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 Abstract: 
This study provides an in-depth analytical investigation 
to accurately estimate the seismic responses of coupled 
systems while considering primary–secondary system 
interactions (PSSIs). A practical modal analysis-based 
approach was proposed to estimate the fundamental 
period of multi degrees-of-freedom (MDOF) steel 
moment-resisting frame structures. A follow-up 
numerical investigation was performed to successfully 
verify the results obtained from the proposed 
relationship. Subsequently, the effects of the secondary 
system multiplicity, number of frame storeys, mass ratio, 
and distribution of secondary systems along the frame 
height were assessed on the fundamental period of the 
coupled system. Based on the results, the seismic 
response of the short-period coupled systems was 
improved by increasing the period of the overall system 
under the effect of the secondary structure period. The 
findings of this study confirm that the presence of 
multiple secondary structures significantly influences the 
fundamental period of a coupled system when PSSI 
effects are considered. In contrast to current design 
code recommendations, it was found that the total mass 
of the secondary structures cannot be ignored in 
calculations owing to the multiplicity of secondary 
systems. 
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1 Introduction 

Several studies have examined the interactions between the primary and secondary systems 
in coupled structures [1-5]. The computational complexity of these studies is such that it is 
practically impossible to use them as design techniques. Therefore, simplified methods for 
coupled system analysis and design have been proposed [6-8]. Adam [9] experimentally 
investigated the behaviours of secondary systems. We focused on the responses of the 
structures when the secondary structure frequency was close to the primary structure 
frequency. Filiatrault et al. [10] showed that the performance level of coupled structures is low 
because of the damage or collapse of nonstructural components, which is not admissible in 
vital infrastructures. Accordingly, the development of experimental research has been 
emphasised. A simple floor response spectrum (FRS) method for analysing the responses of 
nonstructural equipment has been proposed [11-12]. This method estimates the maximum 
response of the secondary system using the response spectrum obtained from the response 
of the primary structure. Kazantzi et al. [13] studied strength reduction factors for designing 
light nonstructural elements and provided approximate equations for estimating system 
responses. Chalarcal et al. [14] studied the seismic demand for acceleration-sensitive 
nonstructural components in braced frames. 
Numerous studies have claimed that the fundamental period of a structure is the key parameter 
affecting its seismic behaviour. The accurate determination of this parameter helps correctly 
predict the seismic behaviour of the structure. In recent years, several researchers have 
proposed accurate methods for determining the fundamental periods of various structures 
under different conditions [15-18]. It is clear that the fundamental period of the primary structure 
changes with the addition of secondary systems. However, the alteration of the fundamental 
periods of primary structures has not received sufficient attention in previous studies; thus, 
limited research has been conducted on the periods of structures considering infill walls [19-
20]. Neglecting this issue can cause computational errors when predicting the seismic 
behaviours of secondary and coupled structures. The effects of the fundamental periods on 
the seismic performance of base-isolated multistorey buildings were thoroughly investigated 
by Pandian and Vinu [21]. 
A review of previous research implies that secondary systems are always considered 
detrimental and threatening to the safety of structures. Thus, considering their seismic 
behaviour has been a priority in recent research. In contrast, owing to the complexity of 
primary–secondary system interaction (PSSI) relationships, developing design techniques 
based on simplified assumptions is necessary. The elimination of PSSI and assumption of the 
independent behaviour of the primary and secondary systems have been the most used in 
relevant research, especially regarding the relationships developed in seismic codes. In this 
hypothesis, the secondary system is assumed to be a single independent system with a small 
mass; therefore, the issue of the multiplicity of secondary systems has received little attention 
because of the elimination of the PSSI. However, the multiplicity of the secondary systems in 
the structure and their relatively significant total masses can be considered as structural 
seismic behaviour control parameters. The minimal application involves increasing the period 
of the coupled system and improving its seismic behaviour by reducing the seismic base 
acceleration of the coupled structure. Because a simple and practical technique has not been 
proposed for calculating the fundamental period of a coupled system, efforts have been made 
to create conditions for the non-interference of the primary and secondary structures. In 
contrast, the effects of secondary systems on the seismic behaviour of coupled structures have 
been neglected. In addition, structural engineers are uncertain about changes in the primary 
structure behaviour under the influence of secondary systems because of the small mass of 
each secondary system (alone) compared with the mass of the primary structure. Moreover, 
interaction effects are more likely to be ignored when the primary structure is affected by 
secondary systems. 
Furthermore, it is common practice for structures to include masonry infill walls with openings, 
such as doors and/or windows. For example, Asteris [22] investigated the influence of a 
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masonry infill panel opening on the reduction in multistorey and fully or partially infilled frame 
stiffness and concluded that the redistribution of the shear force was critically influenced by 
the presence and continuity of the infill panels. Thus, an increase in the opening percentage 
led to a decrease in the lateral stiffness of the infilled frames. In another study, Yekrangnia and 
Asteris [23] proposed a multi-strut macro-model to simulate the force–displacement behaviour 
of infilled frames with various opening configurations. They introduced a simple reduction 
factor for the ultimate strength of perforated infilled frames based on the opening size, relative 
to the infill wall size as well as the relative stiffness of the frame and infill wall. 
This paper presents an analytical approach to the studied models. Subsequently, the 
numerical modelling of the frame systems is explained. Next, the periods of the coupled 
systems resulting from the combination of single-degree-of-freedom primary and secondary 
systems are discussed based on the results obtained via both numerical modelling and the 
proposed analytical relationship. 
Thus far, either the period or the frequency of the structure has been considered as a 
complementary parameter in the current technical literature for calculating system responses 
and equations of motion. Thus, these parameters have been neglected, as the responses of 
the secondary and primary systems are typically assumed to be independent, given that the 
mass of the secondary system is negligible compared with that of the primary system. 
However, the present study highlights the effect of the secondary system on the response of 
the coupled system in the design procedure, with the period being the most evident of them. 
Owing to the multiplicity of the secondary systems, it is assumed that the total mass of the 
secondary systems cannot be ignored in the calculations. Furthermore, the proposed approach 
has the advantage of modifying the periods of primary structures with shorter periods, such 
that the coupled structure would benefit from increased period values by using the potential of 
multiple secondary systems. Thus, the behaviour of the entire structure can be improved 
seismically. 

