

21

Business Systems Research Vol. 4 No. 1 / March 2013

Monitoring SOA Applications with SOOM

Tools: A Competitive Analysis

Ivan Zoraja, Goran Trlin, Marko Matijević
Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture, University

of Split, Split, Croatia

Abstract

Background: Monitoring systems decouple monitoring functionality from application and

infrastructure layers and provide a set of tools that can invoke operations on the application

to be monitored. Objectives: Our monitoring system is a powerful yet agile solution that is

able to online observe and manipulate SOA (Service-oriented Architecture) applications. The

basic monitoring functionality is implemented via lightweight components inserted into SOA

frameworks thereby keeping the monitoring impact minimal. Methods/Approach: Our

solution is software that hides the complexity of SOA applications being monitored via an

architecture where its designated components deal with specific SOA aspects such as

distribution and communication. Results: We implement an application-level and end-to-end

monitoring with the end user experience in focus. Our tools are connected to a single

monitoring system which provides consistent operations, resolves concurrent requests, and

abstracts away the underlying mechanisms that cater for the SOA paradigm. Conclusions:

Due to its flexible architecture and design our monitoring tools are capable of monitoring

SOA application in Cloud environments without significant modifications. In comparisons with

related systems we proved that our agile approaches are the areas where our monitoring

system excels.

Keywords: Monitoring, Real-time, Agile, Lightweight, SOA, Cloud, APM, BTM, Security, BI

JEL classification: C61, C63, C8, M15

Paper type: Research article

Received: 26, September, 2012

Revised: 5, March, 2013

Accepted: 6, April, 2013

Citation: Zoraja, I., Trlin, G., Matijević, M. (2013). “Monitoring SOA Applications with SOOM

Tools: A Competitive Analysis”, Business Systems Research, Vol. 4, No.1, pp. 21-35.

DOI: 10.2478/bsrj-2013-0003

Acknowledgements: We would like to thank the Croatian Institute of Technology (HIT) for fully

funding the SOOM functional prototype for on-premises applications.

Introduction
The market for monitoring systems and tools that observe and modify the run-time behaviour

of enterprise applications is evolving rapidly. For example, the Gartner Research (Kowall,

Cappelli, 2012) estimates that global spend for APM (Application Performance Monitoring)

software licenses including the first-year maintenance contracts will grow by the end of this

year to $2.14 billion which is a 9% increase in comparison to 2011. Similar growths are

estimated for related monitoring areas such as BTM (Business Transaction Monitoring) and

BPM (Business Process Monitoring).

 SOA applications provide their business functionality via services. A service is a unit of

business functionality exposed to the world via standard descriptions, standard

communication protocols, and standard message formats. The clients consume the services

by exchanging messages inSimple Object Access Protocol (SOAP)or Representational State

22

Business Systems Research Vol. 4 No. 1 / March 2013

Transfer(REST) architectural styles. A SOA application can be viewed as a graph with services

and clients as vertices (nodes) and communication routes as edges. Services are

interoperable if they can work together via standards that are not specific to the particular

platform, the programming language, or any of the underlying technologies. Modern

enterprise applications based on SOA have grown substantially in size, complexity, diversity,

and heterogeneity over the past few years.

 With the advent of Cloud computing, interactions with distributed applications have

become an everyday activity of typical business users, especially of those who work with

Customer Relationship Management (CRM) and Enterprise Resource Planning (ERP) systems

since such systems are rapidly moving to Cloud environments. Infrastructure as a service

(IaaS) providers, i.e. Amazon Web Services, offer the raw computational power, such as

virtual machines, to end users. Platform as a Aervice (PaaS) providers, such as Microsoft

Azure, abstract away the operating system details from end users and offer essential services

such as Web sites and E-mailing. Software as a Service (SaaS) providers add another level of

abstraction, offering end users ready to use software solutions deployed in the Cloud. Google

Mail and Sales Force are good examples of the SaaS style Cloud solution. However,

migrations to the Cloud bring many risks such as potential performance degradations via

virtualizations.

 The quality of SOA applications deployed on-premises and in the Cloud, as well as the

enterprise overall productivity and revenue is directly affected by issues in the applications.

Therefore, IT staff and business people need efficient tools (Zoraja, Zulim, Štula, 2008; Hershey,

Runyon, 2007) to monitor and manage the run-time behaviour of SOA applications for rapid

finding, predicting, and proactively preventing potential causes of issues. Consequently, IT

monitoring and management tools have gained in importance over the past few years since

they help organizations to deliver services to work flawlessly and optimally at all times for all

users. However, current monitoring systems and tools have some shortcomings which prevent

them from being efficiently used for monitoring SOA applications deployed on the premises

and in the Cloud.

