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 Abstract: 
Considerable efforts have been made to increase the 
compressive strength of concrete by incorporating 
industrial by-products such as recycled aggregates and 
manufactured sand as partial substitutes for natural 
materials. However, predicting the compressive strength 
of concrete remains a challenge due to the influence of 
various factors, such as the type and proportion of 
aggregates, the water-cement ratio, and the age of the 
concrete. This research focuses on the development of 
machine learning (ML) models to predict concrete's 
compressive strength (CS) at 7 and 28 days. Fifteen 
input parameters—cement, natural and recycled fine 
and coarse aggregates, fly ash, manufactured Sand (M-
Sand), water, admixture, w/c ratio, and age—were 
identified as critical factors influencing CS. A data set of 
1030 samples from the literature was used, 
supplemented by additional experiments with recycled 
aggregates and manufactured sand. The models were 
trained on 70 % of the data, and the remaining 30% was 
used for testing. The results show that ML algorithms are 
highly effective in predicting CS, with the random forest 
algorithm achieving the highest accuracy (R² = 0,95; 
error = 3,74). In addition, a novel WebApp has been 
developed to leverage these models, allowing users to 
input parameters and quickly obtain CS predictions for 
concrete mix designs. The user-friendly interface of the 
WebApp makes it an easily accessible tool for 
professionals and researchers in concrete engineering. 
In this study, the potential of ML, in particular the random 
forest algorithm, is emphasised as a reliable and cost-
effective method for predicting concrete CS, providing a 
valuable alternative to conventional experimental 
approaches. 
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1 Introduction 

Concrete, known for its exceptional compressive strength (CS), is a fundamental material in 
civil engineering and essential for the construction of various infrastructure projects. Its 
composite nature consisting of cement, ground granulated blast furnace slag (GGBS), fly ash 
(FA), aggregates, water, and admixtures makes it versatile and adaptable to the specific 
requirements of different projects [1-3]. Concrete reaches its maximum strength after a curing 
time of 28 d, making this time frame a standard benchmark for assessing its CS at different 
stages [4, 5]. Because of its adaptability, concrete is used for a variety of structures, each of 
which requires a specific grade to fulfil certain performance criteria. Conventionally, the 
determination of CS requires a labour-intensive process of producing, curing, and testing 
numerous concrete samples in a laboratory setting. However, with the advent of machine 
learning (ML) this process has been revolutionised. ML techniques using large data sets can 
autonomously identify the relationships between the constituent materials of concrete and their 
CS, enabling accurate predictions [6]. In addition to its construction, ML has proven its 
versatility in various domains, including medicine, email filtering, and computer vision. When 
applied to concrete strength prediction, ML not only improves prediction accuracy, but also has 
the potential to significantly reduce resource consumption [7]. To overcome the challenges 
associated with conventional methods, researchers have increasingly turned to ML 
techniques, which offer a more efficient and accurate approach for predicting the CS of 
concrete based on its constituent properties [1-3]. The application of ML to predict concrete 
properties has attracted considerable attention in recent years, and numerous studies have 
investigated its potential to streamline and improve construction practise. For example, Koya 
et al. [8] applied ML techniques to predict various concrete properties using the Wisconsin 
concrete mixture database. In their study, multiple ML models were used to estimate six 
mechanical properties of concrete. It was found that the support vector machine (SVM) model 
outperformed the other models, as indicated by higher coefficients of determination (R²) and 
lower root mean squared error (RMSE) values. This study highlights the potential of ML to 
reduce unnecessary experimentation and optimise concrete mix designs. 
Similarly, Ahmad et al. [9] investigated the use of ML modelling to predict the compressive 
strength of concrete exposed to high temperatures. They analysed data from 207 samples and 
used bagging, gradient boosting, decision trees, and artificial neural networks (ANN) to 
develop prediction models. Their results showed a strong correlation between the predicted 
and actual compressive strengths, with the ensemble methods performing better, especially 
under high-temperature conditions. This underscores the robustness of the ML models in 
adapting to varying environmental conditions and material properties. El-Gamal et al. [10] 
investigated the behaviour of near-surface-mounted reinforced concrete beams strengthened 
with glass- and carbon-fibre-reinforced polymers. In the study, a significant increase in the 
load-carrying capacity of all strengthened beams was observed compared to the reference 
beams, albeit with reduced ductility. To further advance the field, Kumar et al. [11] used 
ensemble ML techniques and deep neural networks to improve the accuracy of CS prediction. 
They investigated various algorithms, such as gradient boosting and random forest, which 
significantly outperformed conventional methods in terms of prediction accuracy. They also 
emphasised the importance of optimising the model training procedures to improve the 
generalisation capability of the ML models for different concrete types and mix designs. 
Jahangir et al. [12] introduced an innovative signal processing technique, the contourlet 
transform, to assess the damage severity in prestressed concrete slabs. Their study concluded 
that this technique can accurately identify the damage locations and severity, providing 
valuable insights for structural assessments. In another study, Fakharian et al. [13] applied 
artificial intelligence (AI) techniques, including neural networks and gene expression 
programming, to estimate the CS of hollow concrete block masonry prisms. Their results 
showed that ANNs provided the most accurate predictions, outperforming other models based 
on error metrics such as RMSE and mean absolute error (MAE). This paper further confirms 
the effectiveness of AI and ML in predicting the mechanical properties of concrete, even in 
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specialised applications such as masonry prisms. Chen et al. [14] applied multiple AI 
algorithms to predict the compressive strength of circular steel tubes filled with recycled 
aggregate concrete and achieved high accuracy with all models, with ANNs providing the 
highest level of accuracy. Bansal et al. [15] conducted a comparative analysis of ML algorithms 
for predicting the compressive strength of recycled aggregate concrete and demonstrated the 
effectiveness of ML models in accurately predicting the concrete strength. These studies 
collectively highlight the growing potential of ML and AI to revolutionise the prediction of 
concrete properties in a variety of applications. 
Song et al. [16] investigated the prediction of concrete CS using machine learning (ML) 
techniques with a particular focus on the inclusion of FA as an admixture. In their study, an 
ANN model was used that considers inputs such as the cement binder, FA, coarse and fine 
aggregates, water, superplasticiser, and curing age. The model was validated using k-fold 
cross-validation and RMSE, which showed a strong correlation between the predicted and 
actual CS values. They concluded that ML models effectively capture the complex interactions 
between the different concrete components and leads to a more accurate strength predictions. 
The versatility of ML in civil engineering extends beyond just predicting the CS. Asteris et al. 
[17] investigated the use of ML to optimise the material composition of cement mortar and 
demonstrated the potential of these techniques to improve construction quality. Their study 
showcased how ML algorithms can determine optimal mix proportions and thus improve the 
overall performance of concrete structures. Similarly, Güçlüer et al. [18] conducted a 
comparative analysis of different ML models for predicting CS and highlighted the 
effectiveness of these techniques in optimising mix designs and ensuring the structural 
integrity of civil engineering projects. In addition to these studies, Pan et al. [19] conducted a 
comprehensive analysis of ML algorithms for predicting the CS of recycled aggregate concrete. 
Their research demonstrated the ability of ML models to accurately predict the strength of 
concrete incorporating recycled materials, thereby promoting sustainability in construction 
practise. This aligns with the broader trend of using waste materials such as FA and slag in 
concrete production to reduce the carbon footprint of construction activities [2-4]. Yaseen et al. 
[20] proposed an improved extreme learning machine (ELM) algorithm for more accurate 
prediction of concrete properties. Their study highlighted the advantages of the ELM over 
conventional neural network models, especially in terms of computational efficiency and 
prediction accuracy. This paper contributes to the ongoing development of advanced ML 
algorithms tailored to the specific needs of the concrete industry. Torre et. al. [21] also used 
ANN models to predict the CS of high-performance concrete (HPC) and emphasised the role 
of ML in improving the durability and sustainability of concrete structures. Their study found 
that ANN models can accurately predict the CS of HPC even when incorporating 
supplementary cementitious materials such as FA and slag, which are known to affect the 
long-term performance of concrete. Building on these advancements, recent studies have 
expanded the application of ML to CS prediction with innovative approaches. For example, Yu 
et al. [22] developed a model using the cat swarm optimisation (CSO) algorithm to predict the 
CS of HPC based on inputs such as aggregate type, cement content, and curing age. This 
approach significantly reduces the excessive number of trial mixes conventionally required, 
thereby saving time and resources. Similarly, Feng et al. [23] leveraged an adaptive boosting 
(AdaBoost) algorithm to construct a robust model from a large data set. By combining weak 
learners into a stronger predictor, the AdaBoost model effectively correlated input parameters 
such as aggregate composition and curing time with the CS of different concrete mixes. This 
method proved to be highly reliable in meeting the targeted strength requirements, further 
supporting the role of ML in concrete design. Complementing these advances, Tenza-Abril et 
al. [24] used ultrasonic pulse velocity together with an ANN to predict the CS of segregated 
lightweight concrete (SLC). The ANN model, trained on an extensive data set, provided rapid 
and accurate estimates of CS, proving its usefulness in assessing the quality and structural 
integrity of lightweight aggregate concrete (LWAC). 
An overview of the different ML algorithms that have been used in the literature over the last 
five years is listed in Table 1 [25]. These studies collectively illustrate the growing influence of 
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ML in revolutionising concrete design and analysis by providing a more efficient and accurate 
means of predicting concrete properties for a wide range of applications. 