2 Methodology  

2.1 Analytical approach 

This section describes the configurations of the models examined in this study. A number of 
three-dimensional (3D) steel moment-resisting frame structures with one, two, and three 
storeys, each of which consists of four perimeter columns and four perimeter beams on each 
storey, were selected as primary systems, as illustrated in Figure 1. The detailed specifications 
of the selected frames are discussed below. The dimensions and weights of the frames were 
chosen such that the period of the initial structures was in the range of 0,15-0,70. 

 

Figure 1. Schematic of the coupled frame structure 



Fereidooni, O. et al. Analytical estimation of fundamental periods of coupled systems 

 

ACAE | 2025, Vol. 16, Issue No. 30 

 

Page | 290  

 

The results of preliminary investigations by the authors indicated that the most influential 
parameter in determining the responses of coupled systems was the period of these systems 
in relation to the fundamental period of the primary structure. In this regard, the behaviour of 
the coupled system can be characterised, given that the corresponding system period is 
known. Thus, the dynamic relationships of the coupled systems were investigated to estimate 
the period of the coupled system within an acceptable margin of error by proposing an 
appropriate formulation. Notably, general relations are first presented in the development of 
secondary system relations. Subsequently, a simplified relation is proposed as a design 
technique for estimating the period of the coupled system by using a series of simplifying 
assumptions. 
The mass and stiffness matrices must be determined to calculate the fundamental period of 
the coupled system, and its characteristic equation must be calculated. Other researchers 
have performed this process for secondary systems, and this process will be extended using 
a similar approach to that for the multiplicity of secondary systems. Moreover, the indices p, s, 
and c have been used to define the characteristics of primary, secondary, and coupled 
systems, respectively. Moreover, the index i was used to indicate the degrees of freedom of 
the primary system, and the index j indicates the secondary system number. 
Accordingly, the mass and stiffness of each single-degree-of-freedom (SDOF) are determined 
by m𝑠 𝑖𝑗 and k𝑠 𝑖𝑗, respectively, which denotes the mass and stiffness of the j-th secondary 
system, connected to the i-th degree of freedom in the primary system. 
We assume that m SDOF secondary systems are connected to different degrees of freedom 
of a primary system with n DOF. The mass and stiffness matrices of the primary system are 
denoted by [𝑀𝑝] and [𝐾𝑝], and the mass and stiffness matrices of the coupled system are 
denoted by [𝑀𝑐] and [𝐾𝑐], respectively. 

[𝑀𝑐] = [
[𝑀𝑝𝑝]

𝑛∗𝑛
[𝑀𝑝𝑠]

𝑛∗𝑚

[𝑀𝑠𝑝]
𝑚∗𝑛

[𝑀𝑠𝑠]𝑚∗𝑚

] 

[𝐾𝑐] = [
[𝐾𝑝𝑝]

𝑛∗𝑛
[𝐾𝑝𝑠]

𝑛∗𝑚

[𝐾𝑠𝑝]
𝑚∗𝑛

[𝐾𝑠𝑠]𝑚∗𝑚

] 

(1) 

The mass and stiffness matrices in Equation (1) are expressed in Equations (2) and (3), 
respectively: 

[𝑀𝑝𝑝] = [𝑀𝑝]   &   [𝑀𝑝𝑠] =  [𝑀𝑠𝑝] = 0 

𝑀𝑠𝑠 𝑗𝑗 = 𝑚𝑠 𝑖𝑗 &  𝑀𝑠𝑠 𝑎𝑗 = 0   (𝑡ℎ𝑎𝑡 𝑎 ≠ 𝑗) 
(2) 

𝐾𝑝𝑝 𝑖𝑖 = 𝑘𝑝 𝑖𝑖 +  ∑ 𝑘𝑠 𝑖𝑗 

𝐾𝑝𝑝 𝑎𝑖 = 𝑘𝑝 𝑎𝑖 & 𝐾𝑝𝑝 𝑖𝑎 = 𝑘𝑝 𝑖𝑎  (𝑡ℎ𝑎𝑡 𝑎 ≠ 𝑖) 

𝐾𝑝𝑠 𝑖𝑗 = −𝑘𝑠 𝑖𝑗  & 𝐾𝑝𝑠 𝑎𝑏 = 0(𝑡ℎ𝑎𝑡 𝑎 ≠ 𝑖 𝑜𝑟 𝑏 ≠ 𝑗) 

[𝐾𝑝𝑠] = [𝐾𝑠𝑝]
𝑇
 

𝐾𝑠𝑠 𝑗𝑗 = 𝑘𝑠 𝑖𝑗  & 𝐾𝑠𝑠 𝑎𝑗 = 𝐾𝑠𝑠 𝑗𝑎 = 0  (𝑡ℎ𝑎𝑡 𝑎 ≠ 𝑗) 

(3) 

If we calculate the determinants of the characteristic equation assuming free vibration, the 
characteristic relationship of mode r of the coupled system is as follows: 

[𝐾𝑐]{𝜑𝑟
∗} = 𝜔𝑐𝑟

2 [𝐾𝑐]{𝜑𝑟
∗} (4) 