The shortcomings of current monitoring solutions can be categorized as:

• General Monitoring

Most of them are not designed and implemented with SOA applications in focus. Instead,

they are developed for general-purpose monitoring such as monitoring of virtual machines or

network stacks and then enhanced and integrated to be used in the SOA world.

• Single Monitoring Aspects

Most current tools are focused on a particular monitoring aspect such as application

performance (APM), network performance (NPM), and business transactions (BTM). They are

implemented and managed separately and their tools are usually not connected to a

common monitoring system and therefore are not aware of each other.

• Heavyweight

Most current tools are integrated product suites which are very complex to manage. Their

installations and maintenance process is usually a big ceremony requiring not only additional

installations of various software components and servers but also expensive consulting

assistances.

• Platform-dependent

To implement monitoring operations, they typically utilize the low-level mechanisms available

in the underlying operating systems, virtual machines, network stacks and packages,

databases, and hardware.

• CloudUnready

Most of the current tools are not designed with Cloud in mind and therefore cannot be used

in Clouds without modifications. For instance, instrumentation mechanisms that are utilized by

many current tools can be disabled in Clouds and Cloud providers may not even allow direct

accesses to virtual machines due to their security policies. In addition, system metrics that are

measured in the guest are generally not trustworthy.

 The shortcomings listed above motivated us to design and implement a functional

prototype called SOOM (Service-oriented Online Monitor) for monitoring SOA applications. In

this paper, we present our solution and compare it with other solutions used in the realm of

SOA. SOOM is a real-time (online) monitoring system focused on multiple monitoring aspects.

23

Business Systems Research Vol. 4 No. 1 / March 2013

For instance, SOOM monitors interoperable services, observes IT transactions, identifies

performance bottlenecks, and locates and proactively predicts run-time errors in an agile

fashion. To minimize the impact on the SOA graph to be monitored, SOOM inserts its

lightweight software components into target SOA frameworks using various instrumentation

techniques. SOOM supports both SOA architectural styles: SOAP and REST and is Cloud-ready.

 The next section discusses both functional and non-functional requirements for SOOM

while section three elaborates its software architecture with an accent on software

components, their functionality, and interaction patterns. Section four provides an insight into

visualization approaches while section five deals with errors and alerts. Section six explains

performance monitoring while section seven describes support for business and IT

transactions. Section eight illustrates the business intelligence aspects of SOOM. Finally, we

finish off with section nine which concludes the paper, discusses our findings and results, and

gives suggestions for future work.

Requirements
This section discusses the positioning of SOOM, the operations that it will provide and execute

on behalf of its users, and the quality factors it must adhere at.

Positioning
Software developers in SOA environments can generally be classified as infrastructure and

application developers. The former deal with development of software frameworks (e.g.

SOA) while the latter use that infrastructure to build applications with functionality from a

particular business domain. Infrastructure developers often use rudimentary software tools,

such as activity tracing and debugging, which are tightly bound to the infrastructure and are,

in most cases, inapplicable at the application level. Application developers, on the other

hand, are often constrained by financial and timing factors and are devoted to the

implementation of the contracted business functionality with practically no time left for the

development of advanced monitoring tools.

 The main idea behind SOOM is to (1) decouple the monitoring functionality from both the

application and the infrastructure by implementing a common monitoring system and (2) to

provide a set of tools that can, via that monitoring system, invoke operations on the

application to be monitored. The capabilities and conditions to which SOOM must conform

are driven by the perceived needs of the main SOA actors: operators, business managers,

programmers, and testers. The SOOM objects to be monitored include clients, services,

operations, parameters, return values, messages, contracts, endpoints, bindings, addresses,

communication paths, and software infrastructure mechanisms such as security, transactions,

and reliable messaging.

Functional Requirements
The functionality of SOOM can be viewed as a collection of operations it performs on the

objects to be monitored where each operation yields an observable result of value to an

actor. The SOOM monitoring operations can be invoked unconditionally and conditionally.

Unconditional requests are immediately executed after they have been received while the

conditional ones wait for events to happen. An example of an unconditional operation is a

request for measuring performance of a particular service. Alerting on a security violation is

an example of a conditional request. Applying various synchronization techniques SOOM is

able to resolve conflicts when operations are executed concurrently.

 SOOM is a complete system since it implements operations for all the tools and observes

and manipulates all elements of the SOA graph. All monitoring operations are designed to be

executed without races, deadlocks, and falsifications. Our current monitoring system (Version

1.0) provides the full support for WCF (Windows Communication Foundation) (Lowy 2010) and

the basic support for Java WS services. SOOM is ready for SOA applications deployed in

Cloud. We have also implemented some deep-diving techniques to inspect infrastructure

such as operating systems and virtual machines but these techniques are out of scope of this

paper.