Table 1. Literature survey of ML models adopted for predicting CS 

ML Algorithm Name Data set Year Ref 

Random Forest 131 2019 [26] 

Intelligent rule-based enhanced multiclass support vector machine and 
fuzzy rules 

114 2019 [27] 

Adaptive neuro-fuzzy inference system 7 2020 [28] 

Multivariate 21 2020 [29] 

Genetic expression programming 357 2020 [30] 

Data envelopment Analysis 114 2021 [31] 

Genetic expression programming, Decision Tree, Bagging 270 2021 [32] 

Extreme Gradient Boosting (XGBoost), Random Forest, and Support 
Vector Machine (SVR) 

1030 2022 [33] 

Firefly Algorithm (FA) and Random Forest (RF) 225 2022 [34] 

Genetic expression programming (GEP) and Artificial Neural Network 
(ANN) 

310 2022 [35] 

Ensemble and non-ensemble supervised ML approach 471 2022 [16] 

Gradient boosting regression tree (GBRT) 1030 2023 [36] 

 
The integration of advanced ML techniques into CS prediction significantly improves accuracy 
and efficiency and supports the wider use of sustainable materials in concrete production. This 
advancement not only streamlines concrete testing processes, but also aligns with efforts to 
reduce the environmental impact of concrete by optimising its strength and durability. The 
studies reviewed have demonstrated the potential of ML models to revolutionise civil 
engineering by improving the precision and sustainability of concrete production. The 
application of ML in civil engineering is expected to drive further innovations in the design, 
construction, and maintenance of concrete structures as it continues to evolve. This study 
focused on predicting the compressive strength of concrete using various machine learning 
algorithms and fifteen input parameters. Although the study demonstrates the efficacy of 
several ML techniques, including linear regression, decision tree regressor, and random forest 
regressor, there are potential research gaps. These gaps include examining additional ML 
algorithms and advanced techniques, considering additional input parameters, evaluating the 
quality of experimental data, optimising model training procedures, and validating model 
generalisations across diverse scenarios. This paper examines the evolving landscape of ML 
techniques in civil engineering, in particular their application in concrete strength prediction. 
Fig. 1 illustrates the range of ML algorithms used for this purpose, to provide a deeper 
understanding of material properties and improve prediction accuracy. 

