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 Abstract: 
This study presents a simple triangular finite element 
model for analysing the linear static behaviour of thick 
sandwich plates. What sets this work apart is its unique 
combination of the deformation approach with Airy’s 
function and analytic integration. The triangular plate 
finite element (TPFE) model using the Airy function 
consists of three nodes, each with three degrees of 
freedom: one transverse displacement and two 
rotations. Interpolation functions for strain, 
displacements, and stresses are derived using 
equilibrium conditions. The selection of bi-harmonic 
polynomial functions is based on the evolution of the Airy 
solutions. The basic stiffness matrix is evaluated using 
the variational principle and analytical integration 
approach. Additionally, the equivalent material 
properties for a sandwich plate are obtained using a 
simple mathematical formula. The numerical results are 
evaluated and validated using analytical and numerical 
solutions. The comparison demonstrates the efficiency 
and accuracy of the TPFE element. Furthermore, the 
study presents the effects of geometrical parameters, 
such as thickness configurations and length-to-
thickness ratios, as well as end-boundary and load 
conditions, on the deflection behaviour of the sandwich 
plates. 
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1 Introduction 

Composite materials offer several advantages over traditional materials. They provide 
numerous functional benefits in terms of weight, mechanical and chemical resistance, 
maintenance, and design flexibility. They contribute to extending the lifespan of certain 
equipment owing to their unique properties. In addition, they expand design possibilities by 
enabling lighter structures and complex, multifunctional forms, leading to innovations in 
construction, automotive, and industrial equipment. Composite materials provide industrial 
professionals and designers with new opportunities to combine functions, shapes, and 
materials in their creations. It is an increasingly efficient system, with weight and 
multifunctionality being key principles in the development of new design and industrialisation 
processes, expanding technical possibilities, and more effectively addressing otherwise 
conflicting needs, such as weight and functionality, which conventional homogeneous 
materials struggle to meet. 
Next, a brief review of relevant literature is presented: Linke et al. [1] conducted static and 
stability analyses of a sandwich plate using the finite element method (FEM), considering a 
three-layered sandwich model and based on the classical Kirchhoff–Love hypothesis for the 
face sheets. 
References [2-5] investigated the challenges associated with the static and dynamic 
deformations of composite materials. focused on three-layer plates [2-4]. They also 
investigated the response of these plates to various loads and examined the vibrations of 
circular composite plates on elastic foundations [5]. Pham et al. [6] developed an innovative 
first-order mixed-plate element for the static-bending and free-vibration analysis of functionally- 
graded sandwich plates. Hadji and Tounsi [7] introduced an advanced shear deformation 
theory to investigate the stress distribution and static deflection of a sandwich plate composed 
of a simply supported porous functionally graded material (FGM). They also extensively 
examined the impact of various influencing factors on the bending performance. Demirhan and 
Taskin [8] investigated the bending behaviour of symmetric and asymmetric sandwich plates 
made of an FGM under a uniformly distributed load applied to the top surface. Hirane et al. [9] 
proposed a four-sided eight-node C0 element to analyse the static and free-vibration 
behaviours of functionally graded sandwich panels. The proposed delamination model 
included a high-order displacement field of the core and a first-order displacement field of the 
cover layer, ensuring the continuity of the displacement at the layer interface. 
Sahoo and Singh [10] introduced the hyperbolic zigzag theory to analyse the static responses 
of multi-layered and sandwich composite panels using an FEM model. Moradi-Dastjerdi and 
Aghadavoudi [11] examined the static behaviour of sandwich plates by employing molecular 
dynamics simulations and used the Halpin–Tsai equation to assess the material properties of 
defective CNT/polymer outer layers. Sahoo and Singh [12] also introduced the trigonometric 
zigzag theory incorporating a specific secant function to analyse the static structural behaviour 
of laminated composites and sandwich plates. This theory considered shear-strain shape 
functions and assumed a non-linear distribution of in-plane displacement across the thickness. 
Nawariya et al. [13] used the ANSYS APDL FEM to analyse the static and harmonic behaviours 
of a sandwich plate made of orthotropic and isotropic composites. They applied the Reissner-
Mindlin theory and observed the effect of increasing the ratio of the thickness of a face sheet 
to the plate depth on the static, vibration, and harmonic responses. 
The proposed theoretical model, which incorporated only four governing equations without a 
shear correction factor, satisfied the zero-traction boundary conditions on the plate surfaces. 
Numerous investigations on modelling the dynamic response of intact composite/sandwich 
structures have been conducted [14-17]. 
Recent studies have investigated the mechanical behaviour, free vibration, buckling, and 
bending–torsional responses of functionally graded and composite thin-walled beams using 
advanced and refined beam theories, including 1D and 3D and Saint-Venant-based 
approaches [18-24]. 
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Although some previous studies have addressed the analysis of FGM beams, nanobeams, 
and perforated nanobeams, including investigations on their modal behaviour, bending 
response, and buckling characteristics [25-28]. 
This study introduces a straightforward triangular finite element model to examine the linear 
static behaviour of thick sandwich plates. The model named “TPFE” using the Airy function is 
unique in that it applies a deformation approach involving the Airy function and analytic 
integration. The TPFE consists of three nodes, each with three degrees of freedom (DOF): 
one transverse displacement (wi) and two rotations (θxi and θyi). This accurately represents the 
rigid-body displacement modes. The strain, displacement, and stress-interpolation functions 
were derived based on equilibrium conditions. The choice of polynomial bi-harmonic functions 
is influenced by the progression of the Airy function solutions. The fundamental stiffness matrix 
was calculated using the variational principle and analytical integration approach. In addition, 
the equivalent material properties of sandwich plates are determined using a simple 
mathematical formula. A combination of tabular and graphical results is presented to highlight 
the effects of various parameters, such as geometrical factors (thickness configurations and 
length-to-thickness ratios), as well as end-boundary and load conditions, on the static 
behaviour of the sandwich plates. 
The results presented in this paper will serve as a valuable reference for future research on 
the static behaviour of sandwich plates. 

2 Finite element formulation  

2.1 Triangular finite element model 

2.1.1 Characteristics 

A finite element model of a thick triangular plate with planar elasticity is proposed (Figure 1). 
Each node in this model had three DOF: one displacement wi and two rotations θxi and θyi. This 
model was formulated using the deformation model, which means that interpolation 
polynomials were primarily established to describe the deformation fields. 