24

Business Systems Research Vol. 4 No. 1 / March 2013

MainFeatures
Nonfunctional requirements (NFRs) specify the quality attributes of the system. The design and

architecture of SOOM are centred around the following main features:

• Real-time and Lightweight

All SOOM operations are executed while SOA applications being monitored are running and

all collected data reflect the runtime behaviour and the execution context. To achieve this

SOOM inserts own lightweight components into SOA frameworks (WCF, Java WS) using

various inspection mechanisms. The monitoring impact (intrusiveness) on the application

being monitored should be kept minimal. SOOM is an easy to manage solution.

• Hiding complexity of SOA Applications

SOA applications are very complex in nature since they are composed of heterogeneous

software components connected through a variety of transport protocols which can reside

at various Cloud and on-premises environments. SOOM hides the complexity of SOA

applications implementing an architecture where its designated components deal with

specific application aspects and provide end-to-end monitoring. For example, the SOOM

server deals with distribution and parallelism providing operations on services as if they were

deployed locally.

• Application-level and Agile

Monitoring aspects are integrated in an agile fashion, providing data that can be related to

constructs that the end user understands. SOOM performs application-level monitoring but it

is independent of application domains (domain agnostic) and can monitor applications in

any business area. In contrast, component based monitoring reports averages of individual

components (e.g. database) and low-level monitoring (e.g. network) collects data that

cannot be easily related to the application constructs.

• Consistency and Transparency

All SOOM tools are connected to a single monitoring system which provides consistent

operations to all the tools. This means that tools are aware of each other via the monitoring

system (Zoraja, 2000). When one tool performs an operation on a service all interested tools

are notified about that event. The underling SOA mechanisms using the monitored objects

are transparently handled and SOOM tools can be built without taking care of a particular

implementation details of the underlying SOA framework.

• Cloud Ready

Due to its flexible and application centric design and architecture where all instrumentations

and measurements are implemented at the application level, SOOM is fully capable of

monitoring SOA application in Cloud, without modifications. SOOM is successfully tested in

various Cloud environments, such as Amazon Web Services (IaaS) and Windows Azure (PaaS).

Architecture and Workflows
A real-time monitoring system can be implemented at various software and hardware levels.

Only hardware monitors are not intrusive. Software monitors (Zoraja, Zulim, Štula, 2008) are

more flexible for modifications but have an impact on the system to be monitored.

Monitoring systems integrate the common functionality used by multiple tools in a reusable

manner, hide platform idiosyncrasies from tools, and preserve the consistency of monitoring

operation issued by concurrent tools. The software architecture of SOOM is based on the

CORAL system (Zoraja, 2000). It specifies key decisions mostly regarding decompositions into

components and integrations via connectors thereby applying various designs and

architectural patterns.

 In order to provide contracts to the tools, reduce the system complexity as well to ensure

reusability, scalability, programmability and maintainability, the logical architecture of SOOM

is based on SOA, the event-action paradigm, and layering. SOOM is designed and

implemented having in mind the efficiency of the monitoring system and the impact of

monitoring on target business applications. SOOM is designed to be easily enhanced by new

functionality and features.

25

Business Systems Research Vol. 4 No. 1 / March 2013

Figure 1

The Logical Architecture of SOOM

Source: Author’s illustration

 SOA systems make use of the proxy pattern to provide the same programming model to

the clients regardless of the service location. The proxy is also used to hide the complexity of

the underlying transport protocols and message formats from the client. On the service side,

SOA frameworks implement dispatchers which, on behalf of the proxies, perform operations

on services. With reference to Figure 1, SOOM intercepts proxies and dispatchers and injects

monitoring functionality into the client and service code. SOOM agents control multiple

intruders and send monitoring data to the server which provides monitoring operations to

versatile tools.

Components and Connectors
SOOM intruders are inserted into the selected SOA framework in an aspect fashion without

the necessity to modify the source code of the application to be monitored. They collect

useful activity information and appropriate interaction data records from various

client/service interactions and return data to the corresponding agent. Intruders can also

modify objects being monitored such as parameters passed by the client and return values.

Most SOA frameworks provide extension points that serve for extensibility purposes. SOOM

intruders for WCF make use of the predefined extension interfaces exposed by WCF proxies

and dispatchers. Java WS intruders use dynamic proxies and can be inserted into Java SOA

applications without restarting the services being monitored.