 

Figure 1. ML algorithms used to predict the compressive strength of concrete 
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This study examines the role of machine learning in estimating the compressive strength of 
concrete, focusing on recent progress in enhancing prediction accuracy and minimizing the 
need for extensive experimental procedures. By studying how concrete and supplementary 
materials interact to influence its strength, this approach provides solutions to the limitations 
of traditional testing. The following sections discuss the materials and methods applied, the 
key results, and the broader impact of using machine learning to advance concrete technology. 
Altogether, this research underscores the potential for machine learning to improve concrete 
mix designs and foster more sustainable building practices 

2 Research objective  

The main objective of this study was to assess the effectiveness of various ML techniques in 
predicting CS of concrete, focusing on the complex relationships between specific input 
attributes and the output. To optimise the learning process, two different training-to-testing 
ratios are proposed and applied to a concrete data set from the UCI repository. Furthermore, 
in this study, concrete was produced from different materials and different proportions of 
recycled aggregates, so that the effects of these materials on concrete strength could be 
analysed. This approach emphasises the sustainability of construction practises. The aim of 
this study was to identify the most accurate and reliable methods for predicting concrete CS 
by using both non-ensemble and ensemble ML models. In addition, sensitivity and parametric 
analyses were performed in this study to understand the relationships between the input 
parameters, offering a faster and more cost-effective alternative to the conventional 
experimental methods for predicting CS. Table 2 provides a comprehensive overview of the 
attribute information in the data set, which consists of eight input variables and one output 
variable. 

Table 2. Brief description of the data set 

Name Data type Measurement Description 

Cement (C) 

Quantitative 

kg/m3 mixture 
Input Variable 

Blast Furnace Slag (GGBS) 

Fly Ash (FA) 

Water (W) 

Superplasticizer (S) 

Coarse Aggregate (CA) 

Fine Aggregate (FA) 

Age Day 

Concrete Compressive Strength (CCS) MPa Output Variable 

3 Background on ML algorithms 

The application of AI techniques to predict the CS of concrete offers a promising approach for 
to address the inherent uncertainties and unpredictability of concrete constituents and their 
effects. By leveraging AI and ML algorithms, models can learn and adapt to complex 
fluctuations resulting from variations in material properties. This enables accurate predictions 
and a deeper understanding of the relationships between the input attributes and CS 
outcomes. The comparative analysis of multiple ML techniques presented in this study 
provides valuable insights into their effectiveness in predicting concrete strength and facilitates 
informed decision-making in construction projects. The proposed learning schemes optimised 
the training-to-test ratios, thereby improving the learning process for a concrete data set from 
the UCI repository [37]. This optimisation contributed to improved model performance and 
reliability. This study also considers the production of concrete using various materials, 
including different proportions of recycled aggregates, thus emphasising sustainability. By 
examining the effects of these materials on concrete strength, this study expands the 
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knowledge base of construction companies and promotes the adoption of innovative 
technologies in the concrete industry. Over the past few decades, ML models have played a 
critical role in predicting and categorising various attributes by leveraging knowledge gained 
from training data. With these techniques, accurate models can be developed without 
understanding the underlying mechanisms of the processes involved. In this section, various 
ML algorithms used to predict the CS of concrete using a data set from existing sources are 
examined. 

3.1 Linear regression 

The linear regression (LR) model is a fundamental machine learning technique used to predict 
a single output variable (y) based on one or more input variables (x). It is based on the 
assumption that there is a linear relationship between the input variables and output. In this 
model, a linear equation was created by fitting the coefficients w = w1, w2, w3, ..., wn to the input 
variables: the goal was to minimise the sum of the squared differences (residuals) between 
the observed and predicted values, resulting in an optimal linear model. The general form of 
the linear regression equation is as follows: 

𝑦 = 𝑤𝑥 + 𝑏 (1) 

where y is the predicted output, w is the coefficient of the input variable, and b is the bias term.  
This bias allows the regression line to shift, similar to how a constant functions in a linear 
equation. Remarkably, linear regression does not require an activation function as the linearity 
of the model is sufficient to establish the relationship between the inputs and outputs. This 
simple but powerful method forms the basis for more complex machine learning algorithms, 
making it an important part of the toolkit of data scientists and engineers. By understanding 
the linear relationships in a data set, linear regression models can provide valuable insights 
and serve as a basis for advanced predictive modelling techniques. There are two types of LR, 
which are described below. 

3.1.1 Lasso Regression L1 

‘LASSO’ stands for ‘Least Absolute Shrinkage and Selection Operator’ and is a regularisation 
technique that is frequently used in machine learning to improve the performance of predictive 
models. It is particularly effective in models with many parameters or where multicollinearity is 
present among the input variables. The LASSO procedure applies a penalty to the absolute 
values of the coefficients in the model, effectively shrinking some of them towards zero. This 
process not only reduces model complexity, but also aids in feature selection by identifying the 
most important variables. As a result, LASSO is particularly useful in scenarios where a simpler 
and more interpretable model is desired without compromising prediction accuracy. The 
strength of LASSO lies in its ability to cope with the overfitting that is common in models with 
numerous parameters. By bringing the coefficient values closer to the mean and possibly 
setting some to zero, LASSO helps create a more robust model that generalises well to unseen 
data. This makes it an invaluable tool for refining models and ensuring that they perform 
optimally, especially when handling data sets that exhibit multicollinearity or when the number 
of predictors exceeds the number of observations. 

3.1.2 Ridge Regression L2 

Ridge regression is a regularisation technique that is often used to deal with multicollinearity 
in regression models. Multicollinearity occurs when two or more independent variables in a 
model are highly correlated, meaning that one independent variable can be linearly predicted 
by another. This correlation can cause instability in the regression model, and thus to large 
variances in the estimated coefficients, which, in turn, results in predictions that deviate 
significantly from the true target values. Ridge regression mitigates this problem by adding a 
penalty term to the loss function that is proportional to the square of the magnitude of the 
coefficients. This penalty helps shrink the coefficients, reduce their variance, and make the 
model more stable and reliable, especially in cases where multicollinearity is present. Unlike 
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LASSO, which can shrink some coefficients to exactly zero, ridge regression usually retains 
all variables, but reduces their effects, resulting in a more balanced and less overfitted model. 
This technique is particularly useful in scenarios where the model contains many correlated 
predictors. By controlling the complexity of the model, ridge regression improves its 
generalisability to new data, making it a powerful tool for predictive modelling in high-
dimensional data sets. 

3.2 Decision tree regression 

Decision tree regression is a widely used supervised learning algorithm known for its ability to 
effectively handle both classification and regression tasks. While linear regression is often 
considered one of the simplest and most practical models, decision trees offer a more nuanced 
approach that is particularly useful for decision-based problems. A decision tree consists of 
three types of nodes: root, interior, and leaf. The root node represents the entire data set and 
serves as a starting point for splitting the data into more specific groups. Interior nodes capture 
the characteristics of the data set as tree branches according to the decision criteria. These 
branches guide the data points through a series of binary questions and lead them to leaf 
nodes that represent outcomes or predictions. 