 

Figure 1. Triangular element with three degrees of freedom per node 

Subsequently, the interpolation functions of the displacement fields were obtained by 
integrating these polynomials. For zero body forces, the approximation functions are selected 
by introducing the Airy function ϕ (x, y), which allows the equilibrium conditions problem to be 
reduced: 

[
 
 
 
 
𝜕

𝜕𝑥
0

𝜕

𝜕𝑦

0
𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 

{

𝜎𝑥
𝜎𝑥
𝜏𝑥𝑦

} = {
0
0
} (1) 
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This leads to the bi-harmonic equation: 

𝛻4𝜙(𝑥, 𝑦) = 0 (2) 

where: 

𝜎𝑥 =
𝜕2𝜙(𝑥, 𝑦)

𝜕𝑦2
    𝜎𝑦 =

𝜕2𝜙(𝑥, 𝑦)

𝜕𝑥2
    𝜏𝑥𝑦 =

𝜕2𝜙(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
 (3) 

For isotropic materials with a plane state of stress, the deformation is related to the stress via 
the following relationship (Hooke’s law): 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} =
𝐸

1−𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

] {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

}   or again   {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} =
1

𝐸
[
1 −𝜈 0
−𝜈 1 0
0 0 2(1 + 𝜈)

] {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} (4) 

By introducing the Airy function ɸ (x, y), the deformations can be represented as follows: 

   

{
 
 

 
 𝜀𝑥 =

1

𝐸
(
𝜕2𝜙(𝑥,𝑦)

𝜕𝑦2
− 𝜈

𝜕2𝜙(𝑥,𝑦)

𝜕𝑥2
)

𝜀𝑦 =
1

𝐸
(
𝜕2𝜙(𝑥,𝑦)

𝜕𝑥2
− 𝜈

𝜕2𝜙(𝑥,𝑦)

𝜕𝑦2
)

𝛾𝑥𝑦 =
−2(1+𝜈)

𝐸
(
𝜕2𝜙(𝑥,𝑦)

𝜕𝑥𝜕𝑦
)

 (5) 

The bi-harmonic solutions of the Airy function ɸ (x, y) used to construct the interpolation 
polynomials for the strain field are given in [29]. Each node of the considered element had 
three DOF, which resulted in nine relevant constants in the displacement field formulated using 
the strain method. 
Therefore, the first nine solutions were considered (refer to Appendix A): 

o Three terms for rigid-body motion. 
o Three terms for linear displacement. 
o Three terms for higher-order displacement. 

2.2 Reissner–Mindlin plate theory 

This theory is essentially based on the Reissner-Mindlin assumption that the normal lines to 
the undeformed mid-plane remain straight but not necessarily perpendicular to the mean 
surface after deformation, thus facilitating transverse shear deformation effects (Figure 2). 

 

Figure 2. Deformed and undeformed geometries of an edge of a plate under the 
Reissner-Mindlin assumption 
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2.2.1 Displacement field 

Based on the Reissner-Mindlin plate theory, the displacement field at any point in the plate 
section can be expressed as: 

   {

𝑢(𝑥, 𝑦, 𝑧) = 𝑧𝛽𝑥(𝑥, 𝑦) = 𝑧𝜙𝑦(𝑥, 𝑦)

𝑣(𝑥, 𝑦, 𝑧) = 𝑧𝛽𝑦(𝑥, 𝑦) = −𝑧𝜙𝑥(𝑥, 𝑦)

𝑤(𝑥, 𝑦, 𝑧) = 𝑤(𝑥, 𝑦)

 (6-a) 

where u and v are the components of the in-plane displacements that vary linearly along the 
z-axis, whereas w is the constant transverse displacement component (w). 
Rotations about the x- and y-axes are represented as Φx and Φy, while the slopes in both 
directions are defined by variables βx and βy, respectively (i.e., Φx = βy and Φy = βx). 
Equation (6-a) can be rewritten in the matrix form as: 

   {
𝑢
𝑣
𝑤
} = [

𝑧 0 0
0 𝑧 0
0 0 1

] {

𝑢0
𝑤0
𝜃𝑧
} (7-b) 

2.2.2 Strain 

The infinitesimal strain tensor can be represented as follows: 

   

{
 
 
 
 

 
 
 
 𝜀𝑥 =

𝜕𝑢(𝑥,𝑦,𝑧)

𝜕𝑥
= 𝑧

𝜕𝛽𝑥(𝑥,𝑦)

𝜕𝑥

𝜀𝑦 =
𝜕𝑣(𝑥,𝑦,𝑧)

𝜕𝑦
= 𝑧

𝜕𝛽𝑦(𝑥,𝑦)

𝜕𝑦

𝛾𝑥𝑦 =
𝜕𝑢(𝑥,𝑦,𝑧)

𝜕𝑦
+
𝜕𝑣(𝑥,𝑦,𝑧)

𝜕𝑥
= 𝑧 (

𝜕𝛽𝑥(𝑥,𝑦)

𝜕𝑦
+
𝜕𝛽𝑦(𝑥,𝑦)

𝜕𝑥
)

𝛾𝑥𝑧 = 𝛽𝑥(𝑥, 𝑦) +
𝜕𝑤(𝑥,𝑦)

𝜕𝑥

𝛾𝑦𝑧 = 𝛽𝑦(𝑥, 𝑦) +
𝜕𝑤(𝑥,𝑦)

𝜕𝑦

 (7) 

The bending curvatures are given by equations: 

   𝐾𝑥 =
𝜕𝛽𝑥(𝑥,𝑦)

𝜕𝑥
; 𝐾𝑦 =

𝜕𝛽𝑦(𝑥,𝑦)

𝜕𝑦
; 𝐾𝑥𝑦 =

𝜕𝛽𝑥(𝑥,𝑦)

𝜕𝑦
+
𝜕𝛽𝑦(𝑥,𝑦)

𝜕𝑥
 (8) 

2.2.3 Constitutive law 

In the state of plane stress and for isotropic materials, which are commonly accepted 
assumptions for analysing thin structures such as beams, plates, and shells, the stress–strain 
relationship equations of the Reissner-Mindlin theory are given by: 

   

{
 
 

 
 
𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦
𝑇𝑥
𝑇𝑦 }
 
 

 
 

=
𝐸ℎ3

12(1−𝜈2)

[
 
 
 
 
 
 
1 𝜈 0 0 0
𝜈 1 0 0 0

0 0
1−𝜈

2
0 0

0 0 0
6𝜅

ℎ2
(1 − 𝜈) 0

0 0 0 0
6𝜅

ℎ2
(1 − 𝜈)]

 
 
 
 
 
 

{
 
 

 
 
𝐾𝑥
𝐾𝑦
𝐾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}

 
 

 
 

 (9) 

The variables used in this equation are as follows: 

o E and ν represent the Young’s modulus and Poisson ratio, respectively. 
o h denotes thickness of the plate. 
o Κ represents the ‘shear factor’, which is usually taken as Κ = 5/6, unless otherwise 

specified. 
o Mx, My, Mxy, Tx, Ty represent the bending moments, torsional moment, and shear forces 

per unit length, respectively. 
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2.2.4 Strain and displacement fields 

The first nine bi-harmonic solutions of the Airy function yield functions related to the nine 
parameters of the interpolation polynomials of the stress and deformation fields, ultimately 
allowing integration of the displacement field. The interpolation polynomials for the deformation 
fields related to bending (Appendix A) were obtained by introducing these functions into 
equation (5) and are expressed as follows: 

   {

𝐾𝑥(𝑥, 𝑦)

𝐾𝑦(𝑥, 𝑦)