 SOA applications can be deployed in public Cloud, private Cloud, or on the premises. This

heterogeneity adds another level of complexity to SOA monitoring, especially on interception

techniques and intruder actions. Most current approaches rely on a virtual machine or

operating system instrumentations. For example Microsoft SCOM (Price, Mueller,

Fenstermacher, 2007) employs Windows performance counters for gathering system state

information. This type of instrumentation can be disabled in Clouds and Cloud providers may

not even allow direct accesses to virtual machines due to their security policies. SOOM deals

with this issues using its highly flexible and cloud-ready architecture. SOOM intruders act as

integral parts of the monitored application since they are deployed along with the

application to be monitored.

SOOM agents are representatives of the SOOM server on local machines. They control

multiple running clients and services. Agents forward requests issued by the server to multiple

intruders, handle their responses, and return data back to the server. An agent can also

control intruders on remote machines. The communication between SOOM components is

implemented via asynchronous messaging.

26

Business Systems Research Vol. 4 No. 1 / March 2013

The SOOM server is a single process responsible for distribution and parallelism since it splits

requests from the tools and sends them to agents for further processing. Other main tasks of

the SOOM server include enforcing consistency of issues requests, binding events to actions,

gathering results from agents, and sending replies to the tools. The main monitoring loop waits

for requests that can come up from two sources: tools and agents. The SOOM server

maintains a database of all data collected from agents and intruders. For agile SOA

scenarios which are based on the REST architectural style we integrate the agent

functionality with the server code and therefore reduce the number of SOOM components to

be deployed in production environments.

Figure 2

User interactions with SOOM via tools

Source: Author’s illustration

 The SOOM router redirects SOAP messages depending on a set of predefined rules. That

way, it can perform load balancing tasks in systems under heavy load and therefore help

achieve stability and scalability (Macias, Sanchez, Suarez, Sunderam, 2009) in such systems.

The criteria for balancing can be either performance data or the semantic of the service call

being invoked.

 SOOM users do not directly interact with the SOOM server. Instead, they use GUI

components called tools to issue requests and presently received data in meaningful and

intuitive ways. Tools are classified according monitoring aspects such as performance and

errors, and are placed in the SOOM Dashboard. A SOOM tool forwards user requests to the

SOOM server and shows the results obtained from the SOOM server. Current tools are

implemented using the WPF (Windows Presentation Foundation) technology. A typical user

interaction with the SOOM system is depicted in Figure 2. In this scenario, s/he must provide

credentials to be authenticated by the server. S/he can then select SOA applications to be

27

Business Systems Research Vol. 4 No. 1 / March 2013

monitored and issue conditional and/or unconditional requests using GUI components from

the particular tool.

Figure 3

Exchanging System Messages

Source: Author’s illustration

Internal Messages
SOA applications utilize messages (SOAP and REST) for communication among different

nodes in the system. SOOM is able to intercept and monitor each message sent to or

received from a node in the SOA graph being monitored. A typical system workflow

describing the interception and handling of SOAP messages is depicted in Figure 3. After the

SOOM intruder detects and extracts the SOAP message, message details are sent to the

SOOM agent responsible for data aggregation from one or multiple intruders. The final step in

this system workflow is data transfer from the SOOM agent to the server.

The SOOM Dashboard
SOA applications often contain dozens or even thousands of nodes and, in order to gain

complete insight into their static and dynamic behaviour, all nodes must be monitored.

Monitoring such a large set of nodes via textual representations could be a very complex and

cumbersome task. For this reason, modern tools use graphical components to represent SOA

graphs and provide graphical animations for executions of SOA chains at an abstract level

which can be used to categorize current visualization tools in the realm of SOA as (1)

application-level and (2) low-level tools. The former makes use of terms and objects found in

the business domain while the latter utilizes terms and notions from the underlying

technologies such as network stacks, operating systems, and physical hardware components.

The main advantage of the tools in the first category is delivering information that can be

related to the application constructs such as operations, messages, and parameters and

therefore those tools are best suited for application developers and operators. In addition to

SOOM, to application-level tools belong tools such as dynaTrace (Ballou, 2008) and

AVICode.NET which is now part of SCOM (Price at al.). Low-level tools provide information

that can be useful for systems administrators and cannot be easily related to application

constructs. Some vendors provide custom visualization plug-ins for their products to be used

with low-level tools. For low-level tools, for instance, belong Quest Foglight Network

28

Business Systems Research Vol. 4 No. 1 / March 2013

Management Systems for Virtualized Environments (Quest Software, 2011) and BMC Atrium

Discovery and Dependency Mapping (BMC Software, 2009).