Here, {𝜑𝑟
∗} represents the modal vector in mode r with n+m rows. First, the n-th row of Equation 

(4) in mode r is as follows: 
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[𝐾] {

𝜑1𝑟
∗

𝜑2𝑟
∗

⋮
𝜑𝑛𝑟

∗

} + {𝑘𝑠𝜑∗} = 𝜔𝑐𝑟
2 [𝑀] {

𝜑1𝑟
∗

𝜑2𝑟
∗

⋮
𝜑𝑛𝑟

∗

} (5) 

The vector {𝑘𝑠φ∗}, which has n rows, represents the effect of the secondary system on the 
characteristic equation of the primary system. If the j-th secondary system is connected to the 
i-th DOF, then the i-th member of this vector in the r-th mode equals 𝑘𝑠 𝑖(𝜑𝑖𝑟∗−𝜑𝑛+1𝑟∗), and the 

rest of the members are zero. Therefore, the i-th member of the vector {𝑘𝑠φ∗} in the r-th mode 
is equal to: 

𝑚𝑠𝑗𝜑𝑖𝑗
∗ 𝜔𝑐𝑟

2 𝜔𝑠𝑗
2

𝜔𝑐𝑟
2 − 𝜔𝑠𝑗

2  (6) 

If the mass of the secondary system is negative, then the value of this equation is small and 
can be neglected, except when the frequency of the secondary system is close to that of the 
primary structure. In addition, based on Rayleigh’s quotient hypothesis, a first-order error in 
the mode shapes causes a second-order error in the frequency. Therefore, the hypothesis of 
the proximity of the first mode shapes of the primary and coupled structures caused a small 
error in the frequency and period calculations. Therefore, we simplified Equation (4) for the 
first mode. 

𝜔𝑝
2𝑀1 + ∑ 𝑚𝑠𝑙𝜑𝑗1

2 𝜔𝑐
2𝜔𝑠𝑙

2

𝜔𝑐
2 − 𝜔𝑠𝑙

2

𝑚

𝑙=1

= 𝜔𝑐
2𝑀1 (7) 

Here, 𝜔𝑝 is the frequency of the first mode of the primary system, and 𝜔𝑐 is the frequency of 
the first mode of the coupled system. To functionalize the above relationship, with a simplified 
assumption, we assume that all the different frequencies of the secondary systems can be 
equated with an effective frequency equal to 𝜔𝑠𝑒. If we replace the 𝜔𝑠𝑙 in Equation (7) with the 
constant value 𝜔𝑠𝑒: 

𝜔𝑝
2𝑀1 +

𝜔𝑐
2𝜔𝑠𝑒

2

𝜔𝑐
2 − 𝜔𝑠𝑒

2 ∑ 𝑚𝑠𝑙𝜑𝑗1
2

𝑚

𝑙=1

= 𝜔𝑐
2𝑀1 (8) 

By replacing the period with the frequency and simplifying Equation (8), we obtain: 

𝑇𝑝
4

𝑇𝑐
4 − (

𝑇𝑝
4

𝑇𝑐
2𝑇𝑠𝑒

2) (1 +
∑ 𝑚𝑠𝑟𝜑𝑟1

2

𝑀1
) +

𝑇𝑝
2

𝑇𝑠𝑒
2 −

𝑇𝑝
2

𝑇𝑐
2 = 0 (9) 

Here, 𝑀1 is the lumped mass of the primary system in the first mode. 

𝑀1 = {𝜑1}𝑇[𝑀]{𝜑1} = ∑ 𝑚𝑝𝑙𝜑𝑙1
2

𝑛

𝑙=1

 (10) 

In regular structures, the shape functions can be expressed as sine functions. By extending 
the power series of these sine functions and neglecting all expansion sentences except the 
first, the shape of the first mode becomes a simple linear function that is proportional to the 
height of the structure. Based on this simplified assumption, Equation (10) becomes the final 
equation: 

𝐹𝑇
4 − (𝑓𝑇

2 + 𝛾́)𝐹𝑇
2 + 𝑓𝑇

2 = 0 

𝐹𝑇 =
𝑇𝑐

𝑇𝑝
 & 𝑓𝑇 =

𝑇𝑠𝑒

𝑇𝑝
 & 𝛾 =́ 1 + 𝛾 = 1 +

∑(𝑚𝑠ℎ𝑠
2)

∑(𝑚𝑝ℎ𝑝
2)

 
(11) 
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where 𝐹𝑇 is the ratio of the coupled system period to the primary system period, 𝑓𝑇 is the ratio 
of the secondary system period to the primary system period, and γ is the mass correction 
ratio. This relationship is similar to the coupled system with a secondary system relationship, 
with the difference that the definitions of the mass ratio and secondary system period have 
been changed in this relationship and have been defined more comprehensively for the 
multiplicity of secondary systems. 
When calculating Equation (11), it was assumed that all different periods of the secondary 
systems could be equated with one effective period. As a result, the values of 𝑇𝑠𝑒 and γ must 
be determined to express the effects of all secondary systems. The effect of each of these 
parameters on the coupled system period must be examined for this purpose. 
To better investigate the effect of γ on the period of the coupled system, the value of 𝐹𝑇 versus 
values of 𝑓𝑇 were calculated in five mass percentage states for 0,0001; 0,010; 0,1000; 0,2500; 
and 1,0000; as presented in Figure 2. 