𝐾𝑥𝑦(𝑥, 𝑦)
} =

1

𝑧𝐸
[

0 0 0 1 0 0 −6𝜈𝑥 6𝑦 2𝑥2 − 2𝜈𝑦2

0 0 0 0 1 0 6𝑥 −6𝜈𝑦 −2𝜈𝑥2 + 2𝑦2

0 0 0 0 0 2 0 0 −8𝜈𝑥𝑦

]

{
 
 
 
 

 
 
 
 
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6
𝑎7
𝑎8
𝑎9}
 
 
 
 

 
 
 
 

 (10) 

These fields consistently satisfy the equilibrium conditions in equation (1) and the kinematic 
condition of compatibility: 

   
𝜕2𝐾𝑥

𝜕𝑦2
+
𝜕2𝐾𝑦

𝜕𝑥2
=

𝜕2𝐾𝑥𝑦

𝜕𝑥𝜕𝑦
 (11) 

The polynomial field interpolation for the shear-related deformation field, which is detailed in 
Appendix B, was obtained by satisfying the remaining two kinematic compatibility equations: 

   {

𝜕2𝛾𝑥𝑧

𝜕𝑥𝜕𝑦
−
𝜕2𝛾𝑦𝑧

𝜕𝑥2
+
𝜕𝐾𝑥𝑦

𝜕𝑥
= 2

𝜕𝐾𝑥

𝜕𝑦

𝜕2𝛾𝑦𝑧

𝜕𝑥𝜕𝑦
−
𝜕2𝛾𝑥𝑧

𝜕𝑦2
+
𝜕𝐾𝑥𝑦

𝜕𝑦
= 2

𝜕𝐾𝑦

𝜕𝑥

 (12) 

These can be represented in the matrix form as follows: 

   {
𝛾𝑥𝑧(𝑥, 𝑦)

𝛾𝑦𝑧(𝑥, 𝑦)
} =

1

𝑧𝐸
[
0 0 0 0 0 0 −6𝑦2 0 0

0 0 0 0 0 0 0 −6𝑥2 0
]

{
 
 
 
 

 
 
 
 
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6
𝑎7
𝑎8
𝑎9}
 
 
 
 

 
 
 
 

 (13) 

By substituting the deformation fields from equations (10) and (13) into equation (7) and 
integrating them, the following displacement fields are obtained: 

   {𝑞(𝑥, 𝑦)} =
1

𝑧𝐸
[𝑓(𝑥, 𝑦)]{𝑎𝑖} (14-a) 

The displacement field is: 

   {𝑞(𝑥, 𝑦)} = {

𝑤(𝑥, 𝑦)

𝛽𝑥(𝑥, 𝑦)

𝛽𝑦(𝑥, 𝑦)
} (14-b) 
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The nodal coordinates are as follows: 

   [𝐹(𝑥, 𝑦)] =

[
 
 
 
 1 −𝑥 −𝑦

−𝑥2

2

−𝑦2

2
−𝑥𝑦 −3𝑥𝑦2 + 𝜈𝑥3 −3𝑦𝑥2 + 𝜈𝑦3

−1

6
(𝑥4 + 𝑦4) + 𝜈𝑥2𝑦2

0 1 0 𝑥 0 𝑦 −3𝜈𝑥2 + 3𝑦2 6𝑥𝑦
2

3
𝑥3 − 2𝜈𝑥𝑦2

0 0 1 0 𝑦 𝑥 6𝑥𝑦 −3𝜈𝑦2 + 3𝑥2
2

3
𝑦3 − 2𝜈𝑦𝑥2 ]

 
 
 
 

 
(14-c) 

The nine independent constants defined as follows: 

   {𝑎𝑖}
𝑇 = {𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9} (14-d) 

Given the nodal coordinates corresponding to node (xi, yi), and applying equation (14-a), the 
nodal displacement vector at the element level is given as follows: 

   {𝑞𝑒} =
1

𝑧𝐸
[

𝑓(𝑥1, 𝑦1)

𝑓(𝑥2, 𝑦2)

𝑓(𝑥3, 𝑦3)
] {𝑎𝑖} (15-a) 

where {qe} is the nodal displacement vector, represented as: 

   {𝑞𝑒}𝑇 = {𝑤1 𝛽𝑥1 𝛽𝑦1 𝑤2 𝛽𝑥2 𝛽𝑦2 𝑤3 𝛽𝑥3 𝛽𝑦3} (15-b) 

The matrix of nodal coordinates is denoted as follows: 

   [𝐴] =
1

𝑧𝐸
[

𝑓(𝑥1, 𝑦1)

𝑓(𝑥2, 𝑦2)

𝑓(𝑥3, 𝑦3)
] (16) 

The values of parameter ai can be deduced from equations (15-a) and (16), respectively: 

   {𝑎𝑖} = [𝐴]
−1{𝑞𝑒} (17) 

The kinematic equations can be rewritten using the following transformations: 

o displacement field 

   {𝑞(𝑥, 𝑦)} = {

𝑤(𝑥, 𝑦)

𝛽𝑥(𝑥, 𝑦)

𝛽𝑦(𝑥, 𝑦)
} = [𝑓(𝑥, 𝑦)][𝐴]−1{𝑞𝑒} (18) 

o curvature–moment fields 

   {

𝑘𝑥(𝑥, 𝑦)

𝑘𝑦(𝑥, 𝑦)

𝑘𝑥𝑦(𝑥, 𝑦)
} = [𝐵𝑓][𝐴]

−1{𝑞𝑒} (19-a) 

where 

   [𝐵𝑓] =
1

𝑧𝐸
[

0 0 0 1 0 0 −6𝜈𝑥 6𝑦 2𝑥2 − 2𝜈𝑦2

0 0 0 0 1 0 6𝑥 −6𝜈𝑦 −2𝜈𝑥2 + 2𝑦2

0 0 0 0 0 2 0 0 −8𝜈𝑥𝑦

] (19-b) 

o shear strain fields 

   {
𝛾𝑥𝑧(𝑥, 𝑦)

𝛾𝑦𝑧(𝑥, 𝑦)
} = [𝐵𝑐][𝐴]

−1{𝑞𝑒} (20-a) 
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where 

   [𝐵𝑐] =
1

𝑧𝐸
[
0 0 0 0 0 0 −6𝑦2 0 0

0 0 0 0 0 0 0 −6𝑥2 0
] (20-b) 

2.2.5 Elementary stiffness matrix 

The elementary stiffness matrix was derived using the discretised principle of virtual internal 
work and can be presented as follows: 

o bending stiffness 

   [𝐾𝑓
𝑒] = [𝐴−1]𝑇 [∬[𝐵𝑓]

𝑇
[𝐷𝑓][𝐵𝑓]𝑑𝑥𝑑𝑦] [𝐴

−1] (21) 

o shear stiffness 

   [𝐾𝑐
𝑒] = [𝐴−1]𝑇[∬[𝐵𝑐]

𝑇[𝐷𝑐][𝐵𝑐]𝑑𝑥𝑑𝑦][𝐴
−1] (22) 

Given that [𝐷𝑓] =
𝐸ℎ3

12(1−𝜈2)
[

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

] and [𝐷𝑐] =
𝐸𝜅ℎ

2(1+𝜈)
[
1 0
0 1

] the expressions for 

[∬[𝐵𝑓]
𝑇
[𝐷𝑓][𝐵𝑓]𝑑𝑥𝑑𝑦] and [∬[𝐵𝑐]

𝑇[𝐷𝑐][𝐵𝑐]𝑑𝑥𝑑𝑦] were evaluated through the analytical 

integration of various components resulting from the matrix products [𝐵𝑓]
𝑇
[𝐷𝑓][𝐵𝑓] and 

[𝐵𝑐]
𝑇[𝐷𝑐][𝐵𝑐]. These expressions can be written as 𝐻(𝛼+1)(𝛽+1) = 𝐶𝑥

𝛼𝑦𝛽, where α and β are 

exponents, and C is a constant. 