Figure 4

The SOOM Dashboard

Source: Author’s software

 With reference to Figure 4, SOOM can discover the services involved in the execution of

the SOA application and the communication paths across which those services exchange

messages, and show them in the SOOM Dashboard. It represents an integral "dash-board" for

all types of SOA monitoring in a form of a directed graph and provides both intuitive and

accurate graphical representation of the SOA graph to be monitored, its healthy state, and

behaviour. All nodes are represented using their metadata, such as node name, node type,

and node identifier. This metadata information is then used to render appropriate icons for

different type of nodes, meaning that client nodes can easily be distinguished from service

ones. The SOOM Dashboard provides direct lines to visually connect nodes. The lines change

colours depending on the state of the connection.

 To get a better insight into monitoring of a large number of nodes the dashboard provides

controls to zoom in, zoom out, and to save the current configuration. The details of the

selected client, service, and connection channel can be shown in the Details Pane (not

shown in Figure 4). Via that pane the user can preview the service’s metadata by clicking the

corresponding button. The Metadata Viewer is a tool that visualizes the metadata (WSDL)

using metadata exchange mechanisms available in the underlying SOA infrastructure.

Metadata is a platform-independent description of a service including ABC (addresses,

bindings, contracts) and information about security, transactions, reliability, and faults.

 In addition to the conceptual view, the SOOM Dashboard provides a map view which

shows SOA components on their geographical locations. This type of view is a unique feature

of SOOM. SOOM also implements a version of the SOOM Dashboard that can be added to

the MS Visual Studio 2010 as a plug-in to support the process of testing WCF services.

29

Business Systems Research Vol. 4 No. 1 / March 2013

Figure 5

Detecting Errors

Source: Author’s software

Errors and Alerts
A large variety of runtime errors can arise in SOA applications. For example, connection

failure between two nodes may jeopardize data transfer. Error detection and reporting are

often referred to as deep diving, since they provide the programmers with low level details

about the application misbehaviour. Traditional monitoring systems implement post-mortem

error analysis using a collection of application log data long after the errors have happened.

Examples of this type of monitoring include various tracing tools, such as Service Trace Viewer

from Microsoft (Lowy, 2010). This type of error analysis, although useful in local environments, is

not suitable for distributed application since it could be very difficult to correlate errors that

span multiple distributed nodes using row tracing data. Tools that integrate error and

performance monitoring are discussed in section six.

 Runtime exceptions and security violations are the two basic types of errors in SOA

applications to be dealt with. SOOM has successfully dealt with both types of errors by

detecting errors at run-time at the exact location of the issue using inspection mechanisms

available in the underlying SOA infrastructure. As soon as a problem has arisen, SOOM

catches the exception from the SOA infrastructure, marks the faulting node problematic, and

stores the complete information about the problem in the SOOM database at the SOOM

server.

 With reference to Figure 5, the erroneous node is marked by the exclamation point in the

SOOM Dashboard. Using the Details Pane, the user can discover the root cause by tracing an

error back to the issuing client through all intermediary services if exist. By analysing the entire

call tree invocations the user can deduce how the particular error was propagated and

what was the real cause of the problem. SOOM can also proactively detect services that are

not working. When an error occurs or when the system detects the faulting node it can

automatically notify the interested parties via E-Mail or SMS messages.

False credentials, replay attacks, eavesdropping, and etc. are common security threats in

SOA applications. Some vendors focus their security related efforts on securing network

resources and devices applying the process of continuous scanning the whole network for

security vulnerabilities. Tools like ManageEngine’s Security Manager Plus (ManageEngine,

2009) are able to monitor network routers, computers, and firewalls in order to mitigate

security threats. SOOM utilizes the security and auditing mechanisms available in the

underlying SOA infrastructure (WCF and Java WS) to gather security related data. Security

threats are identified in real-time and acted upon immediately via the SOOM alerting

mechanisms.

30

Business Systems Research Vol. 4 No. 1 / March 2013

Figure 6

Presenting the Number of Calls per Operation

Source: Author’s software

Performance Monitoring
Functional requirements for an application can be implemented on various architectures. It is

the task of the architect to set an appropriate architecture (software and hardware) on

which the application will work flawlessly and efficiently for all users at all times. To determine

the run-time behaviour of the software and to verify the architecture, the operators use

various tools to measure (Milanović Glavan, 2011), analyse (Wismüller, Bubak, Funika, 2008),

and visualizes (Bode, 1994) the application performance and availability.