 

Figure 2. Variations of FT versus fT in terms of different mass ratios 

Figure 2 shows that the 𝐹𝑇 values did not increase much until 𝑓𝑇 = 1. However, after 𝑓𝑇 = 1, the 
coupled system period increased further, and the relationship between 𝐹𝑇 and 𝑓𝑇 tended to a 

linear relationship. Also, by increasing the 𝑓𝑇, the difference between the diagrams with the 
different mass ratios decreased. These results show that increasing the 𝑓𝑇 results in the mass 
ratio having a lesser effect on the coupled system period. To better understand this issue, we 
calculated the 𝐹𝑇 changes at different γ values compared with the 𝐹𝑇 value at 𝛾 = 1,00 and 
0,25; as shown in Figure 3.  
Figure 3 shows that the effect of the mass ratio on the period of the coupled system exhibits 
an increasing trend until 𝑓𝑇 reaches 1. After 𝑓𝑇=1, the effect of mass ratio decreases with a 
larger 𝑓𝑇 such that after 𝑓𝑇 = 3, the 𝐹𝑇 change between different mass ratios is less than 5 %. 

The major change of 𝐹𝑇 is observed between the two states of 𝛾 = 0,0001 and 𝛾 = 1,00 at 𝑓𝑇 
= 1, which has a value of less than 40 %. In conclusion, the main factor in determining the 
period of a coupled system is the 𝑓𝑇, and the effect of γ is much less than 𝑓𝑇. Also, as the value 

of 𝑓𝑇 becomes larger than 1, the effect of γ on 𝐹𝑇 decreases. Therefore, it can be assumed that 
the coupled system period is affected by the period of the secondary system connected to the 
primary structure that, if implemented alone, had the greatest effect on the coupled system 
period compared with other secondary systems. Owing to the lesser effects of the periods of 
the other secondary systems, the primary system period can be changed as a secondary 
mass. To identify the effective secondary period, each of the secondary systems should be 
added to the primary system, and the 𝐹𝑇 value can be calculated for each of them separately 

via Equation 11. The secondary system with the maximum 𝐹𝑇 is selected as the effective 
secondary system, and its period is set as 𝑇𝑠𝑒. 
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Figure 3. Difference ratios of FT versus different mass ratios 

The other secondary system periods do not affect the coupled system period, but their masses 
must be added to the mass ratio such that it appears to differ from the mass of the effective 
secondary system. According to Figure 3, if 𝑓𝑇𝑒 ≥ 3, then we can ignore the mass effects of 

other secondary systems with a reasonable error percentage. If 𝑓𝑇𝑒 < 3, then we should 
calculate the equivalent secondary mass for inefficient secondary systems. If we calculate the 
values of the mass ratio from Equation (11), then: 

𝛾 =
𝐹𝑇

4 + 𝑓𝑇
2

𝐹𝑇
2 − (𝑓𝑇

2 + 1) (12) 

To make an equivalent secondary system from an effective secondary system, two γ terms 
are calculated from Equation (12), considering that their effects are constant. Then, Equation 
(13) can be obtained by calculating the discrepancy. 

𝛾𝑖
∗ = 𝛾𝑖 − (𝑓𝑇𝑒

2 − 𝑓𝑇𝑖
2) (1 −

1

𝐹𝑇𝑖
2) (13) 

The value of 𝐹𝑇 always exceeds 1. Therefore, if 𝑓𝑇𝑒 > 𝑓𝑇𝑖, then the second part of Equation (13) 
becomes negative. As a result, γ𝑖∗ < γ𝑖, and it is even possible that the γi∗ value becomes 
negative. Accordingly, considering that the mass ratio has a lower effect than does the period, 
the result is achieved via a simplifying assumption. However, if the period of a secondary 
system in a coupled system is smaller than the effective secondary period, then its periodic 
and mass effects can be completely neglected. In addition, if 𝑓𝑇𝑒 ≤ 𝑓𝑇𝑖, then the mass ratio of 
the ineffective secondary system must be calculated from Equation (13) and added to the mass 
ratio of the effective secondary system. Moreover, considering the lesser effect of the mass 
ratio compared with that of the period, we neglect the second part of Equation (13) and assume 
the value of γi

∗ equal to γ𝑖 through another simplifying assumption. That is, the secondary 
system period in a coupled system is greater than the effective secondary period, its periodic 
effects are neglected, and only its mass ratio is added to the mass ratio of the effective 
secondary system. Therefore, Equation (14) is proposed as a design technique. 

𝑇𝑐𝑟
2 =

𝑇𝑝
2

2
(𝛼 + √𝛼2 − 4𝑓𝑇

2) 

𝛼 = 𝑓𝑇
2 + 𝛾𝑟 + 1  𝑓𝑇

2 =
𝑇𝑠𝑟

2

𝑇𝑝
2   𝛾𝑟 =

∑ 𝑤𝑠𝑟ℎ𝑠𝑙
2𝑚

𝑙=1

∑ 𝑤𝑝𝑙ℎ𝑝𝑙
2𝑛

𝑙=1

 

(14) 

The coupled-system period was calculated using Equation (14), with the difference that 𝑇𝑐, 𝑇𝑠𝑒, 
and 𝛾𝑒

∗ replace 𝑇𝑐𝑟, 𝑇𝑠𝑟, and 𝛾𝑟, respectively (Equations (15) and (16)). 