 

Figure 2. Decision tree algorithm / node hierarchy for the decision tree 

The predicted value for each data point is the average value of the dependent variable within 
the corresponding leaf node. Decision trees are particularly advantageous owing to their 
simplicity and interpretability. They require only minimal preprocessing of the data and are 
resilient to non-linear relationships within the data. In addition, decision trees are not 
dependent on hyperparameters, so they are easy to implement without extensive tuning. 
However, decision trees can be prone to overfitting, where the model becomes too closely 
fitted to the training data, capturing noise, and decreasing performance on new and unseen 
data. This issue is often addressed using a random forest regressor. This is an ensemble 
technique that builds multiple decision trees and combines their predictions to improve 
generalisation and reduce overfitting. The robustness of random forests results from the 
diversity of trees in the ensemble, each trained on different subsets of data and features, which 
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helps mitigate the risk of overfitting. When constructing a decision tree, a hierarchy of nodes 
based on training data is created. As the tree is built, the data at each node are minimised. 
The performance of a decision tree is influenced by various factors including the number of 
splits, maximum number of trees, features selected, and number of nodes. This methodology 
makes decision trees powerful machine learning tools, especially for problems where the 
relationships between variables are complex and non-linear. Their ability to handle different 
types of data and their interpretability make them a popular choice for various applications. 
The node hierarchy for the decision tree constructed using the sample data is shown in Fig. 2. 
In this process, a few representative rows and feature samples are selected and added to the 
decision tree. The data set was then used to train the tree, and training continued until the 
error was minimised, leading to a final prediction. The performance of a decision tree is 
influenced by several factors, including the number of splits, maximum number of trees, 
features selected, and number of nodes. 

3.3 Random forest regression 

Random forest is an advanced ensemble-learning method that extends the concept of bagged 
decision trees. This approach uses a collection of decision trees, each trained on a different 
subset of features, to improve the diversity and robustness of the model. A key feature of 
random forest is the use of bootstrapping, a sampling technique in which each decision tree is 
trained on a random selection of data points with replacement. This process, known as 
bootstrap aggregation or bagging, involves the creation of multiple decision trees using 
different bootstrapped subsets of training data. The final prediction of the random forest model 
was determined obtained by averaging the predictions of all the individual trees. This ensemble 
approach helps reduce the variance that a single decision tree may exhibit, which can often 
lead to overfitting. Random forest also incorporates a unique feature selection mechanism 
during training. Each time a tree is split, only a random subset of features is considered rather 
than evaluating all available features. This method reduces the correlation between the 
individual trees in the forest and helps prevent overfitting. Specifically, if n is the total number 
of features, only sqrt{n} features are randomly selected for each split. 

 
 

 1 

 (a) Decision tree 1 2 
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Figure 3. Group of decision trees formed using a different set of input features 

This randomness in the feature selection ensures that the model examines a variety of 
predictors and does not over-rely on a small number of strong predictors. The random forest 
algorithm is particularly well-suited for handling large data sets with many dimensions. It 
combines the outputs of multiple decision trees to produce a single robust prediction, making 
it both efficient and resilient. Fig. 3 illustrates a random forest model created from the input 
variables and shows how a few representative rows and feature samples were used to train 
individual trees. Unlike a single decision tree, which may overfit the data by growing too deep, 
the random forest approach averages the predictions from multiple trees, thereby improving 

 1 

 (b) Decision tree 2 2 

 1 

 (c) Decision tree 3: Average of all predictions = final prediction 2 
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accuracy and reducing errors. Overall, random forests improve the performance of decision 
trees by introducing randomness into feature selection and combining multiple trees to create 
a more stable and accurate predictive model. 

3.4 Support vector machine 

SVM are prominent machine learning techniques used for both classification and regression 
tasks. When applied to regression problems, SVM takes the form of support vector regression 
(SVR). SVR operates by identifying a hyperplane, which in the case of regression, is a straight 
line that best fits the data. The goal of SVR is to find a hyperplane that keeps the predicted 
values within a certain threshold of the actual values, rather than directly minimising the error 
between the predictions and true values. This threshold is defined by a margin that determines 
how close the data points, known as support vectors, are to the hyperplane. The key idea 
behind SVR is to find the hyperplane with the maximum margin while keeping the prediction 
error within a predefined range. The support vectors are the data points closest to the 
hyperplane on either side. They are crucial for determining the position of the hyperplane. The 
SVR uses kernel functions to solve complex regression problems with non-linear relationships 
and high-dimensional data. Kernels transform data into a higher-dimensional space where 
linear separation is more feasible, thus simplifying the regression task. Common kernel 
functions include polynomials, radial basis functions (RBF), and sigmoid kernels, each of which 
provide different methods for mapping the data into the desired space. Overall, SVR is valued 
for its ability to handle complex and non-linear relationships by leveraging kernel functions and 
focusing on fitting the hyperplane within a specified margin, making it a powerful tool in 
machine learning for regression problems. 

3.5 Multi-layer perceptron (MLP) 

Linear models are often inadequate when it comes to learning complex non-linear relationships 
between input data and target variables. To address this limitation, MLPs and neural networks 
offer more sophisticated approaches. An MLP consists of three main types of layers: input, 
hidden, and output. Each layer contains a specific number of nodes or neurones, with non-
linear activation functions applied to the neurones in all layers except the input layer. The 
architecture of an MLP enables the modelling of complex patterns in data that cannot be 
captured using linear models. The input layer processes the incoming data, whereas the output 
layer produces the final predictions or classifications. The hidden layers situated between the 
input and output layers serve as the core computational components of the network. These 
hidden layers enable the MLP to learn and model intricate relationships in the data through 
non-linear activation functions. Training an MLP involves a process called backpropagation, a 
supervised learning technique. Backpropagation adjusts the weights of the connections 
between the neurones to minimise the error between the predicted and actual outputs. This 
iterative learning process ensures that the performance of the network improves over time. 
Unlike a linear perceptron, which consists of a single layer, an MLP features multiple layers 
and non-linear activation functions. This structure allows MLPs to discriminate between data 
points that are not linearly separable, making them highly effective in a variety of complex 
tasks. Fig. 4 illustrates the typical architecture of an MLP system. One of the challenges in 
designing an MLP is determining the optimal number of neurones for the hidden layers. Too 
many neurones can lead to overfitting, wherein the model excessively learns the training data 
and fails to generalise it to new data. Conversely, too few neurones may result in underfitting, 
where the model cannot capture the underlying relationships in the data. A common heuristic 
for selecting the number of neurones is to multiply the number of input variables by a factor 
such as three; however, this approach may need to be adjusted depending on the specific 
problem and data set. Overall, MLPs are powerful tools for modelling complex data as they 
are able to approximate any continuous function. This makes them suitable for problems that 
linear models cannot solve effectively. 
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Figure 4. MLP architecture 