2.3 Sandwich Panels-equivalent properties 

A sandwich structure composed of two thin solid face sheets separated by a cellular core was 
considered (Figure 3). The equivalent modulus of elasticity and Poisson’s ratio of the sandwich 
plate are expressed as follows: 

   �̃� =
(2𝐸𝑠ℎ𝑠)+(𝐸𝑐ℎ𝑐)

ℎ𝑡
 (23-a) 

   𝜈 =
(2𝜈𝑠ℎ𝑠)+(𝜈𝑐ℎ𝑐)

ℎ𝑡
 (2b-b) 

Where Es and Ec are the moduli of elasticity, hs and hc are the thicknesses, and νs and νc are 
the Poisson’s ratios of the skin and core of the sandwich beam, respectively. 

3 Numerical results and discussion 

This section is divided into two sub-sections. The first is dedicated to comparing the proposed 
model with the analytical solutions and other numerical approaches for sandwich plates. The 
second sub-section focuses on the parametric study. 

3.1 Comparison with analytical and numerical solutions 

3.1.1 Example 1: Simply supported sandwich plate under a centre load 

In the first example, an analysis was conducted on a simply supported sandwich plate 
subjected to a central load to predict the maximum deflection at the mid-span of the plate.  
A polyurethane foam core with a thickness of 17,5 mm sandwiched between two steel face 
sheets, each with a thickness of 0,5 mm, was considered. The plate had a span length of 200 
mm and a width of 50 mm (Figure 3). 
Table 1 presents the material characteristics of the sandwich plates along with their 
corresponding equivalent properties for all examples considered. 



Belaid, H. et al. 
A simple triangular finite element model for analysing the linear static 
behaviour of thick sandwich plates with equivalent material properties 

 

ACAE | 2025, Vol. 16, Issue No. 30 

 

Page | 270  

 

 

Figure 3. Simply supported sandwich plate under a centre load 

Table 1. Material characteristics and corresponding equivalent properties of sandwich 
plates 

Mechanical 
properties 

Skin (s) 
(Polyurethane foam) 

Core (c) 
(Steel) 

Equivalent material 
properties 

E (GPa) 210 160 162,7027 

ν 0,30 0,34 0,33 

 
For validation, the maximum deflection of a sandwich plate subjected to a central load was 
evaluated and compared with solutions from the layer-wise theory and other numerical 
methods. The results are summarised in Table 2 and Figure 4. In the table and figure, ‘TBT’ 
refers to the outcomes of applying the Timoshenko beam theory, which included shear 
deformation, while ‘EBT’ refers to the results of applying the Euler–Bernoulli beam theory, 
which excludes shear deformation. ‘CSB Homog.’ and ‘CSB Comp.’ denote the maximum 
deflections calculated using the software cross-section beam (CSB) developed by El Fatimi 
and Zenzri [30], which considers both homogenised and stratified sections. As indicated in 
Table 2 and Figure 4, the results of the proposed method corroborate the results of both the 
analytical solutions and numerical approaches. 
NB: Cross-section beam (CSB) solutions are based on solutions to the Saint-Venant 
equations, considering section deformations after loading (in contrast to other assumptions 
that consider that a straight section remains straight). 

Table 2. Maximum deflections of simply supported sandwich plate subjected to a 
centre load 

Deflection  
(mm) 

Analytical  
solutions 

FEM [31] 

Present 
FEM 

CSB 
Homog. 

[30] 

CSB 
Comp. 

[30] 

TBT EBT 

Bending deflection (skins) 0,05651 

0,05984 0,05824 Shear deflection (core) 0,00136 

Total defl. @ midspan 0,05787 0,05702 0,0601 0,0482 

 
TBT: Timoshenko beam theory, EBT: Euler–Bernoulli beam theory, CSB Homo.: Cross-section 
beam, homogenous, CSB Comp.: Cross-section beam, composite. 
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Figure 4. Maximum deflections of simply supported sandwich plate under a centre 
load 

3.1.2 Example 2: Simply supported sandwich plate under a uniformly distributed load 

In the second example, the deflection of a simply supported sandwich plate under a uniformly 
distributed load was investigated (Figure 5). 

 

Figure 5. Simply supported sandwich plate under a uniformly distributed load 

Table 3 and Figure 6 display a comparison that indicates a favourable agreement between the 
predicted values obtained using the proposed model and those obtained using TBT, EBT, CSB 
Homog., and CSB Comp., along with the analytical solutions. 

Table 3. Maximum deflections of simply supported sandwich plate under a uniformly 
distributed load 

Deflection 
(mm) 

Analytical  
solutions 

FEM [31] 

Present 
FEM 

CSB 
Homog. 

[30] 

CSB 
Comp. 

[30] 

TBT EBT 

Bending deflection (skins) 7,06433 

7,3514 7,28030 Shear deflection (core) 0,00068 

Total defl. @ midspan 7,06500 7,4117 7,4692 5,9950 
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Figure 6. Maximum deflections of simply supported sandwich plate under a uniformly 
distributed load 

3.1.3 Example 3: Clamped–clamped sandwich plate subjected to a concentrated load 

In this example, a clamped–clamped (C–C) sandwich plate subjected to a concentrated load 
was analysed (Figure 7). A comparison of the results with reference solutions demonstrates 
the precision and accuracy of the proposed model (Table 4 and Figure 8). 

 

Figure 7. Clamped-clamped sandwich plate under a concentrated load 

Table 4. Maximum deflections of clamped-clamped sandwich plate under a 
concentrated load 

Deflection  
(mm) 

Analytical  
solutions 

FEM [31] 

Present 
FEM 

CSB 
Homog. 

[30] 

CSB 
Comp. 

[30] 

TBT EBT 

Bending deflection (skins) 0,01413 

0,01616 0,01456 Shear deflection (core) 0,00136 

Total defl. @ midspan 0,01549 0,01432 0,0164 0,0131 
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Figure 8. Maximum deflections of clamped–clamped sandwich plate under a 
concentrated load 

3.1.4 Example 4: Clamped–clamped sandwich plate subjected to distributed uniform load 

The fourth case study examined the bending behaviour of a clamped–clamped sandwich plate 
subjected to a distributed uniform load (Figure 9). 