  

                  a) Baseline mass ratio equals 1,00                        b) Baseline mass ratio equals 0,25 1 
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𝑇𝑐
2 =

𝑇𝑝
2

2
(𝛼 + √𝛼2 − 4𝑓𝑇

2) 

𝛼 = 𝑓𝑇
2 + 𝛾𝑒

∗ + 1       𝑓𝑇
2 =

𝑇𝑠𝑒
2

𝑇𝑝
2  

(15) 

𝑇𝑠𝑒 = 𝑇𝑠𝑟  &  𝛾𝑒 = 𝛾𝑟 (𝑡ℎ𝑎𝑡   𝑇𝑐𝑟 = 𝑚𝑎𝑥(𝑇𝑐𝑖)) 

𝑖𝑓 (𝑓𝑇𝑒 ≥ 3)   →      𝛾𝑒
∗ = 𝛾𝑒 

𝑖𝑓 (𝑓𝑇𝑒 < 3)  →  𝛾𝑒
∗ = 𝛾𝑒 + ∑ 𝛾𝑙  (𝑖𝑓 𝑇𝑠𝑙 > 𝑇𝑠𝑒) 

𝑟

𝑙=1

 

(16) 

2.2 Comparison of the proposed analytical approach with existing models and 
codes of practice 

As previously discussed, the PSSI is among the most important parameters in the analysis of 
secondary systems. Accordingly, the methods for analysing secondary systems can be 
examined using two approaches: (i) methods that do not consider PSSI and (ii) methods that 
consider the effects of interactions. In the first approach, the primary system is initially analysed 
without considering the secondary system, and the acceleration response of the structure is 
obtained at the support of the secondary system along its degrees of freedom. The response 
of the secondary system resulting from the effect of the structural response at the supports is 
then calculated. In the second approach, to consider PSSI, both primary and secondary 
systems must be modelled simultaneously as a composite system because the interaction 
affects the dynamic properties of the two systems and their response. If the secondary system 
has one SDOF, then the possibility of tuning must be considered. Otherwise, if the secondary 
system has an MDOF or multiple supports, then the effect of the correlation between the 
support motions must be considered. 
The model proposed by Singh [24] does not consider this interaction, resulting in more 
conservative responses. In addition, if the frequency ratio of the two systems is close to 1 and 
the secondary-to-primary system mass ratio is large, then the estimation error in the frequency 
and system response increases. Gupta and Tembullkar [25] reported such results. According 
to Rayleigh’s quotient hypothesis, the presence of a first-order error in the mode shape 
prompts a second-order error in the frequency. Therefore, the assumptions made in the model 
presented by Sackman et al. [26] caused a small error in frequency estimation. To overcome 
this shortcoming, Chen and Soong [27] proposed a model based on the NEHRP 1995 
recommendations. Villaverde [28-32] recommended several simplified relations for analysing 
secondary systems. According to the method of Ghafouri and Fiouz [33] for calculating the 
response of secondary systems, if the connection of the secondary system to the primary 
structure is highly flexible, then the frequency of the secondary system tends to zero. 
Consequently, the acceleration of the secondary system becomes zero, although no force is 
applied, which is practically incorrect. Based on this premise, the relations presented in IBC 
2006 have fundamental setbacks: (i) the equivalent static force recommended by the code is 
not correlated to the dynamic characteristics of the primary structure and is somehow 
independent of it, (ii) changes in the equivalent static force are assumed to be linear with the 
height of the structure, and (iii) the determination of the intensity coefficient, which indicates 
the degree of flexibility of the secondary system, is not sufficiently accurate. 
In addition to the discussed models, Biggs and Roesset [34; 35] as well as Sackman and Kelly 
[36; 37] proposed a method that is widely used in practice. However, this method has several 
important drawbacks: (i) it is applicable only for secondary systems whose natural frequencies 
differ significantly from that of the primary structure, where the secondary system mass is small 
compared with that of the primary structure; (ii) it leads to unreasonable results for secondary 
systems with multiple supports. According to UBC 1997 [38], the force acting on nonstructural 
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elements is calculated based on the ultimate strength, whereas the magnification factor of the 
secondary system can be obtained using the dynamic properties of the structure and 
secondary element. In addition, ASCE7-10 [39] reduced the magnification factor related to the 
location of the nonstructural element from 0,2-0,3. Based on the requirements of New Zealand 
NZS4219 [40; 41], the seismic load imposed on the secondary systems was estimated using 
the static equivalent force. Furthermore, the relationship proposed in Eurocode 2008 [42] 
calculates the horizontal earthquake force based on the ultimate strength at the secondary 
system mass centre in the direction with the greatest effect. Comprehensive research on the 
estimation of the fundamental period can be found in [43-45]. 
Accordingly, the seismic calculation methods and responses of secondary systems in most 
codes are based on equivalent seismic lateral force estimation. The force is directly 
proportional to the weight of the secondary system. However, in the case of secondary systems 
with multiple supports, there are practically no relationships or specific seismic conditions in 
these codes, and only displacement control of the supports is proposed. That is, PSSI has 
been ignored thus far because of the complexity of the relationships in secondary systems and 
the interaction conditions between the primary and secondary systems. As such, the 
calculation and design of these systems have been considered independently in current 
methods and standards. In addition, the location of the secondary system at the roof level is 
not considered in existing codes and standards. The relationships proposed in this study 
address the drawbacks of the existing methods used in seismic design. 