3.6 K-nearest neighbour 

The k-nearest neighbour (KNN) algorithm is a non-parametric technique that is widely used for 
both classification and regression tasks. The fundamental premise relies on the proximity of 
data points. During classification, KNN assigns a new data point to the class that is most 
prevalent among its k-nearest neighbours. The value of k determines the quantity of nearby 
points to be taken into account. A class with many nearest neighbours determines the class 
label for a new data point. However, this approach can be affected by outliers or imbalances 
in the data set, which may skew the classification results. For regression problems, the KNN 
predicts the value of a new data point by averaging the values of its k-nearest neighbours. This 
method helps to make predictions based on similar data points, thus providing a smooth 
approximation of the output values. Despite its simplicity, the KNN is highly effective. However, 
the parameter k and the distance metric used to measure the proximity of data points must be 
carefully considered is. In addition, KNN can be computationally intensive, especially for large 
data sets, as it requires calculating the distances between a new data point and all existing 
data points in the training set. 

4 Experimental program 

The existing literature predominantly focuses on ordinary concrete. To fill this gap, various mix 
design calculations were conducted using recycled aggregates and manufactured sand to 
produce more sustainable concrete. This approach was intended to expand the data set and 
eventually lead to the production of concrete samples containing these innovative materials. 
The materials used during the experimental program are summarised in Fig. 5. 
Firstly, a series of experiments were conducted to determine the physical properties of the 
materials, including specific gravity (SG), water absorption (WA), and moisture content (MS). 
These properties are essential for the formulation of an accurate mix design. Subsequently, 
the mixes with different proportions of recycled aggregates and supplementary cementitious 
materials (SCMs) were calculated as per the guidelines of IS 10262:2019 [38]. The concrete 
was cast into 150 ×150 × 150 mm cubes and cured in water for 7 and 28 d. The compressive 
strength (CS) was then tested using a compression testing machine (CTM). Detailed 
information on the mix designs for the different percentage replacements is listed in Tables 3–
6. Table 3 lists the mix design parameters and CS) values for the different concrete 
formulations. The table includes details on the quantities of cement, sand, coarse aggregates 
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(CA), recycled coarse aggregates (RCA), water, and water-to-cement (w/c) ratios, along with 
the CS measurements at 7 and 28 d of curing. The data illustrates the effects of different 
aggregate types and proportions on the CS of the concrete. 

 

Figure 5. Materials used 

Table 3. Mix proportions for concrete using recycled aggregates 

Sr. 
No. 

Cement Sand CA_20 CA_10 RCA_20 RCA_10 Water 
w/c 
ratio 

Age 
(day) 

CS 

1 400 578,82 711,46 474,31 0,00 0,00 182,0 0,450 
7 24,75 

28 35,80 

2 400 578,82 640,32 426,88 46,73 30,60 184,8 0,460 
7 25,00 

28 35,00 

3 400 578,82 569,17 379,44 83,09 54,41 187,6 0,470 
7 27,40 

28 30,70 

4 400 578,82 498,02 332,01 155,79 102,01 190,4 0,476 
7 28,40 

28 32,40 

5 400 578,82 426,88 284,58 207,72 136,02 193,2 0,483 
7 26,90 

28 33,10 

6 400 578,82 355,73 237,15 259,65 170,03 196,0 0,490 
7 26,37 

28 32,45 

 
Table 4 lists the mix design parameters and compressive strength (CS) values for concrete 
incorporating recycled fine aggregates (RFA). The table shows the amounts of cement, sand, 
RFA, CA, water, and w/c ratios used, along with the CS measurements at 7 and 28 d. The 
data highlights the influence of varying RFA proportions on the compressive strength of the 
concrete. 
Table 5 lists the mix design parameters and CS for concrete with manufactured sand. These 
include the quantities of cement, sand, manufactured sand, CA, water, and water-to-cement 
(w/c) ratio, along with CS measurements at 7 and 28 d. The data illustrates the effects of 
varying the proportion of manufactured sand on the compressive strength of the concrete. 
Table 6 lists the results of mix design and CS for concrete with additional SCMs such as GGBS, 
Metakaolin (MK), and FA. The table contains various combinations of cement, aggregates, and 
SCM, along with the corresponding CS values after 7 and 28 d. It illustrates the effects of 
different SCMs on the compressive strength of the concrete, highlighting the effects of GGBS, 
MK, and FA on the final strength results. 
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Table 4. Mix proportions for concrete using recycled sand 

Sr. 
No. 

Sand RFA CA_20 CA_10 Water w/c Cement 
Age 
(day) 

CS 

1 400 520,94 54,1 711,46 474,31 182,8 0,457 
7 22,20 

28 33,70 

2 400 463,06 109,0 711,46 474,31 183,2 0,458 
7 23,00 

28 34,50 

3 400 405,17 164,0 711,46 474,31 183,6 0,459 
7 21,60 

28 33,40 

4 400 347,3 218,0 711,46 474,31 184,0 0,460 
7 24,20 

28 30,40 

5 400 289,41 273,0 711,46 474,31 184,8 0,462 
7 23,60 

28 32,33 

Table 5. Mix proportions for concrete with manufactured sand 

Sr. 
No. 

