9714 
61,2803 

3,5145 
21,9672 
61,2530 

3,5145 
21,9669 
61,2509 

3,5145 
21,9664 
61,2474 

3 
i = 1 
i = 2 
i = 3 

3,5138 
21,9360 
61,0478 

3,5137 
21,9319 
61,0210 

3,5136 
21,9316 
61,0188 

3,5136 
21,9311 
61,0155 

4 
i = 1 
i = 2 
i = 3 

3,5129 
21,9009 
60,8179 

3,5128 
21,8967 
60,7915 

3,5128 
21,8964 
60,7894 

3,5128 
21,8959 
60,7861 

5 
i = 1 
i = 2 
i = 3 

3,5121 
21,8658 
60,5906 

3,5120 
21,8617 
60,5647 

3,5120 
21,8614 
60,5626 

3,5120 
21,8609 
60,5593 

 

Figure 7. Variation of the fundamental frequency λ1 with the perforation filling ratio 
and non-local parameter of slender nanobeams (L/h = 100) for different boundary 

conditions (S–S; C–C; C–S; C–F) 
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4 Conclusions 

This study conducted a comprehensive investigation of the modal behaviour of LPNBs by 
developing a new finite element model. This model characterises LPNBs with a symmetric 
array of holes arranged parallel to the length of the beam with equal spacing. A non-local 
Eringen differential model was applied to address the nanoscale dimensions. This paper 
presented novel numerical solutions and explicit formulas that have not been previously 
reported, which significantly contribute to the understanding of the modal behaviour of LPNBs. 
The study also examined the effects of the aspect ratios, non-local parameters, boundary 
conditions, and perforation characteristics on the modal behaviour of LPNBs. 
Based on the above study, the following conclusions can be drawn: 

o For a constant perforation filling ratio and aspect ratio, an increase in the non-local 
parameter leads to a decrease in the first three frequencies because introducing the 
non-locality effect leads to a softening effect, resulting in smaller values of the 
fundamental frequency parameters. 

o The short nanobeam (L/h = 10) is more affected by the non-local parameters than the 
slender nanobeams (L/h = 20, 100). 

o The influence of the perforation filling ratio on the fundamental frequency parameter is 
more prominent for the short nanobeam (L/h = 10) than for the slender nanobeams (L/h 
= 20, 100). 

o The influences of both the perforation filling ratio and non-local parameter on the 
fundamental frequency of the slender nanobeams (L/h = 20, 100) are practically 
negligible. 

o The maximum fundamental frequency is attained at a perforation filling ratio of α = 0,16; 
which can be attributed to a more rapid decrease in the equivalent mass of the system 
at this specific ratio. 

o Moreover, the boundary conditions have a noticeable impact on the flexibility and 
frequency of the nanobeam. Specifically, the C–C end condition exhibits higher 
frequencies compared with the other boundary conditions, whereas the C–F end 
condition results in a more flexible nanobeam with lower frequency values. Hence, both 
the mass and stiffness characteristics of the system play pivotal roles in determining 
the frequencies of the nanobeams under consideration. 

In the design of NEMS, an appropriate selection of the perforation filling ratio, hole numbers, 
boundary conditions, aspect ratio, and non-local parameter enables the tailoring of the 
geometrical characteristics to achieve the desired goal of minimising frequencies in a 
perforated-beam-type structure.  
Overall, this study provides valuable insights into the modal behaviours of LPNBs and offers 
guidance for optimising their design and performance in various applications. 
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