 

Figure 9. Clamped-clamped sandwich plate subjected to a distributed uniform load 

Table 5 and Figure 10 show that the current finite element method produces favourable results 
compared with the reference solutions. 

Table 5. Maximum deflections of clamped-clamped sandwich plate subjected to a 
distributed uniform load 

Deflection  
(mm) 

Analytical  
solutions 

FEM [31] 

Present 
FEM 

CSB 
Homog. 

[30] 

CSB 
Comp. 

[30] 

TBT EBT 

Bending deflection (skins) 1,41287 

1,6160 1,45610 Shear deflection (core) 0,00068 

Total defl. @ midspan 1,41354 1,53228 1,6449 1,3121 
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Figure 10. Maximum deflections of clamped-clamped sandwich plate subjected to a 
distributed uniform load 

3.1.5 Example 5: Clamp-free sandwich plate with a point load applied at the free end 

The last example considers a free-span sandwich panel with a point load applied at the free 
end (Figure 11). The comparisons in Table 6 and Figure 12 support and confirm the precision 
and performance of the proposed finite element model. 

 

Figure 11. Clamped-free sandwich plate with a point load applied at the free end 

Table 6. Maximum deflections of clamped-free sandwich plate with a point load 
applied at the free end 

Deflection  
(mm) 

Analytical  
solutions 

FEM [31] 

Present 
FEM 

CSB 
Homog. 

[30] 

CSB 
Comp. 

[30] 

TBT EBT 

Bending deflection (skins) 0,90423 

0,93828 0,93188 Shear deflection (core) 0,00136 

Total defl. @ midspan 0,90559 0,91054 0,9394 0,7549 
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Figure 12. Maximum deflections of clamped-free sandwich plate with a point load 
applied at the free end 

3.2 Parametric study 

Following the validation of the finite element model using extant analytical solutions and 
numerical data, the static response of the sandwich plate was examined under different 
boundary conditions, load types, and geometric variations, including thickness configurations, 
length-to-thickness ratios, and equivalent material properties. The material properties of the 
sandwich plate used in this section were consistent with those in the first subsection. In the (1-
8-1) configuration, the core is eight times thicker than each face sheet. In the (1-3-1) 
configuration, the core thickness was three times that of the individual outer layers. In the (1-
1-1) configuration, the sandwich structure consisted of three layers of uniform thickness. 
Table 7 lists the maximum deflections of the sandwich panels under different geometric effects 
and boundary conditions when subjected to concentrated loads. As evident in the table, for 
configurations with a fixed thickness, the deflection values increase as the length-to-thickness 
ratio increases. Additionally, across all thickness configurations, the deflections in the (C–F) 
sandwich plate were greater than those observed under the other boundary conditions (S–S) 
and (C–C). Consequently, the plates with (C–C) boundary constraints were more sensitive to 
the slenderness ratio than the other boundary conditions. Furthermore, for a constant length-
to-thickness ratio, increasing the core thickness reduced the deflections under all the boundary 
conditions examined. 

Table 7. Maximum deflections of sandwich panels under different geometric effects 
and boundary conditions subjected to a concentrated load 

Thickness 
configurations 

L/h 
Maximum deflection 

S-S C-C C-F 

1-8-1 

10 
20 
30 
40 
50 

4,55 × 10-2 

3,56 × 10-1 
1,19 × 100 
2,83 × 100 
5,52 × 100 

1,24 × 10-2 
9,11 × 10-2 
3,01 × 10-1 
7,11 × 10-1 
1,39 × 100 

7,11 × 10-1 
5,66 × 100 
1,90 × 10-1 
4,51 × 10-1 
8,82 × 10-1 

1-3-1 

10 
20 
30 
40 
50 

4,30 × 10-2 
3,36 × 10-1 
1,12 × 100 
2,67 × 100 
5,21 × 100 

1,17 × 10-2 
8,61 × 10-2 
2,84 × 10-1 
6,71 × 10-1 
1,31 × 100 

6,71 × 10-1 
5,35 × 100 
1,79 × 101 
4,26 × 101 
8,33 × 101 
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1-1-1 

10 
20 
30 
40 
50 

4,00 × 10-2 
3,13 × 10-1 
1,05 × 100 
2,48 × 100 
4,85 × 100 

1,09 × 10-2 
8,01 × 10-2 
2,64 × 10-1 
6,25 × 10-1 
1,22 × 100 

6,25 × 10-1 
4,98 × 100 
1,67 × 101 
3,97 × 101 
7,76 × 101 

Figures 13-15 illustrate the effects of the length-to-thickness ratio and thickness configuration 
on the deflections of the (S–S), (C–C), and (C–F) sandwich plates, respectively. As observed 
in the figures, the deflections increase as the length-to-thickness ratio increases. The results 
also indicate that the maximum deflection occurred at L/h = 50. Notably, the 1-8-1 sandwich 
plate exhibited higher maximum deflections than the other configurations. 

  

Figure 13. Variation of maximum deflections of simply supported sandwich plate 
under a concentrated load versus length-to-thickness ratio (L/h) and different 

thickness configurations 

 

Figure 14. Variation of maximum deflections of clamped–clamped sandwich plate 
under a concentrated load versus length-to-thickness ratio (L/h) and different 

thickness configurations 
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Figure 15. Variation of maximum deflection ns of clamped–free sandwich plate under a 
concentrated load versus length-to-thickness ratio (L/h) and different thickness 

configurations 

Table 8 lists the maximum deflections observed for a sandwich plate under a uniformly 
distributed load, considering different geometric effects and boundary conditions. As the 
length-to-thickness ratio increased, the deflections increased across all the thickness 
configurations and boundary conditions. For a constant length-to-thickness ratio, increasing 
the core thickness resulted in lower deflections for all boundary conditions examined. Similar 
results are illustrated in Figures 16-18. 

