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Abstract  
Background: The renewal function is widely useful in the areas of reliability, maintenance and 

spare component inventory planning. Its calculation relies on the type of the probability 

density function of component failure times which can be, regarding the region of the 

component lifetime, modelled either by the exponential or by one of the peak-shaped 

density functions. For most peak-shaped distribution families the closed form of the renewal 

function is not available. Many approximate solutions can be found in the literature, but  

calculations are often tedious. Simple formulas are usually obtained for a limited range of 

functions only. Objectives: We propose a new approach for evaluation of the renewal 

function by the use of a simple discrete approximation method, applicable to any probability 

density function. Methods/Approach: The approximation is based on the well known renewal 

equation. Results: The usefulness is proved through some numerical results using the normal, 

lognormal, Weibull and gamma density functions. The accuracy is analysed using the normal 

density function. Conclusions: The approximation proposed enables simple and fairly 

accurate calculation of the renewal function irrespective of the type of the probability 

density function. It is especially applicable to the peak-shaped density functions when the 

analytical solution hardly ever exists. 
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Introduction  
The renewal function ( )H t  plays an important role in the areas of reliability, maintenance 

and spare parts inventory planning (see e.g. Sheikh and Younas, 1985; Barlow, Proschan, and 

Hunter, 1996; Gertsbakh, 2000; Brezavšček, 2011). The calculation of ( )H t  relying on the type 

of the probability density function of inter-renewal times. In the reliability and maintainability 

applications this function is given by the probability density function of component failure 

times, usually denoted by the symbol ( )f t . However, it is not possible to obtain ( )H t  

analytically for any type of the function ( )f t . For most peak-shaped distribution families the 

closed form of ( )H t  is not obtainable. 

Many different approaches have been developed in the literature to approximate or 

numerically compute the renewal function. Chaudhry (1995), Garg and Kalagnanam (1998), 

Cui and Xie (2003), Hu (2006) or Politis and Koutras (2006) give a comprehensive review of the 

approaches for computing the renewal function. They found out that there are many 
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methods to approximate the renewal function such as the extended cubic-splining algorithm, 

the generating function algorithm, and power series expansion (e.g. Robinson, 1997). The first 

method is not simple to implement, the second method is time consuming for large values of 

time, while the third method is distribution specific. Therefore, a simple and general 

approximation for calculating the renewal function is desired. The approximation should 

meet the requirements of simplicity (i.e. it could be used without a need of further numerical 

computation), accuracy (i.e. it should enable fairly accurate estimation of ( )H t  for 

sufficiently large t ), and applicability (i.e. it should be applicable for more distribution families 

rather than a specific distribution). Though some efforts have been made to develop such 

approximations (e.g. Smeitink and Dekker, 1990; Ayhan, Limon-Robles and Wortman, 1999; 

Bebbington, Davydov and Zitikis, 2007; Jiang, 2010) it appears that simple approximate 

formulas are obtained for a limited range of functions ( )f t  only. 

In this paper we develop a discrete approximation which enables a simple calculation of 

the renewal function irrespective of the type of the component failure time distribution 

function. The proposed approximation is especially useful for the peak-shaped density 

functions when the analytical solution of the renewal function hardly ever exists. The 

usefulness of the approximation is proved through some numerical results considering the 

normal, lognormal, Weibull and gamma density functions, while the accuracy of the 

approximation is analyzed using the normal density function. 

 

Theoretical framework 
 

Probability density functions of component failure times 
Technical systems such as industrial systems consist of a number of components of different 

types. During the system operation its components fails. Time to failure of a component of a 

given type is a random variable distributed according to the probability density function ( )f t .  

The behaviour of the function
 

( )f t  depends on the region of the component lifetime. 

From the reliability theory it is known that the lifetime of a component can be roughly divided 

into three regions: the region of early failures, the region of random failures (also called the 

region of the normal operation) and the region of wear-out failures. Early failures are usually 

detected and eliminated by screening or burn-in tests before the components are put into 

operation. The operating period of the component thus comprises only the region of random 

failures and the region of wear-out failures. Random failures are mainly due to inherent slow-

acting defects in the component, or to sudden excessive loading. The main failure 

mechanism in the wear-out region is deterioration of the component materials. The region of 

random failures is characterized by monotonically decreasing function ( )f t , while in the 

region of wear-out failures the distribution of component failure times follows a peak-shaped 

curve. In Figure 1, the general form of the function ( )f t  during the component lifetime is 

presented. To the side, the instantaneous failure rate ( )t  is also shown. It can be seen that 

during the region of random failures ( )t  has approximately constant value  , simply called 

the failure rate. During the wear-out region, the instantaneous failure rate ( )t  increases with 

time. 