Sand 
Manufactured 

Sand 
CA_20 CA_10 Water w/c Cement 

Age 
(day) 

CS 

1 400 520,94 56,57 711,46 474,31 182,9 0,457 
7 22,20 

28 33,70 

2 400 463,06 113,14 711,46 474,31 183,3 0,458 
7 23,00 

28 34,50 

3 400 405,17 169,71 711,46 474,31 183,7 0,459 
7 21,60 

28 33,40 

4 400 347,3 226,28 711,46 474,31 184,6 0,460 
7 24,20 

28 30,40 

5 400 289,41 282,86 711,46 474,31 185,4 0,462 
7 23,60 

28 32,33 

Table 6. Mix proportions for concrete with recycled aggregates and SCMs 

Sr. 
No. 

Cement Sand CA_20 CA_10 RCA_20 RCA_10 GGBS MK FA Water w/c 
Age 
(day) 

CS 

1 362,60 578,82 711,5 474,31 46,73 30,06 155,4 0,0 0,0 175,13 0,483 
7 26,4 

28 36,6 

2 387,37 578,82 711,5 474,31 46,73 30,06 0,0 77,7 0,0 187,16 0,465 
7 26,1 

28 33,0 

3 395,37 578,82 711,5 474,31 46,73 30,06 0,0 0,0 51,8 180,68 0,430 
7 28,3 

28 36,7 

5 Methodology, interpretation, correlation results, and method performance 
measurements 

5.1 Methodology 

The data set used in this study was compiled from fresh experimental data generated by the 
author in the laboratory, the UCI repository [37], and other relevant research literature. The 
data set comprises 1746 records, each containing 15 input features and one output label, 
which is the CS. The features and their respective ranges are listed in Table 6. Before applying 
the data set to different models, it is important to establish a correlation between the different 
components to improve the understanding and performance of the model. The minimum and 
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maximum values of the input parameters are listed in Table 7. This table highlights the diversity 
and scope of data used in the analysis and facilitates a comprehensive understanding of the 
relationships between the different concrete components and their influence on CS. Identifying 
these relationships is crucial for optimising mix designs and improving the predictive accuracy 
of the model. 

Table 7. Minimum and maximum values for all parameters 

Sr No. Measurement Range of values 

Input parameters Range 

Cement content (C) 

kg/m3 

102-540 

Natural fine aggregate (NFA) 0-992,6 

Recycled fine aggregate (RFA) 0-800 

Natural coarse aggregate (NCA) (20 mm) 0-1295 

Natural coarse aggregate (NCA) (10 mm) 0-516,45 

Recycled coarse aggregate (RCA) (20 mm) 0-1149 

Recycled coarse aggregate (RCA) (10 mm) 0-503,6 

Ground Granulated Blast Furnace Slag 0-359,4 

Metakaolin 0-84 

Fly Ash 0-215 

Manufactured Sand 0-725,5 

Water 121,8-271 

Admixture lit/m3 0-126,18 

W/C ratio - 0,26-1,88 

Age days 1-365 

Output parameters Range  

Compressive Strength N/mm2 2,91-115,20 

5.2 Interpretation and correlation of the results 

As shown in Fig. 6, CS shows the weakest correlation with the water content and water/cement 
(w/c) ratio, whereas it shows the strongest correlation with age. This result aligns with our 
expectations. In addition, there is a notably strong correlation between cement content, GGBS, 
and CS, which was another expected result. The relationship between the use of 
superplasticiser and CS is weakly positive, whereas the relationship with water content is 
weakly negative. Superplasticisers allow for a reduction in water content without affecting the 
workability of fresh concrete, which in turn increases the CS and improves the cement-to-water 
ratio. 
An inverse relationship between cement and GGBS was observed as the addition of additional 
cementitious materials reduced the cement content. Recycled aggregates exhibited a strong 
correlation with water content owing to their high absorption capacity, a trend that was similarly 
observed, albeit to a lesser extent, for recycled sand. To ensure that the model interprets the 
data correctly, feature scaling is required as the values of the different attributes span a wide 
range, making it difficult for the model to treat all features on the same scale. During 
normalisation, the attribute values are rescaled and usually brought into the range between 
zero and one. This is essential for the model to learn effectively from the data. A machine 
learning model learns in two phases: training and testing. During the training phase, the model 
identifies the relationships between different attributes and the influence of the input features 
on the output. In the testing phase, the ability of the model to apply the learnt understanding 
to a new data set is evaluated. In this study, a training-to-testing ratio of 70:30 was chosen as 
a larger training data set generally leads to better model performance. 
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Figure 6. Correlation matrix of the concrete components 

5.3 Method performance measurements 

The accuracy of the model was evaluated using key statistical metrics, specifically the MAE 
and the R² score, as defined by Equations 2 and 3. The MAE measures the average magnitude 
of error in a set of predictions and gives a clear indication of how close the predicted values 
are to the actual values. The R² score quantifies the proportion of variance in the dependent 
variable that is predictable from the independent variables and thus provides information about 
the overall fit of the model. Using these metrics, the performance of the model was rigorously 
evaluated to ensure that it not only minimised error but also accurately captured the underlying 
relationships within the data set. This approach allows for a more robust interpretation of the 
model's predictive capabilities and ensures that it generalises well to new data. 

𝑀𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑀𝐴𝐸) =  
1

𝑁
∑|𝐸𝑋𝑃𝑖 − 𝑃𝑅𝐸𝑖|

𝑛

𝑖=1

 (2) 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (𝑅2) =  
∑ (𝐸𝑋𝑃𝑖 − 𝑒𝑥𝑝𝑖) × (𝑃𝑅𝐸𝑖 − 𝑝𝑟𝑒𝑖)𝑛

𝑖=1

∑ (𝐸𝑋𝑃𝑖 − 𝑒𝑥𝑝𝑖)2𝑛
𝑖=1 × ∑ (𝑃𝑅𝐸𝑖 − 𝑝𝑟𝑒𝑖)2𝑛

𝑖=1

 (3) 

where EXPi is the experimental value of CS; PREi is the predicted value of CS; expi mean of 
the experimental value of CS; prei mean of the predicted value of CS. 