 SOOM is focused on SOA. Business SOA applications require agreements and expectations

at service levels (SLAs, SLEs) that reflect performance goals for individual and composite

services. The SOOM intruders implement a large variety of light (minimal intrusive) and precise

sensors to measure SOA performance at the application level while SOOM tools provide

graphical components to show performance from the perspective of end users focusing on

End User Experience (EUE). In Figure 6 we present a SOOM GUI component that shows the

number of calls (frequency) for each individual operation of the service being monitored. For

example, operation GetDoctorList has been invoked five times since the performance

monitoring process started. Other SOOM GUI components present measured and

aggregated data for operations in a single service or for operations invoked in a chain of

services where services delegates tasks to other services. The services to be monitored by

SOOM can be located on the premises and in the private and public Clouds (Trlin, Zoraja,

2012).

 To perform application performance in real time, SOOM injects tokens into SOA messages

and makes use of a modified version of the Lamport timestamp algorithm for global clock

synchronization (Lamport, 1978). This algorithm is used to establish temporal order between

operations invoked in distributed services. After the temporal order has been established,

SOOM employs local time differences to measure time slices spent at each individual

operation. This technique enables end-to-end performance monitoring which can be used to

easily detect and pinpoint bottlenecks in the SOA application being monitored.

31

Business Systems Research Vol. 4 No. 1 / March 2013

Transaction Monitoring
An SOA IT transaction represents a group of operations invoked in a chain of distributed

services, in which all the operations must succeed or fail as a group. It exhibits well-known

ACID properties and can end in two ways: with a commit or a rollback. When a transaction

commits, the modifications made by its operations are performed. If only one operation

within a transaction fails, the transaction must be rolled back, undoing the effects of all

operations in the transaction. In addition to IT (technological) transactions some tools

(AppDynamics, 2011) monitor business transactions which also represent a group of

operations in a set of distributed services but do not exhibit ACID properties.

 Most of the current monitoring tools focus on the custom business transactions that are

tracked using "dope-and-trace" approaches which insert custom stamps into communication

protocols such as HTTP. For example, this approach is utilized by the IBM's Tivoli (IBM 2012)

family of tools. There is also an evident intention of combining APM and BPM tools. A

representative example of this approach is found in Responsive Process Management Suite, a

monitoring software developed by Progress Software (Hailstone, 2010). APM in conjunction

with BPM brings focus to the business side of software, therefore making APM software more

useful for typical business users.

Performance tools utilize various techniques and mechanisms to measure times (latencies)

and frequencies (throughput) of individual and composite (aggregate) components. The

measurement techniques should be precise and have minimal impact (overhead) on the

application being measured. Visualization techniques use the collected and calculated data

and present application performance to the users for analysis (Forrester Consulting, 2010) (CA

Technologies, 2012). Most performance tools are targeted towards specific technologies and

platforms such as networking (Quest Software, 2011) and database-centric environments

(Oracle, 2011).

Figure 7

An Operation Chain in a Transaction

Source: Author’s software

 SOOM implements graphical components to visualize WCF IT transactions. All started

transactions are listed in the Transaction Navigation Pane while the details of an individual

32

Business Systems Research Vol. 4 No. 1 / March 2013

transaction are shown in the Details Pane that provides two diagrams in the UML style: the

sequence and communication diagrams. A transaction listed in the Transaction Pane can be

in four states: active, committed, aborted, and in-doubt. The active transactions are in

progress, the committed transactions have succeeded, the aborted transactions have failed,

and the in-doubt transactions are not resolved yet. The in-doubt transactions can happen

when a component of the distributed transaction infrastructure including multiple

coordinators like MS DTC (Microsoft Distributed Transaction Coordinator) and resource

managers fails.

 Figure 7 depicts a committed transaction (denoted with the grey circle) in the SOOM

Transaction Sequence Diagram. It shows a series of operations invoked on a set of WCF

services with an emphasis on the chronological order of invocations. Each transaction has

assigned the global and local identifiers, the client node that initiated the transaction, the

start and completion times, and the transaction protocol used to exchange messages of the

two-phase commit protocol (2PC). The Communication Diagram shows the same information

but multiple operations invoked on the same service are depicted using the same

communication link along with sequence numbers to denote the chronological order of

events. To reconstruct transactions, SOOM makes use of identifiers generated by the

underlying transaction infrastructure combined with timestamps inserted into SOA messages

to determine the temporal order of events.

Content Management
Modern business applications usually deal with the huge amounts of raw business data and

software solutions that collect (Pejić Bach, Šarlija and Jaković, 2009), store, and analyse (Bosilj

Vukšić, Indihar Štemberger, Kovačič, 2008; Hernaus, Pejić Bach and Bosilj Vukšić, 2012)

information from business applications have gained substantial importance, especially

because such software can be used to improve business processes.