2.3 Numerical approach  

Several 3D moment-resisting frame structures with one, two, and three storeys, each 
consisting of four perimeter columns and four perimeter beams at each storey, were modelled 
using SAP200 software v.19 [46] as primary systems (Figure 1). In these models, the columns 
and beams comprised box sections with dimensions of 150 × 150 mm. In addition, each floor 
was modelled with a 5 mm thick steel plate with material specifications similar to those of the 
other steel materials. The height of each frame storey along the vertical axis was 4500 mm, 
and the span along both horizontal axes was 4500 mm. Reinforcing bars with lengths of 400 
mm and diameters of 6 mm were attached to the primary system and used to model secondary 
systems with an overall mass of less than 20 % of that of the primary system. 
To perform the finite element analysis, seven ground motion records obtained from PEER-
NGA were selected and scaled in accordance with ASCE7-16 recommendations to represent 
a wide range of amplitudes (Tables 1 and 2). 
It is worth noticing that the weight of each secondary system, per se, was 0,3 % of the primary 
system weight, which is quite negligible. The rebar models were tied to the frame floor at 
different locations on each floor in various configurations, although they exhibited similar 
stiffness and other seismic specifications. 
Regarding the selection of records, Moeindarbary and Taghikhani [47] confirmed that the 
optimal design variables in the three levels of service-level earthquake (SLE), design-basis 
earthquake (DBE), and maximum considered earthquake (MCE) have similar characteristics; 
hence, hazard levels play no significant role in the selection procedure. A nonlinear dynamic 
time-history analysis was performed as part of the analysis step. Then, to compare the seismic 
response of the coupled system period with that obtained from the analytic approach, diagrams 
demonstrating the percentage differences between the associated responses were plotted 
versus variations in the mass ratio (ɣ). The steel material was ordinary structural steel with an 
elastic modulus of 200 GPa, yield stress of 240 MPa, and Poisson’s ratio of 0,3. In addition, a 
bilinear model featuring strain hardening capacity was applied to simulate the nonlinear and 
inelastic properties of the steel material. As such, the plastic strain varied from a yield strain of 
0,6 to the ultimate strain. The wall material was modelled as brick tiles with an elastic modulus 
of 1448 MPa, compressive strength of 2,5 MPa, and Poisson’s ratio of 0,3. The concrete 
damage plasticity (CDP) was used to model the fracture behaviour of the bricks. Table 3 
presents the damage variables assumed in the CDP model. 
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Table 1. Specifications of input ground motion records 

PGV 
(cm/sec) 

PGA 
(g) 

Lowest 
freq. 
(Hz) 

Record 
seq. no. 

Recording  
station 

Earthquake ID 
No. Name Year M 

63 0,52 0,25 953 Beverly Hills - Mulhol Northridge 1994 6,7 1 

62 0,82 0,06 1602 Bolu Duzce,Turkey 1999 7,1 2 

37 0,51 0,13 1111 Nishi-Akashi Kobe,Japan 1995 6,9 3 

42 0,42 0,13 848 Coolwater Landers 1992 7,3 4 

35 0,53 0,13 752 Capitola Loma Prieta 1989 6,9 5 

54 0,51 0,13 1633 Abbar Manjil,Iran 1990 7,4 6 

39 0,51 0,05 1485 TCU045 Chi-Chi,Taiwan 1999 7,6 7 

Table 2. Scale factors for the ground motion excitations in the preliminary analysis 
step 

Scaling factor Earthquake ID No. 

0,7941 Northridge 1 

1,0405 Duzce, Turkey 2 

0,6996 Kobe, Japan 3 

0,6406 Landers 4 

0,6509 Loma Prieta 5 

1,0971 Manjil, Iran 6 

1,0171 Chi-Chi, Taiwan 7 

Table 3. Damage variables assumed in CDP model 

𝚿 𝜺 𝒇𝒃𝟎 𝒇𝒄⁄  𝑲𝒄 𝝁 

40 0,100 1,160 0,670 0,001 

 
All the modelled primary and coupled frame structures were initially examined via modal 
analysis, and the associated fundamental periods were accurately computed using software. 
Therefore, the coupled system period was calculated using Equations (14)-(16). Furthermore, 
the discrepancy between the proposed relationship for the coupled structural period and that 
obtained from the numerical analysis was compared. 
Considering the complexity of the dynamic relationships between the primary and secondary 
systems, in previous studies that have been the basis of design code relationships, the 
interaction effects of the primary and secondary systems have been neglected, and secondary 
systems have only been applied as masses on primary structures. Therefore, in the numerical 
part of this study, an attempt was made to provide a simple design technique for the calculation 
of the fundamental period of a coupled system, considering the multiplicity of secondary 
systems, by completing previous research and developing and simplifying the dynamic 
relationships. Consequently, the fundamental period of the coupled structure replaces the 
period of the primary structure in seismic design relationships and techniques. 

3 Results and discussion 

In this section, the periods of the coupled systems resulting from the combination of a single-
degree-of-freedom primary system with 1, 2, 10, and 20 secondary systems are calculated 
according to the results obtained from both numerical modelling and the proposed analytical 
relationship. The periods of the modelled frame structures obtained from SAP200 are shown 
in the following figures. Accordingly, the secondary systems were modelled with different 
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stiffness values, as denoted by SS1-SS5 in the figure legends. The stiffness of the secondary 
systems increases from SS1 to SS5. 

 

Figure 4. Variations of the fundamental periods of one-storey frame structures 
coupled with one secondary system versus the mass ratio (ɣ) obtained via: a) 

numerical analysis, b) the proposed relation, and c) the difference ratio Tc-equation⁄(Tc-

software-1) 

According to Figure 4, the fundamental period of the one-storey frame structure coupled with 
one secondary system increases with an increasing mass ratio (ɣ) in both approaches. Based 
on the diagrams shown in Figures 4a) and b), the increasing trend of the period is similar for 
both the numerical and analytical methodologies. Moreover, increasing the stiffness of the 
secondary system reduces the period of the coupled primary–secondary structures.  
The difference ratios between the numerical and proposed analytical methods are plotted in 
Figure 4c). Based on this figure, the difference ratio (Tc-equation⁄Tc-software-1) typically increases 
with an increasing mass ratio (ɣ). This discrepancy was the lowest when the stiffness of the 
secondary system was the lowest. Thus, the periodic ratio increased when the secondary 
system stiffness increased. 
The fundamental periods of the one-storey frame structure coupled with two secondary 
systems are demonstrated versus the mass ratio (ɣ), regarding different secondary system 
stiffness values in Figure 5. The variation trends of the coupled system periods in the numerical 
and analytical approaches are similar. Therefore, the period of the coupled system increases 
in both approaches as the mass ratio increases. Furthermore, an increase in the stiffness of 
the secondary system decreased the period of the coupled system. 