Table 8. Maximum deflections of sandwich panels under different geometric effects 
and boundary conditions subjected to uniformly distributed load 

Thickness 
configurations 

L/h 
Maximum deflections 

S-S C-C C-F 

1-8-1 

10 
20 
30 
40 
50 

6,35 × 10-3 
9,60 × 10-2 
6,80 × 10-1 
2,84 × 100 
8,64 × 100 

6,22 × 10-4 
1,82 × 10-2 
1,35 × 10-1 
5,69 × 10-1 
1,73 × 100 

1,26 × 10-2 
8,22 × 10-1 
6,37 × 100 
2,70 × 10+1 
8,27 × 10+1 

1-3-1 

10 
20 
30 
40 
50 

6,00 × 10-3 
9,06 × 10-2 
6,42 × 10-1 
2,68 × 100 
8,16 × 100 

5,87 × 10-4 
1,72 × 10-2 
1,28 × 10-1 
5,37 × 10-1 
1,64 × 100 

1,19 × 10-2 
7,76 × 10+1 
6,02 × 100 
2,55 × 10+1 
7,81 × 10+1 

1-1-1 

10 
20 
30 
40 
50 

5,58 × 10-3 
8,44 × 10-2 
5,97 × 10-1 
2,50 × 100 
7,60 × 100 

5,46 × 10-4 
1,60 × 10-2 
1,19 × 10-1 
5,00 × 10-1 
1,52 × 100 

1,11 × 10-2 
7,23 × 10-1 
5,60 × 100 
2,38 × 10+1 
7,27 × 10+1 
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Figure 16. Variation of maximum deflections of simply supported sandwich plate 
under uniformly distributed load versus length-to-thickness ratio (L/h) and different 

thickness configurations 

 

Figure 17. Variation of maximum deflections of clamped–clamped sandwich plate 
under uniformly distributed load versus length-to-thickness ratio (L/h) and different 

thickness configurations 
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Figure 18. Variation of maximum deflections of clamped–free sandwich plate under 
uniformly distributed load versus length-to-thickness ratio (L/h) and different 

thickness configurations 

Table 9 and Figures 19-21 illustrate the impact of the overall thickness of the sandwich plate 
and the effect of thickness configuration on the maximum deflections under different boundary 
conditions under a concentrated load. Increasing the total thickness decreased the deflections, 
because a thicker sandwich plate is less flexible. For a constant total thickness, increasing the 
core thickness decreased the deflections across all boundary conditions. 
Additionally, the maximum deflections for the sandwich plate (C-F) are greater than those for 
the other boundary conditions (S-S and C-C). This is because variations in the boundary 
conditions affect the rigidity of the plate, which, in turn, influences its deflection. 

Table 9. Variation of maximum deflections of sandwich panels with total thickness 
under different boundary conditions and a concentrated load 

Thickness 
configuration 

ht 
Maximum deflections 

S-S C-C C-F 

1-8-1 

0,01 
0,02 
0,03 
0,04 
0,05 

3,53 × 108 
4,42 × 107 
1,30 × 107 
5,51 × 106 
2,82 × 106 

8,82 × 107 
1,10 × 107 
3,25 × 106 
1,38 × 106 
7,06 × 105 

5,64 × 109 
7,07 × 108 
2,08 × 108 
8,81 × 107 
4,52 × 107 

1-3-1 

0,01 
0,02 
0,03 
0,04 
0,05 

3,33 × 108 
4,17 × 107 
1,23 × 107 
5,20 × 106 
2,67 × 106 

8,33 × 107 
1,04 × 107 
3,07 × 106 
1,30 × 106 
6,66 × 105 

5,33 × 109 
6,67 × 108 
1,97 × 108 
8,32 × 107 
4,27 × 107 

1-1-1 

0,01 
0,02 
0,03 
0,04 
0,05 

3,10 × 108 
3,88 × 107 
1,14 × 107 
4,84 × 106 
2,48 × 106 

7,75 × 107 
9,71 × 106 
2,86 × 106 
1,21 × 106 
6,20 × 105 

4,96 × 109 
6,21 × 108 
1,83 × 108 
7,75 × 107 
3,97 × 107 
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Figure 19. Effect of total thickness (ht) on maximum deflection of sandwich panels 
under concentrated loads and various boundary conditions (1-8-1) 

 

Figure 20. Effect of total thickness (ht) on maximum deflection of sandwich panels 
under concentrated loads and different boundary conditions (1-3-1) 

 

Figure 21. Effect of total thickness (ht) on maximum deflection of sandwich panels 
under concentrated loads and various boundary conditions (1-1-1) 
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Table 10 demonstrates the significant impact of varying the total thickness, particularly the 
core thickness, on the maximum deflection of the sandwich plate. Specifically, increasing these 
thicknesses (denoted as ‘ht’ and ‘hc’, respectively) decreased the deflection. This highlights the 
considerable effect of the thickness parameters, which enhance the sandwich plate’s rigidity 
and reduce deflection. In addition, deflections correlate with changes in boundary conditions, 
as altering them affects the plate’s rigidity and, consequently, its flexibility. 

Table 10. Variation of maximum deflections of sandwich panels with total thickness 
under different boundary conditions and uniformly distributed load 

Thickness 
configuration 

ht 
Maximum deflections 

S-S C-C C-F 

1-8-1 

0,01 
0,02 
0,03 
0,04 
0,05 

4,41 × 1010 
5,52 × 109 
1,63 × 109 
6,88 × 108 
3,53 × 108 

8,82 × 109 
1,10 × 109 
3,25 × 108 
1,38 × 108 
7,06 × 107 

4,23 × 1011 
5,30 × 1010 
1,56 × 1010 
6,61 × 109 
3,39 × 109 

1-3-1 

0,01 
0,02 
0,03 
0,04 
0,05 

4,16 × 1010 
5,21 × 109 
1,54 × 109 
6,50 × 108 
3,33 × 108 

8,33 × 109 
1,04 × 109 
3,07 × 108 
1,30 × 108 
6,66 × 107 

4,00 × 1011 
5,01 × 1010 
1,47 × 1010 
6,24 × 109 
3,20 × 109 

1-1-1 

0,01 
0,02 
0,03 
0,04 
0,05 

3,88 × 1010 
4,85 × 109 
1,43 × 109 
6,05 × 108 
3,10 × 108 

7,75 × 109 
9,71 × 108 
2,86 × 108 
1,21 × 108 
6,20 × 107 

3,72 × 1011 
4,66 × 1010 
1,37 × 1010 
5,81 × 109 
2,98 × 109 

 
Figures 22-24 illustrate the impact of varying the total thickness on the deflection of the 
sandwich plate under different boundary conditions for (1-8-1), (1-3-1), and (1-1-1) thickness 
configurations, respectively. As noted previously, for a constant boundary condition, increasing 
the plate thickness increased the deflection. In addition, the deflections observed in the C-F 
configuration were greater than those observed with the other boundary conditions. 