Figure 8

Request and Response Parameters

Source: Author’s software

Business information in a SOA application is transferred from service to service in SOA

messages. SOOM is able to intercept SOA calls, extract business information from request and

33

Business Systems Research Vol. 4 No. 1 / March 2013

response messages, and store content data into the SOOM Database or CSV (Comma

Separated Value) files. SOOM Intruders are components that gather and store content data.

The data can then be analysed using the SOOM Content Viewer, as depicted in Figure 8, or

processed as an OLAP Cube using a data mining tool such as Microsoft Excel, as shown in

Figure 9, to perform multidimensional database analysis.

 With reference to Figure 8, SOOM acts as a tool for gathering, storing, and viewing the

content data in SOA applications via the Navigation and Details Pane. Since each service

call is recorded (persisted), SOOM can present both request parameters and response values

to the user. Complex data types which are passed and returned are displayed in a

hierarchical fashion using the name/value semantics. By browsing through the Navigation

Pane it is possible to view details about each recorded call in the Details Pane and explore

request and response values.

 With reference to Figure 9, content data collected by SOOM can be analysed using MS

Excel. For example, on the x-axis we have expenses and on the z-axis we have patients. The

added dimension that creates a multidimensional table is a doctor, a patient is associated

with.

Figure 9

Analytical Data

Source: Author’s software

Conclusion and Future Work
Strong trends in IT industry toward software architectures based on SOA for both on-premises

and Cloud enterprise applications have highlighted the need for powerful monitoring systems

and tools that can support those applications in both development and production

scenarios. In this paper, we have discussed the core issues and solutions that come up in the

architecture, design, implementation, and usage of an agile, lightweight, cloud-ready, and

real-time monitoring solution for SOA applications. We presented the main features of our

34

Business Systems Research Vol. 4 No. 1 / March 2013

monitoring system called SOOM and its tools, compared them with other solutions in the

realm of SOA monitoring, and proved that our agile monitoring approaches are the areas

where SOOM exhibits many advantages over related systems.

 SOOM is all about the non-functional requirements (quality factors) for SOA applications. It

is able to visualize the complete SOA graph including clients, services, and communication

channels. SOOM detects and locates root causes of issues including runtime errors and

security violations, measures and analyses end-to-end performance, visualizes IT transactions,

and collects and analyses content data. These features make SOOM an effective and

innovative monitoring software due to its ability to significantly reduce the problems

associated with the development and usage of enterprise SOA applications.

 Since SOOM has proven to be a very successful and beneficial asset for any IT based or IT

dependent companies we are encouraged and strongly motivated to continue developing

SOOM along several lines. One of the first enhancements to be undertaken is to investigate

the usage of SOOM to support other programming languages such as Java, Python, and

Ruby and to work on other platforms such as Linux and Android. We will further develop

SOOM tools based on Web technologies that support rich GUIs since this will lead to a more

flexible solution for monitoring SOA applications deployed in the Clouds. A third modification

involves a full implementation for the AWS and Windows Azure Cloud platforms. Finally, some

long term works will be undertaken to implement (1) routing strategies with various load

balancing techniques and (2) methods for analysing and presenting collected business data.

References
1. AppDynamics (2011), "The Power of the Business Transaction: The New Way to Manage

Application Performance", Business Whitepaper, available at

http://www.appdynamics.com/(October 2011).

2. Ballou M. (2008), "Leveraging Performance Optimization for Business Advantage",

Whitepaper, sponsored by dynaTrace software Inc., available at:

http://www.compuware.com/(May 2011).

3. BMC Software (2009), "BMC Atrium Discovery and Dependency Mapping", available at

http://www.bmc.com/(Jun 2011).

4. Bode, A. (1994), "Parallel Program Performance Analysis and Visualization," Proceedings of

Second Workshop on Environments And Tools For Parallel Scientific Computing, pp. 246-

253. Townsend, Tenessee, May, 25-27 , 1994.

5. Bosilj Vukšić, V., Indihar Štemberger, M., Kovačič A. (2008), "Business Process

Management and Business Intelligence as Performance Measurement Drivers", The

Business Review, Cambridge, Vol. 10, No. 1, pp. 338-343.

6. CA Technologies (2012), "CA Application Performance Management", Solution Brief,

available at: http://www.ca.com/us/default.aspx /(September 2012).

7. Forrester Consulting (2010), "Managing Performance of Critical Applications", White

Paper, available at: http://www.opnet.com/whitepapers/index_apm.html /(June 2012).

8. Hailstone R. (2010), "Progress Responsive Process Management", Progress Software,

Technology audit, available at: http://www.progress.com/en/business-need/responsive-

process-management.html / (June 2011).