 

The renewal process and the renewal function 
When the system during its operation fails, a failed component needs to be replaced by a 

new one as soon as possible. If the replacement time is negligible, the process of consecutive 

corrective replacements of a particular component can be modelled by an ordinary 

renewal process. 

A realization of a renewal process consists of a series of point events (renewals) occurring 

singly in time and completely randomly. When all inter-renewal times (in our case times to 

component failure) are independent identically distributed random variables, the renewal 

process is called ordinary (e.g. Cox, 1970; Nakagawa, 2011). 
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Figure 1 

The Form of the Probability Density Function ( )f t  of Component Failure Times and the 

Instantaneous Failure Rate ( )t  

 

 
 

Source: Author’s illustration 

 

The essential characteristic of an ordinary renewal process is the renewal function ( )H t , 

defined as the expected number of renewals of a single component in the interval (0, )t  

(e.g. Cox, 1970; Beichelt, 2006; Nakagawa, 2011): 

 

 ( ) ( )H t E N t  

 

where ( )N t  represents the number of component renewals during the interval (0, )t . 

The renewal function ( )H t  can be obtained using to the equation (e.g. Cox, 1970; 

Beichelt, 2006; Nakagawa, 2011): 

 

1

( ) ( )r

r

H t F t




  (1) 

 

with 0 ( ) 1F t   and 
1

0

( ) ( ) ( )

t

F t F t f x dx   . The symbol ( )rF t  in (1) represents the r-fold 

convolution integral of the cumulative distribution function ( )F t : 

 

1

0

( ) ( ) ( )

t

r rF t F t x dF x  , 2r   

 

A simple solution of (1) is available for some specific types of ( )f t  only. 
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Theoretically, the calculation of the renewal function ( )H t  according to (1) can be 

simplified using the Laplace transformations because there is a simple relation between the 

Laplace transform of a convolution and the Laplace transforms of the two functions being 

convoluted (e.g. Cox, 1970; Beichelt, 2006).  

Taking into account the relations   *( ) ( )t sf fL ,  
*( )

( )
f s

F t
s

L , 

 
*( )

( )

r

r

f s
F t

s

  
L , the Laplace transform 

*( )H s  of the renewal function is easily derived 

from (1) in the following form: 

 
*

*

*

1 ( )
( )

1 ( )

f s
H s

s f s



 (2) 

 

The renewal function ( )H t  is then obtained by the inversion of the expression (2): 

 
1 *( ) ( )H t H s L  (3) 

 

Unfortunately, when the function ( )f t  belongs to one of the peak-shaped distribution 

families, 
*( )f s  is not always available. Even if 

*( )f s  is available the exact inversion of 
*( )H s  

in a simple form can hardly ever be obtained. 

Another presentation of the renewal function is provided by the so called renewal equation 

(e.g. Tijms, 2003; Nakagawa, 2011): 

 

   
0

( ) ( )

t

H t F t H t x f x dx    (4) 

 

Calculation of the renewal function for different types of ( )f t  

It is clear that the calculation of ( )H t  relies on the type of the probability density function 

( )f t  of component failure times. It follows from Figure 1 that an appropriate mathematical 

model for ( )f t
 
in the region of random failures is the exponential density function, while in 

the region of wear-out failures the function ( )f t  has got a peak-shaped form which is usually 

modelled by the normal, lognormal, Weibull or gamma density function (see e.g. O'Connor, 

2011). We shall briefly discuss the properties of these types of density functions from the 

viewpoint of the renewal function calculation. 

 

Exponential ( )f t  

The exponential density function is 

 

( ) tetf  
 

0,  0t  
 

 

where the parameter   represents the constant failure rate. For this type of ( )f t  the 

calculation of ( )H t  is trivial. The analytical solution can be simply derived using the Laplace 

transform of ( )f t  and equations (2) and (3). We obtain ( )H t t . 

 

Normal ( )f t  

The normal density function is given by the expression 
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2
1

21
( )

2

t

f t e





 

 
  

   ,  ,  0t        

 

with the parameters mean   and standard deviation  . 

 

The normal density function, being defined in the interval ( , )  , is an appropriate 

mathematical model for ( )f t
 

only if / 1   . In practice, we can assume that this 

condition is fulfilled when / 3   . The negative tail of the normal curve is then at most 

0.0013. If / 3   , a truncated normal distribution can be used (see e.g. Johnson et al., 

1994; Kottegoda and Rosso, 1997). 