 

Figure 22. Effect of total thickness (ht) on maximum deflections of sandwich panels 
under uniform distributed load and various boundary conditions (1-8-1) 
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Figure 23. Effect of total thickness (ht) on maximum deflections of sandwich panels 
under uniform distributed load and various boundary conditions (1-3-1) 

 

Figure 24. Effect of total thickness (ht) on maximum deflections of sandwich panels 
under uniform distributed load and various boundary conditions (1-1-1) 

4 Conclusion 

This study conducted a comprehensive investigation of the static behaviour of sandwich plates 
by developing a new triangular finite element model. This study presents novel numerical 
solutions and explicit formulas that have not been previously reported. The study also 
examined the effects of geometrical parameters such as thickness configurations, length-to-
thickness ratio, end boundaries, and load conditions, on the static behaviour of sandwich 
plates. 
The following conclusions are drawn: 

o For a constant-thickness configuration, the deflection increased with an increase in the 
length-to-thickness ratio. The maximum deflection values were obtained at (L/h = 50) 

o For a constant length-to-thickness ratio, increasing the core thickness led to a decrease 
in the deflections under all examined boundary conditions (S-S, C-C, and C-F). 

o The deflections increased as the total thickness decreased. The minimum deflection 
values occurred at ht = 0,05 for all examined boundary conditions. The maximum 
deflection values were obtained at h = 0,01 mm. 

o A simultaneous increase in the total thickness and core thickness of the sandwich plate 
corresponds to a decrease in deflections. This emphasises the substantial influence of 
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the thickness parameters, which reduce the flexibility of the sandwich plate and 
consequently the deflection levels. 

o Under the constant-boundary condition, as the plate thickness increased, the deflection 
decreased. 

o Moreover, the boundary conditions had a noticeable impact on the flexibility and 
deflection of the sandwich plates. Specifically, the (C-C) end condition exhibited lower 
deflections than the other boundary conditions; whereas, the (C-F) end condition 
resulted in a more flexible sandwich plate with higher deflection values. Hence, the 
stiffness characteristics of the system play a pivotal role in determining the deflections 
of the sandwich plates. 

In the design of sandwich plates, appropriate selection of the thickness configuration, core 
thickness, loading and boundary conditions, and aspect ratio enables the tailoring of 
geometrical characteristics to minimise deflections in this type of structure. 
Overall, this study provides valuable insights into the static behaviour of sandwich plates and 
offers guidance for optimising their design and performance for various applications. 
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Appendix B 

Determination of deformation fields xz  and 
yz   
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xz  yz  

1a  0 0 0 0 0 0 

2a  0 0 0 0 0 0 
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4a  0 0 0 0 0 0 
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7a  
26y
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12

E
 

12

E
 0 0 

8a  0 
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−
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References 

[1] Linke, M.; Wohlers, W.; Reimerdes, H.-G. Finite Element for the Static and Stability 
Analysis of Sandwich Plates. Journal of Sandwich Structures & Materials, 2007, 9 (2), 
pp. 123-142. https://doi.org/10.1177/1099636207068419 

[2] Starovoitov, E. I.; Leonenko, D. V. Deformation of an Elastoplastic Three-Layer Circular 
Plate in a Temperature Field. Mechanics of Composite Materials, 2019, 55 (4), pp. 503-
512. https://doi.org/10.1007/s11029-019-09829-6 

[3] Ryazantseva, M. Y.; Starovoitov, E. I. Static and Dynamic Models of Bending for Elastic 
Sandwich Plates. In: Proceedings of the Second International Conference on 
Theoretical, Applied and Experimental Mechanics, Gdoutos, E. (ed.). June 24-27, 
2019, Mykonos, Greece, Springer, Cham.; 2019, pp. 531-542. 
https://doi.org/10.1007/978-3-030-21894-2_54 

[4] Starovoitov, E. I.; Leonenko, D. V.; Tarlakovskii, D. V. Thermoelastic Deformation of a 
Circular Sandwich Plate by Local Loads. Mechanics of Composite Materials, 2018, 54 
(3), pp. 299-312. https://doi.org/10.1007/s11029-018-9740-x 

[5] Starovoitov, E. I.; Leonenko, D. V. Vibrations of Circular Composite Plates on an Elastic 
Foundation Under the Action of Local Loads. Mechanics of Composite Materials, 2016, 
52 (5), pp. 665-672. https://doi.org/10.1007/s11029-016-9615-y 

[6] Pham, V. V.; Belarbi, M.-O.; Avcar, M.; Civalek, Ö. An improved first-order mixed plate 
element for static bending and free vibration analysis of functionally graded sandwich 
plates. Archive of Applied Mechanics, 2023, 93 (6), pp. 1841-1862. 
https://doi.org/10.1007/s00419-022-02359-z 

[7] Hadji, L.; Tounsi A. Static deflections and stress distribution of functionally graded 
sandwich plates with porosity. Smart Structures and Systems, 2021, 28 (3), pp. 343-
354. https://doi.org/10.12989/SSS.2021.28.3.343 

[8] Demirhan, P. A.; Taskin V., Static analysis of simply supported functionally graded 
sandwich plates by using four variable plate theory. Teknik Dergi, 2018, 30 (2), pp. 
8987-9007. https://doi.org/10.18400/tekderg.396672 

https://doi.org/10.1177/1099636207068419
https://doi.org/10.1007/s11029-019-09829-6
https://doi.org/10.1007/978-3-030-21894-2_54
https://doi.org/10.1007/s11029-018-9740-x
https://doi.org/10.1007/s11029-016-9615-y
https://doi.org/10.1007/s00419-022-02359-z
https://doi.org/10.12989/SSS.2021.28.3.343
https://doi.org/10.18400/tekderg.396672


Belaid, H. et al. 
A simple triangular finite element model for analysing the linear static 
behaviour of thick sandwich plates with equivalent material properties 

 

ACAE | 2025, Vol. 16, Issue No. 30 

 

Page | 285  

 

[9] Hirane, H. et al. On the layerwise finite element formulation for static and free vibration 
analysis of functionally graded sandwich plates. Engineering with Computers, 2022, 38 
(5), pp. 3871-3899. https://doi.org/10.1007/s00366-020-01250-1 

[10] Sahoo, R.; Singh, B. N. A new inverse hyperbolic zigzag theory for the static analysis 
of laminated composite and sandwich plates. Composite Structures, 2013, 105 (1), pp. 
385-397. https://doi.org/10.1016/j.compstruct.2013.05.043 

[11] Moradi-Dastjerdi, R.; Aghadavoudi F. Static analysis of functionally graded 
nanocomposite sandwich plates reinforced by defected CNT. Composite Structures, 
2018, 200 (1), pp. 839-848. https://doi.org/10.1016/j.compstruct.2018.05.122 

[12] Sahoo, R.; Singh, B. N.  A new trigonometric zigzag theory for static analysis of 
laminated composite and sandwich plates. Aerospace Science and Technology, 2014, 
35, pp. 15-28. https://doi.org/10.1016/j.ast.2014.03.001 

[13] Nawariya, M. et al. Static and harmonic analysis of moderately thick square sandwich 
plate using FEM. Advances in Materials Research, 2023, 12 (2), pp. 83-100. 
https://doi.org/10.12989/amr.2023.12.2.083 

[14] Gholamzadeh babaki, M. H.; Shakouri M. Free and forced vibration of sandwich plates 
with electrorheological core and functionally graded face layers. Mechanics Based 
Design of Structures and Machines, 2021, 49 (5), pp. 689-706. 
https://doi.org/10.1080/15397734.2019.1698436 

[15] Kumar, R.; Lal, A.; Sutaria, B. M. Static and dynamic response analysis of corrugated 
core sandwich plates under patch loading. Mechanics Based Design of Structures and 
Machines, 2022, 51 (12), pp. 6729-6747. 
https://doi.org/10.1080/15397734.2022.2061510 