6 Results and discussion 

The performance of the different models in predicting the CS of concrete was assessed using 
two important statistical measures: MAE and R². These metrics were applied to both the 
training and test data sets to ensure a comprehensive assessment of the accuracy and 
generalisation capabilities of each model. 
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6.1 Training data set performance 

Table 8 lists the MAE and R² values for all models when applied to the training data set. The 
decision tree regressor (DTR) showed the highest accuracy during training, with a near-perfect 
R² score of 0,99 and a minimal MAE of 0,21 MPa. This indicates that the predicted values 
agree very well with the experimental measurements. However, the high performance of DTR 
may also indicate a potential overfitting that could affect its generalisation to new data. The 
random forest regressor (RFR) also performed exceptionally well, achieving an R² of 0,98 and 
an MAE of 1,69 MPa. A high R² value of 0,98 achieved by RFR indicates that approximately 
98 % of the variance in the response variable can be explained by the predictors, highlighting 
the model's strong ability to capture patterns and correlations in the training data. The linear 
regression (LR) and ridge regression (RR) models produced almost identical results, with 
moderate R² values and MAE scores, reflecting their limited predictive abilities compared to 
more complex models. 

Table 8. Results of the error and fit measures on the training data set 

Sr. No. Model 
MAE  
(MPa) 

R2 
Literature 

[38] [39] [40] [41] 

1  LR 8,98 0,64 - 0,98 0,82 0,512 

2 LAR 15,22 0,09 - - 0,81 0,511 

3 RR 9,09 0,64 - - 0,82 0,511 

4 DTR 0,21 0,99 0,69 1,0 0,91 0,928 

5 RFR 1,69 0,98 0,75 0,99 0,94 0,926 

6 SVM 9,27 0,63 0,73 - - - 

7 MLP 8,31 0,67 - - 0,80 - 

8 KNN 5,76 0,85 0,78 0,91 - 0,944 

 
When comparing the predictive performance of different models in the experimental work with 
those reported in the literature, several observations can be made. For the LR model, the 
experimental work yielded an MAE of 8,98 MPa and R² of 0,64. These results agree well with 
those in the literature, which also show a moderate R² range of 0,82-0,98 across different 
studies. The linear autoregressive (LAR) model in the experimental work showed a higher MAE 
of 15,22 MPa with a low R² of 0,09, indicating poor predictive accuracy compared with the 
literature, where R² values as high as 0,81-0,98 are reported. For RR, the experimental results 
showed an MAE of 9,09 MPa and an R² of 0,64; which is consistent with the literature, where 
R² values typically range from 0,2-0,98. The DTR performed exceptionally well in the 
experimental work, with an MAE of only 0,21 MPa and an R² of 0,99. This performance is 
confirmed by the literature results, which also report high accuracy of the DTR models, with R² 
values close to 1.0 and MAE as low as 0.69 MPa. Similarly, the RFR in the experimental work 
achieved an MAE of 1.69 MPa and an R² of 0.98, closely matching the literature values of R² 
between 0,94 and 0,99. In contrast, the SVM model displayed lower accuracy in the 
experimental work, with an MAE of 9.27 MPa and R² of 0,63, which is comparable to the mixed 
results reported in the literature, where R² values range from 0,73-0,91. The MLP in the 
experimental work had an MAE of 8,31 MPa and an R² of 0,67, which is consistent with the 
variable performance of MLP models, with R² values of approximately 0.80. Finally, the KNN 
model showed a solid performance in the experimental work, with an MAE of 5,76 MPa and 
an R² of 0,85; which compares favourably with the R² values of up to 0,944 reported in the 
literature. Overall, the results of the experimental work are in general agreement with those 
from the literature, with some variations likely due to differences in data sets and modelling 
approaches. 
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6.2 Test data set performance 

Table 9 lists the error and fit measures for all models on the test data set. As expected, the 
RFR outperformed the DTR in the testing phase, achieving an R² of 0,93 and an MAE of 3,74 
MPa, thereby confirming its robustness and ability to generalise well to new data. The DTR, 
which performed perfectly on the training set, showed reduced accuracy on the test set with 
an R² of 0,64 and an MAE of 5,30 MPa, which is a further indication that it may have been 
overfitted during training. The high R² value (0,93 for the RFR on the test data indicates that 
the model can explain approximately 93% of the variance in the response variable in new 
instances, showcasing its predictive power and reliability for real-world applications. The KNN 
model also maintained a solid performance with an R² of 0,73 and an MAE of 7,89 MPa, 
demonstrating a good balance between accuracy and generalisation. 

Table 9. Results of the error and fit measures on the test data set 

Sr. No. Model 
MAE  
(MPa) 

R2 
Literature 

[42] [43] 

1  LR 8,89 0,62 0,86 0,562 

2 LAR 15,00 0,08 - 0,562 

3 RR 8,92 0,62 - 0,561 

4 DTR 5,30 0,64 0,97 0,786 

5 RFR 3,74 0,93 0,99 0,827 

6 SVM 8,68 0,64 - - 

7 MLP 8,96 0,72 - - 

8 KNN 7,89 0,73 0,86 0,797 

 
By comparing the predictive performance of the different models in the experimental work with 
those reported in the literature, several insights emerged. For the LR model, the experimental 
work achieved an MAE of 8,89 MPa and R² of 0,62. These results are somewhat consistent 
with the literature, which reported R² values of 0,86 but shows a slightly lower MAE of 0,562 
MPa, indicating that the experimental work had a slightly lower predictive accuracy. The LAR 
model in the experimental work exhibited a higher MAE of 15,0 MPa with a very low R² of 0,08; 
indicating poor model performance. This is in contrast to the literature, where R² values were 
not reported, but a similar MAE value of 0,562 MPa was observed, implying that the application 
of the model or data set could be significantly different. For RR, the experimental results gave 
an MAE of 8,92 MPa and an R² of 0,62, which is consistent with the R² values in the literature 
of approximately 0,561, but there is a lack of literature data for direct comparison of MAE. The 
DTR showed an MAE of 5,30 MPa and an R² of 0,64 in the experimental work. This 
performance is modest compared to that in the literature, where an R² of 0,97 is reported with 
a significantly lower MAE of 0,786 MPa, suggesting that the model in the experimental work 
could benefit from further optimisation. The RFR in the experimental work performed well, with 
an MAE of 3,74 MPa and an R² of 0,93. These results are consistent with those from the 
literature, which show an R² of 0,99 and a similar MAE of 0,827 MPa, indicating strong 
predictive accuracy for this model. For the SVM model, the experimental work gave an MAE 
of 8,68 MPa and R² of 0,64. There is no direct comparison of these values in the literature, so 
it is challenging to assess the relative performance, although the experimental work suggests 
moderate accuracy. The MLP in the experimental study achieved an MAE of 8,96 MPa and R² 
of 0,72. Without a direct literature comparison, the performance of the model appears to be 
moderate. Finally, the KNN model in the experimental work had an MAE of 7,89 MPa and an 
R² of 0,73. These results agree fairly well with the literature, which gives an R² of 0.86 and a 
slightly higher MAE of 0,797 MPa, indicating reasonable agreement between the experimental 
work and the literature results. Overall, the results of the experimental work show general 
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agreement with those in the literature, with some discrepancies that could be attributed to 
differences in data sets, model configurations, or experimental conditions. 
The variations of MSE and R² for different ML models are shown in Fig. 7. These plots provide 
compelling evidence that the RFR model outperforms the other models and has the highest R² 
values of 0,98 and 0,93 in the training and testing phases, respectively. The choice to evaluate 
ML models using MSE and R² is justified by their widely recognised importance in regression 
analysis. MSE quantifies the average squared difference between the predicted and actual 
values and thus provides insights into model accuracy, whereas R² measures the proportion 
of variance explained by the predictors and thus reflects the model’s ability to capture the 
underlying data relationships. 