  

 
 1 
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Figure 5. Variations of the fundamental periods of a one-storey frame structure 
coupled with two secondary systems versus the mass ratio (ɣ) obtained via: a) 

numerical analysis, b) the proposed relation, and c) the difference ratio Tc-equation⁄Tc-
software-1 

Likewise, Figure 6 shows the fundamental period of a single-storey frame structure coupled 
with 10 secondary systems against different mass ratios (ɣ). According to this figure, the 
greatest system period is associated with the secondary system with the lowest value, that is, 
SS1. Therefore, the coupled system period in both methods decreased as the stiffness of the 
secondary system increased. Additionally, the difference in the system period between the two 
approaches was the lowest in the system with the lowest secondary system stiffness. 
The fundamental period of a single-storey frame structure coupled with 20 secondary systems 
against different mass ratios (ɣ) is plotted in Figure 7. The same variation trend holds true for 
the system period with 20 secondary systems having different stiffnesses compared with 
systems with fewer attached secondary systems. These results can be observed in Figure 7, 
which shows that the period discrepancy between the two approaches increases with an 
increase in the number of secondary systems. 
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Figure 6. Variations of the fundamental periods of a one-storey frame structure 
coupled with 10 secondary systems versus the mass ratio (ɣ) obtained via: a) 

numerical analysis, b) the proposed relation, and c) the difference ratio Tc-equation⁄Tc-
software-1 

   

Figure 7. The variations of fundamental periods of a one-storey frame structure 
coupled with 20 secondary systems versus the mass ratio (ɣ) obtained via: a) 

numerical analysis, b) the proposed relation, and c) the difference ratio Tc-equation⁄Tc-
software-1 

 

  

 
 1 

  

 
 1 



Fereidooni, O. et al. Analytical estimation of fundamental periods of coupled systems 

 

ACAE | 2025, Vol. 16, Issue No. 30 

 

Page | 300  

 

The diagrams above indicate that in cases of single-storey coupled frame structures, where 
the number of secondary systems is low, the difference between the results obtained from the 
proposed relationship and those given by the numerical analysis is less because of the small 
mass ratio of the secondary systems. However, the two method results begin to diverge as the 
number of secondary systems increased. Consequently, the mass ratio (γ) increases. This 
trend could be investigated from two perspectives. First, as is evident in all diagrams, the 
difference ratios for the proposed relationship are negative. That is, the approximate proposed 
relationship always results in values that are lower than the actual values, which should be a 
matter of the safety margin in the calculations. Second, as acknowledged for conventional 
building structures, the mass ratio of the entire secondary system to the primary system is 
typically low, with values being less than 1 and generally less than 0,5. Nevertheless, the 
difference in the period between the proposed relationship and numerical study was lower than 
5 %, which is admissible. 
Notably, in some diagrams, the value of γ takes on numbers greater than one. These outcomes 
resulted because, in the selection of the secondary system, its mass was set to be at most 30 
% of that of the storey. For a better comparison of the effects of multiple secondary systems 
on the periods of coupled systems, in the current seismic codes of practice, this mass ratio is 
kept constant for each secondary system with an increasing number of secondary systems. 
Thus, given that the primary and secondary systems were assumed to be independent of each 
other, the maximum mass of each secondary system was limited to 25 % of that of the primary 
structure. Therefore, if each secondary system satisfies this limit, no particular measures are 
required, even if the total number of secondary systems exceeds this limit. However, the results 
of this study confirm that the multiplicity of the secondary systems plays a major role in the 
determination of the fundamental period of the coupled system, given that the primary–
secondary system interactions are considered. 
In accordance with the results obtained for the fundamental period of the coupled frame 
structures with two degrees of freedom (two storeys), the variation trend of the system period 
with respect to different mass ratios was similar to that already discussed for systems with a 
single degree of freedom. An example of a two-storey frame is presented here. According to 
Figure 8, the fundamental period of a two-storey frame structure coupled with 20 secondary 
systems against different mass ratios (ɣ) is demonstrated, in which all 20 secondary systems 
are modelled on the second floor. The greatest system period was related to the secondary 
system with the lowest value (i.e., SS1). Therefore, the coupled system period in both methods 
decreased as the stiffness of the secondary system increased. Additionally, the difference in 
the system period between the two approaches was the lowest in the systems with the lowest 
secondary system stiffness. Nevertheless, in structures in which all multiple secondary 
systems were on the first floor, a higher discrepancy was observed between the two 
approaches, although the rate of difference was still less than 10 %. 
The same was applied to frame structures with three storeys. Consequently, it was observed 
that the variation trend of the system period with respect to different mass ratios was analogous 
to that observed for systems with a single degree of freedom. Thus, an instance of a three-
storey frame was investigated as follows. Based on Figure 9, the fundamental period of a 
three-storey frame structure coupled with 10 secondary systems against different mass ratios 
(ɣ) are established. In principle, the highest value of the system period corresponded to the 
lowest stiffness value of the secondary system. Consequently, the coupled system period in 
both methods decreased as the secondary system stiffness increased. Moreover, the 
difference in the system period between the two approaches was the lowest in the systems 
with the lowest secondary system stiffness. 
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Figure 8. Variations of the fundamental periods of a two-storey frame structure 
coupled with 20 secondary systems versus the mass ratio (ɣ) obtained via: a) 

numerical analysis, b) the proposed relation, and c) difference ratio Tc-equation⁄Tc-software-1 

 