9. Hernaus, T., Pejić Bach, M., Bosilj Vukšić, V., (2012), “Influence of strategic approach to

BPM on financial and non-financial performance”, Baltic Journal of Management, Vol. 7

No. 4; 376-396.

10. Hershey, P., Runyon, D. (2007), "SOA Monitoring for Enterprise Computing Systems", 11th

IEEE International Enterprise Distributed Object Computing Conference, pp. 443-450.

Annapolis, Maryland.

11. IBM (2012), "IBM Tivoli Composite Application Manager for Transactions - Guide to

agentless transaction tracking", Datasheet, available at: http://www-01.ibm.com/

software/tivoli/products/composite-application-mgr-transactions/(August 2012).

12. Kowall, J., Cappelli, W. (2012), "Magic Quadrant for Application Performance Monitoring",

available at http://www.gartner.com/DisplayDocument?ref=clientFriendlyUrl&id=2125315

13. Lamport L. (1978), "Time, Clocks, and the Ordering of Events in a Distributed System",

Communications of the ACM 21, Vol. 21, No., pp. 558-565.

http://www.ca.com/us/default.aspx
http://www.opnet.com/whitepapers/index_apm.html
http://www.progress.com/en/business-need/responsive-process-management.html
http://www.progress.com/en/business-need/responsive-process-management.html

35

Business Systems Research Vol. 4 No. 1 / March 2013

14. Lowy L. (2010), "Programming WCF Services: Building SOAs with Windows Communication

Foundation, 3rd Edition", O'Reilly Media, Sebastopol CA.

15. Macias, E. M., Sanchez, D., Suarez, A. Sunderam, V. (2009), "Optimization of Execution

Time Inspired Cross Layer Design Using Effective Load Balancing in a LAN-WLAN

Environment", International Journal of Computational Science and Engineering, Vol.4, No.

3, pp. 182-194.

16. ManageEngine (2009), "Security Manager Plus - User Guide", Whitepaper, availabale at:

http://www.manageengine.com/products/security-manager/security-management-

help.pdf.

17. Milanović Glavan, Lj. (2011), "Understanding Process Performance Measurement Systems",

Business Systems Research, Vol. 2, No. 2, pp. 25-38.

18. Oracle (2011), "Introducing Oracle Enterprise Manager 12c ", Oracle Press Release,

available at: http://www.oracle.com/us/products/enterprise-manager/index.html /

(February 2012).

19. Pejić Bach M., Šarlija N., Jaković B. (2009), "Business Intelligence and Risk Management:

Case Study of Croatian Banking Sector", International Journal of Data Analysis and

Information Systems, Vol. 1, pp. 1-9.

20. Price B., Mueller, J. P., Fenstermacher, S. (2007), "Mastering System Center Operations

Manager 2007", Wiley Publishing, Indianapolis. Indiana.

21. Quest Software (2011), "Simplified Network Management For Virtualization Administrators",

available at: http://www.quest.com/ (February 2012).

22. Trlin, G., Zoraja, I. (2012), "Online SOA Chain Performance Monitoring In Mixed

Environments", The 20th International Conference on Software, Telecommunications and

Computer Networks, Split, 11-13 Sept. 2012. pp.1-5.

23. Wismüller R., Bubak, M., Funika, W. (2008), "High-Level Application Specific Performance

Analysis using the G-PM Tool", Future Generation Computer Systems, Vol. 24, No. 2,

pp.121-132.

24. Zoraja I., (2000), "Online Monitoring in Software DSM Systems", Shaker Verlag. Aeachen.

25. Zoraja I., Zulim I., Štula, M. (2008), "CORAL - Online Monitoring in Distributed Applications:

Issues and Solutions", WSEAS Transactions on Computers, Vol. 7, pp. 113-118.

About the authors

Ivan Zoraja is a professor of computer science at the University of Split, Croatia and the

director of company Zoraja Consulting. He received his PhD degree in computer science

from the Technical University of Munich in collaboration with the Emory University in Atlanta.

His primary research interests are software engineering, parallel computing, distributed

systems, and 3D algorithms and simulations in medicine. Author can be contacted at

zoraja@fesb.hr

Goran Trlin is a PhD student of computer science at the University of Split, Croatia. He

received his master degree in computer engineering from the University of Split, Croatia. His

primary research interests are software engineering, parallel computing, distributed systems,

and business intelligence systems. Author can be contacted at Goran.Trlin@fesb.hr

Marko Matijević is a PhD student of computer science at the University of Split, Croatia. He

received his master degree in computer engineering from the University of Split, Croatia. His

primary areas of interest are software engineering, distributed systems and user interface

design. Author can be contacted at Marko.Matijevic@fesb.hr

http://www.oracle.com/us/products/enterprise-manager/index.html