[16] Temel, B.; Noori, A. R. Transient analysis of laminated composite parabolic arches of 
uniform thickness. Mechanics Based Design of Structures and Machines, 2019, 47 (5), 
pp. 546-554. https://doi.org/10.1080/15397734.2019.1572518 

[17] Won, S. G. et al. Three-layered damped beam element for forced vibration analysis of 
symmetric sandwich structures with a viscoelastic core. Finite Elements in Analysis and 
Design, 2013, 68, pp. 39-51. https://doi.org/10.1016/j.finel.2013.01.004 

[18] Guendouz, I.; Vidal, P.; Khebizi, M.; Guenfoud, M. Advanced Numerical Free Vibration 
Analysis of FG Thin-Walled I-Beams Using Refined Beam Models. Journal of 
Composites Science, 2025, 9 (1), 19. https://doi.org/10.3390/jcs9010019 

[19] Guendouz, I. et al. Buckling analysis of thin-walled laminated composite or functionally 
graded sandwich I-beams using a refined beam theory. Mechanics Based Design of 
Structures and Machines, 2025, 53 (1), pp. 180-200. 
https://doi.org/10.1080/15397734.2024.2363497 

[20] Boumezbeur, K.; Khebizi, M.; Guenfoud, M.; Guendouz, I. Mechanical Response of 
Thin Composite Beams Made of Functionally Graded Material Using Finite Element 
Method. Periodica Polytechnica Civil Engineering, 2023, 67 (4), pp. 970-982. 
https://doi.org/10.3311/PPci.21909 

[21] Guendouz, I. et al. Analysis of torsional-bending FGM beam by 3D Saint-Venant refined 
beam theory. Structural Engineering and Mechanics, 2022, 84 (3), pp. 423-435. 
https://doi.org/10.12989/sem.2022.84.3.423 

[22] Boumezbeur, K.; Khebizi, M.; Guenfoud, M. Finite element modeling of static and cyclic 
response of functionality graded material beams. Asian Journal of Civil Engineering, 
2023, 24, pp. 579-591. https://doi.org/10.1007/s42107-022-00519-8 

[23] Guendouz, I.; Khebizi, M.; Guenfoud, H.; Guenfoud, M. Analysis of FGM Cantilever 
Beams under Bending-torsional Behavior Using a Refined 1D Beam Theory. Periodica 
Polytechnica Civil Engineering, 2022, 66 (4), pp. 1262-1277. 
https://doi.org/10.3311/PPci.20595 

[24] Khebizi, M.; Guenfoud, H.; Guenfoud, M.; El Fatmi, R. Three-dimensional modelling of 
functionally graded beams using Saint-Venant’s beam theory. Structural Engineering 
and Mechanics, 2019, 72 (2), pp. 257-273. https://doi.org/10.12989/sem.2019.72.2.257 

https://doi.org/10.1007/s00366-020-01250-1
https://doi.org/10.1016/j.compstruct.2013.05.043
https://doi.org/10.1016/j.compstruct.2018.05.122
https://doi.org/10.1016/j.ast.2014.03.001
https://doi.org/10.12989/amr.2023.12.2.083
https://doi.org/10.1080/15397734.2019.1698436
https://doi.org/10.1080/15397734.2022.2061510
https://doi.org/10.1080/15397734.2019.1572518
https://doi.org/10.1016/j.finel.2013.01.004
https://doi.org/10.3390/jcs9010019
https://doi.org/10.1080/15397734.2024.2363497
https://doi.org/10.3311/PPci.21909
https://doi.org/10.12989/sem.2022.84.3.423
https://doi.org/10.1007/s42107-022-00519-8
https://doi.org/10.3311/PPci.20595
https://doi.org/10.12989/sem.2019.72.2.257


Belaid, H. et al. 
A simple triangular finite element model for analysing the linear static 
behaviour of thick sandwich plates with equivalent material properties 

 

ACAE | 2025, Vol. 16, Issue No. 30 

 

Page | 286  

 

[25] Ziou, H.; Guenfoud, M. Modal behaviour of longitudinally perforated nanobeams. 
Advances in Civil and Architectural Engineering, 2023, 14 (27), pp. 143-159. 
https://doi.org/10.13167/2023.27.10 

[26] Ziou, H.; Guenfoud, M. A complete disquisition of various parameters on the bending 
analysis of functionally graded nanobeams. Academic Journal of Manufacturing 
Engineering, 2023, 21 (1), pp. 19-27. 

[27] Ziou, H.; Guenfoud, H. Buckling Analysis Behavior of Functionally Graded Beams. 
Jordan Journal of Civil Engineering, 2020, 14 (3), pp. 347-358. 

[28] Ziou, H.; Himeur M.; Guenfoud H.; Guenfoud, M. An Efficient Finite Element 
Formulation Based on Deformation Approach for Bending of Functionally Graded 
Beams. Journal of Solid Mechanics, 2020, 12 (2), pp. 343-357. 
https://doi.org/10.22034/jsm.2019.1867884.1437 

[29] Teodorescu, P. Grands éléments finis ‘GEF’ pour l’élasticité plane. [doctoral thesis], 
Ecole Polytechnique Fédérale de Lausanne, Department of Civil Engineering, 
Lausanne, Switzerland, 1982. 

[30] El Fatmi; R.; Zenzri, H. On the structural behavior and the Saint Venant solution in the 
exact beam theory: Application to laminated composite beams. Computers and 
Structures, 2002, 80 (16-17), pp. 1441-1456. https://doi.org/10.1016/S0045-
7949(02)00090-1  

[31] Ziou, H.; Guenfoud, M. Simple incremental approach for analysing optimal non-
prismatic functionally graded beams. Advances in Civil and Architectural Engineering, 
2023, 14 (26), pp. 118-137. https://doi.org/10.13167/2023.26.8  

 

https://doi.org/10.13167/2023.27.10
https://doi.org/10.22034/jsm.2019.1867884.1437
https://doi.org/10.1016/S0045-7949(02)00090-1
https://doi.org/10.1016/S0045-7949(02)00090-1
https://doi.org/10.13167/2023.26.8

	1 Introduction
	2 Finite element formulation
	2.1 Triangular finite element model
	2.1.1 Characteristics

	2.2 Reissner–Mindlin plate theory
	2.2.1 Displacement field
	2.2.2 Strain
	2.2.3 Constitutive law
	2.2.4 Strain and displacement fields
	2.2.5 Elementary stiffness matrix

	2.3 Sandwich Panels-equivalent properties

	3 Numerical results and discussion
	3.1 Comparison with analytical and numerical solutions
	3.1.1 Example 1: Simply supported sandwich plate under a centre load
	3.1.2 Example 2: Simply supported sandwich plate under a uniformly distributed load
	3.1.3 Example 3: Clamped–clamped sandwich plate subjected to a concentrated load
	3.1.4 Example 4: Clamped–clamped sandwich plate subjected to distributed uniform load
	3.1.5 Example 5: Clamp-free sandwich plate with a point load applied at the free end

	3.2 Parametric study

	4 Conclusion
	Appendix A
	Appendix B
	References