 

Figure 7. Variation of the mean square error and the coefficient of determination 
values 

Based on the evidence provided by the plots and performance metrics, the RFR model proved 
to be the best choice among the ML models evaluated. Its exceptional R² values in both the 
training and testing phases confirmed its strong performance and emphasised its potential for 
successful application in real-world scenarios. The ability of the model to effectively learn from 
data, capture complex relationships, and generalise well to new instances makes it a promising 
choice for accurate predictions and reliable inferences in predicting concrete CS. A closer look 
at the scatterplots in Fig. 8 and Fig. 9, reveals that the data points that overlap the best-fit line 
are of considerable importance, especially in models other than the Lasso regression. This 
overlap suggests a strong correlation between the predicted and corresponding experimental 
values, indicating that these models have successfully learned the underlying patterns in the 
data and were able to generalise their predictions to new, unseen instances. 
In contrast, the Lasso regression model is an exception. The absence of overlapping data 
points along the best-fit line in this model illustrates its limited ability to learn effectively from 
the data set. This shortcoming prevents the Lasso regression from establishing a strong 
correlation between the predicted and experimental values, which ultimately impairs its ability 
to accurately generalise to new data points. The visible lack of overlap in the Lasso regression 
clearly demonstrates its inadequate learning capabilities and limitations in making accurate 
predictions. These results emphasise the importance of carefully considering the 
characteristics of a data set when selecting an appropriate regression model. When the 
relationships between predictors and response variables are complex or non-linear, it is critical 
to explore alternative regression models that can better capture these patterns. Analysis of the 
scatter plots highlights the need for models that can effectively learn and generalise to ensure 
accurate and reliable predictions in real-world applications. 

  1 

(a) Training data set    (b) Test data set 2 
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Figure 8. Relationship between the actual and predicted values of CS of all models for 
the training set 

 1 

 2 

 3 

 4 
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Figure 9. Relationship between the actual and forecasted values of CS of all models 
for the test set 

7 Web application development 

After developing several predictive models, a WebApp was created to provide users with an 
interactive user interface (UI) for predicting concrete mix designs within a defined range of 
values. The WebApp allows users to enter values that correspond to their intended mix design 

 1 

 2 

 3 

 4 
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and predict the resulting concrete strength. As is evident in Fig. 10, the primary WebApp home 
page allows users to enter specific components of their mix designs. 

 

Figure 10. Inputting values for the calculated mix design 

 

Figure 11. Predicted result for the entered values 

Upon entering the necessary input values, users can click on the 'Predict' button, as illustrated 
in Fig. 11, to receive the predicted CS of the concrete. The WebApp leverages the developed 
models to make accurate predictions and then presents the predicted CS values to the user. 
The purpose of this tool was to provide users with a convenient and user-friendly platform to 
obtain strength predictions for their desired concrete mix designs. By inputting the relevant mix 
components and using the underlying prediction models, users can quickly gain valuable 
insights to help them in make informed decisions for construction projects. The intuitive design 
of the WebApps improves both accessibility and usability, making them indispensable 
resources for professionals and researchers in the field of concrete engineering. This tool not 
only streamlines the prediction process, but also allows users to examine different mix designs 
with ease to ensure that their projects meet the desired performance criteria. 
 

 1 
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8 Conclusion 

In this study, several ML models were developed to predict the CS of concrete. The models 
were trained using a data set of 1746 entries obtained from laboratory experiments, the UCI 
repository, and various research studies. The results presented in this paper provide a 
comprehensive evaluation of the performance and limitations of different ML algorithms for the 
prediction of concrete CS. 
The decision tree regression model showed excellent performance during the training phase, 
achieving an MAE of 0,21 and an R² value of 0,99. However, its inability to accurately predict 
unseen data during the testing phase showed a tendency to overfit, probably due to its 
sensitivity to complex variations in the input data. In contrast, the Lasso regression model 
exhibited showed robustness to changes in the input data, but at the cost of higher prediction 
errors. Alternatively, the random forest regressor proved to be the most reliable model and 
outperformed the other algorithms in both the training and testing phases. It had a minimal 
error and a high correlation coefficient, indicating its strong predictive ability for concrete CS. 
These results underscore the importance of selecting appropriate ML algorithms for concrete 
strength prediction and highlight the potential for further research in this area. 
Future work could investigate the integration of additional algorithms and advanced scaling 
techniques to improve the generalisation performance of these models. In addition, the 
successful development of a web application for the prediction of concrete CS further 
demonstrates the practical applicability of this research work. This tool not only confirms the 
effectiveness of predictive models, but also provides a valuable resource for professionals in 
the field of concrete engineering. To summarise, this study provided important insights into the 
application of ML techniques to predict concrete strength. It highlighted the strengths and 
weaknesses of different algorithms, paved the way for future advances, and contributed to the 
ongoing development of more accurate and reliable prediction tools for concrete technology. 
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