Figure 9. Variations of the fundamental periods of a three-storey frame structure 
coupled with 10 secondary systems versus the mass ratio (ɣ) obtained via: a) 

numerical analysis, b) the proposed relation, and c) the difference ratio Tc-equation⁄Tc-
software-1 

The overall examination of structures with three degrees of freedom also indicates that the 
proposed relationship has acceptable accuracy for use as a design technique by engineers 
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and practitioners. This relationship (Equations (14)-(16)) can predict the period of the coupled 
system with acceptable accuracy when the secondary systems are distributed over all floors. 
In addition to the fact that the error of the proposed equation in this study is still less than 5 % 
in the range of the actual measures of the mass ratios (γ) in conventional structures (which are 
less than 0,5); the errors generally fall in line with the safety factor, thus demonstrating the 
feasibility of the proposed relation. 
Moreover, the investigation of the diagrams of different structures shows that by increasing the 
degrees of freedom of the primary structure, the amount of the mentioned error in similar 
situations decreases, which is attributable to the better distribution of masses at the height. 
Another important point to note is that for equal mass measures, the longer the period of the 
secondary system increases compared with other secondary systems, the more the 
computation error increases.  
In addition, the analysis of the diagrams shows that the main parameter in the variation of the 
period of the primary system is the period of the secondary system. Thus, if the secondary 
system period is shorter than that of the primary system, the effects of the secondary system 
period can be ignored. 
Finally, by using the coupled system period instead of the primary system period, seismic 
design errors can be reduced by ignoring secondary systems. It may also be possible to 
increase the periods of short-period structures under the effects of secondary system periods 
via the periodic and mass potentials of the secondary systems to thereby improve their seismic 
behaviours. 

4 Conclusion 

In the present study, numerical and analytical investigations were carried out to estimate the 
fundamental periods of coupled primary-secondary structural systems. Therefore, a number 
of 3D steel moment-resisting frame structures with one, two, and three storeys, each of which 
comprised four perimeter columns and four perimeter beams at each storey, were modelled 
using SAP2000 software v.19 as primary systems to assess the effects of secondary system 
multiplicity, the distribution of secondary systems on different storeys, and the number of 
storeys (degrees of freedom) on the period of the coupled structure. The following conclusions 
were drawn from the findings: 

o Despite the low masses of the secondary systems, the period of the coupled system 
changed significantly with the addition of secondary systems to the primary structure. 

o The most significant effect of the secondary system on the response of the coupled 
system is the structural period in the design procedure.  

o The proposed approach has the advantage of modifying the period of primary 
structures with lower values so that the coupled structure would benefit from increased 
period values by using the potential of multiple secondary systems. 

o The fundamental period of the one-storey frame structure coupled with one secondary 
system increases with an increasing mass ratio (ɣ) in both numerical and analytical 
approaches. Similar trends have been observed for systems with higher degrees of 
freedom.  

o Increasing the stiffness of the secondary system reduces the period of the coupled 
primary–secondary structures. 

o The periodic difference ratio (Tc-equation⁄Tc-software-1)) typically increased with an increasing 
mass ratio (ɣ). This discrepancy was the lowest when the stiffness of the secondary 
system was the lowest. The periodic difference ratio increased with the secondary 
system stiffness. 

o The difference between the results obtained from the proposed relationship and those 
obtained via numerical analysis was small because of the small mass ratio of the 
secondary systems. However, the results of the two methods diverged as the number 
of secondary systems increased. 
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o If the secondary system period is shorter than that of the primary system, the effects of 
the secondary system period can be ignored. 

o Using the coupled system period instead of the primary system period can significantly 
reduce the seismic design errors arising from ignoring secondary systems. It may also 
be possible to increase the period of short-period structures under the effect of the 
secondary system period via the periodic and mass potential of the secondary systems, 
to thereby improve their seismic behaviours. 

o With increasing degrees of freedom of the primary structure, the magnitude of the 
mentioned error in similar situations decreases. These results are attributable to the 
better distribution of masses at the height. 

Abbreviations 

PSSI  primary-secondary system interactions 
MDOF  multi degrees-of-freedom 
MRF  moment-resisting frame 
i index  degree of freedom of the primary system 
j index  degree of freedom of the secondary system 
SDOF  single degree-of-freedom 
m𝑠 𝑖𝑗  mass of the j-th secondary system, connected to i-th degree of freedom in the 

primary system 
k𝑠 𝑖𝑗  stiffness of the j-th secondary system, connected to i-th degree of freedom in 

the primary system 
[𝑀𝑝]  mass matrix of the primary system  

[𝐾𝑝]  stiffness matrix of the primary system  
[𝑀𝑐]  mass matrix of the coupled system  

[𝐾𝑐]  stiffness matrix of the coupled system  
{𝜑𝑟∗}  modal vector in mode r 

{𝑘𝑠φ∗}  secondary system's effect vector on the primary system 
𝜔𝑝  frequency of the first mode of the primary system 

𝜔𝑐  frequency of the first mode of the coupled system 
𝜔𝑠𝑒  effective frequency of the secondary systems 

𝐹𝑇  ratio of the coupled system period to the primary system period 
𝑓𝑇  ratio of the secondary system period to the primary system period 
γ  mass correction ratio 
Tc-equation fundamental period obtained via analytical approach 
Tc-software fundamental period obtained via numerical approach 
3D  three-dimensional 
SAP  structural analysis program 
PEER-NGA pacific earthquake engineering research 
ASCE  American society of civil engineering 
PGA  peak ground acceleration 
PGV  peak ground velocity 
SLE  service level earthquake 
DBE  design basis earthquake 
MCE  maximum considered earthquake 
γ  mass ratio 
CDP  concrete damage plasticity 
SS  Secondary system 
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