In the case of normal ( )f t  the exact inversion of (2) is not obtainable, and the analytical 

solution for ( )H t  does not exist. However, as the r-fold convolution of the normal distribution 

function ( )F t  with the parameters   and   is also a normal distribution function with the 

parameters r  and r , the numerical calculation of ( )H t  according to (1) is rather 

simple.  

 

Lognormal ( )f t  

The lognormal density function is 

 
2

1 ln

21
( )

2

t

f t e
t





 

 
  

   0,  0,  0t      

 

where   and   are mean and standard deviation of ln t . 

 

When ( )f t  is lognormal the exact inversion of (2) is not obtainable, so the analytical 

solution for ( )H t  does not exist. Unfortunately, the numerical calculation is not trivial because 

the closed form of ( )rF t  is not directly obtainable. Some approximate formulas can be found 

in the literature but calculations are pretty complex (see e.g. Barouch and Kaufman, 1976; 

Romeo, Da Costa and Bardou, 2003; Lam and Le-Ngoc, 2006). 

 

Weibull ( )f t  

The two-parameter1 Weibull density function is  

 

1

( )

t
t

f t e






 

  
 
 

 
  

 
 

0,  0,  0t      

 

where   is the shape parameter, and   is the scale parameter. 

If the shape parameter   is equal to 1, the Weibull density function becomes exponential, 

and the calculation of the renewal function is trivial. When 1  , the Weibull density function 

follows a peak-shaped form. In such a case the closed form of ( )rF t  is not available. 

Consequently, the numerical calculation of ( )H t  is quite tedious (see e.g. Jiang, 2008). An 

                                                      
1
 In reliability theory, the three parameter Weibull density function is also used. The third parameter  ,     , 

is the location parameter. When 0   the density function starts at time 0t  . 
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exhaustive overview of different methods for numerical calculation of the renewal function 

when underlying distribution is Weibull can be found in Rinne (2009). 

 

Gamma ( )f t  

The two-parameter2 gamma density function is 

 
1

1
( )

( )

t
t

f t e





  


 

  
  

 

0,  0,  0t      

 

where   represents the shape parameter,   is the scale parameter3, and (.)  denotes the 

gamma function4. 

 If 1  , the gamma density function is equal to the exponential density function, and the 

calculation of ( )H t  is trivial. Similar to the Weibull density function, the gamma density 

function follows a peak-shaped form when 1  . The analytical solution for ( )H t  only exists 

for some integer values of   (e.g., 2   or 3  ). The numerical calculation of ( )H t  

according to (1) is simple for any value of  . Namely, the r-fold convolution of the gamma 

distribution function with the parameters   and   is also a gamma distribution function with 

the parameters r  and  . 

 We can conclude that the analytical solution for ( )H t  is trivial when ( )f t  is exponential 

(i.e. components operate in the region of random failures) while the closed form of ( )H t  is 

hardly ever available when the underlying density function is a peak-shaped (i.e. the 

components operate in the region of wear-out failures). The derivation of an approximate 

solution of ( )H t  for a peak-shaped ( )f t  has attracted the attention of many authors, but 

simple formulas are obtained for a limited range of functions ( )f t  only. A more general 

approximate solution for ( )H t  would be most desirable. 

 

The approximate solution for the renewal function 
Our aim is to derive an approximate solution for evaluating the renewal function which 

should meet the following requirements: 

 Mathematical operations involved are simple. 

 Satisfactory accuracy is achieved even for sufficiently large value of time. 

 The solution is useful for any type of the probability density function of component 

failure times. 

 Especially it is applicable to the peak-shaped probability density functions which are 

useful to describe the component failure time distribution in the wear-out region. 

                                                      
2 In reliability theory, the three parameter gamma density function is also used. The third parameter  ,     , 

is the location parameter. When 0   the density function starts at time 0t  . 

3 When   is integer the gamma density function becomes the Erlang density function. When the shape parameter 

is 2  (β is any integer) and the scale parameter is equal to 2 the gamma density function becomes the Chi-

square density function. 

4
1

0

( ) x zx z e dz



     
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According to our knowledge, such a solution has not been provided in the literature till 

now. 

As a basis for the derivation of our approximation the recursive integral equation (4) is 

used. The main idea of the approximation is a discretization of the continuous time interval 

(0, )T  by its division to a number of subintervals of length h , as shown in Figure 2. The length 

h  of subintervals within (0, )T  should be short enough to ensure that the probability of 

occurring more than one component failure during h  is negligible. 

 

Figure 2 

Discretization of the Interval (0, )T  

 

 
 

Source: Author’s illustration 

 

If the value h  is short enough, we can assume that component renewals during (0, )T  

occur only in the time points ,  1,2, ,i i T  with the probability ip . Considering this 

assumption our discrete approximation of (4) reads as follows: 

 

1 1

( ) ( )      1,2,

(0) 0

T T

i i

i i

H T p H T i p T

H

 

   



 
 (5) 

 

We define the probability ip  in (5) by the integral 

 

1

( )

i

i

i

p f t dt


  , 1,2,i  , 
1

1i

i

p




  

 

 This definition implies that the values of discrete and continuous cumulative distribution 

functions of inter-renewal times are equal since: 

 

1 1 1 0

( ) ( ) ( )

i TT T

i

i i i

p f t dt f t dt F T
  

       (6) 

 

Considering the equations (5) and (6) we get the following algorithm for estimating the value 

( )H T  of the renewal function in an arbitrary time T : 

 

1 1

( ) ( ) ( ) ( )      1,2,

iT

i i

H T F T H T i f t dt T
 

      (7) 

 

with the initial condition (0) 0H  . 

 Since our approximation (7) involves the assumption that the renewals which can actually 

occur anywhere within the interval (0, )T  occur exactly at the time points ,  1,2, ,i i T , the 

value ( )H T , calculated according to (7), is too low. The error introduced in such a way can 
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be diminished by choosing sufficiently small value of h . When 0h  the value ( )H T , 

calculated according to (7), converges to the exact value of the renewal function. However, 

decreasing of h  will improve the accuracy of our approximation (7) but also increase the 

number of recursive calculations. Therefore, the length h  of subintervals between two 

successive time points ,  1,2, ,i i T , is appropriate, when its shortening does not change 

the value of ( )H T  over acceptable limits. 

Because the mathematical operations in (7) are simple, the renewal function can be 

calculated easily for any value of time T  and regardless of the type of the function ( )f t . 

Similar approximations, derived in a different way, have been proposed in Jardine (1973), 

Jardine and Tsang (2006) and van Noortwijk and van der Weide (2008). 

 

Numerical results 
To prove the usefulness of the approximation (7) some numerical results are given in Table 1. 

In the calculations, the normal, lognormal, Weibull and gamma density functions are 

considered. 

Results from Table 1 prove that our approximation (7) is applicable to all types of density 

functions which are widely used in reliability studies to describe the function ( )f t  in the wear-

out region. Although all of density functions considered are of peak-shaped form, the 

calculated values of ( )H T  cannot be compared directly. In the case of the normal and the 

gamma density functions the values ( )H T , calculated according (7), can be compared 

with the corresponding values, calculated according to (1). We can briefly conclude that our 

approximation gives fairly accurate results even for comparatively large values of time. 

 

Table 1  

Applicability of the Approximation (7) to Different Peak-Shaped Probability Density Functions, 

Widely Used in the Reliability Applications 

 

t  0.25  0.5  0.75    2  3  

Normal pdf 

45   15   

( )H t calculated 

according to (1) 
0.01233 0.06755 0.23068 0.51722 1.54166 2.55363 

( )H t calculated 

according to (7) 
0.01122 0.06674 0.22941 0.51392 1.53687 2.53418 

Lognormal pdf 

' 5   ' 0.3 

 

155   48   

( )H t calculated 

according to (1) 
- - - - - - 

( )H t calculated 

according to (7) 
4.20E-06 0.01600 0.20572 0.55834 1.54237 2.53594  

Weiblull pdf 

3.5  200   

 

180  57   

( )H t calculated 

according to (1) 
- - - - - - 

( )H t calculated 

according to (7) 
0.00539 0.05939 0.22488 0.51039 1.53147 2.53710 

Gamma pdf 

2.9   50   

 

145  85   

( )H t calculated 

according to (1)
 

0.04395 0.20226 0.42552 0.67093 1.67240 2.67241 

( )H t calculated 

according to (7)
 

0.04322 0.20129 0.42478 0.66968 1.66778 2.66436 

Source: Author’s Calculations 

 

The accuracy of the approximation (7) depends on the length h  of subintervals between 

two successive time points ,  1,2, ,i i T  (see Figure 2). To analyze the effect of shortening 

of h  to the accuracy of the calculated values we use the normal density function. In order to 
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exclude the possible effect of the negative tail we present the results for the ratio 4   . 

We compare the values of ( )H T , calculated according to (1)5, and the corresponding 

values, calculated according to (7). In calculations according to (7) different values of h  are 

considered. Results for the time span up to 3  are shown in Figure 3. 

 

Figure 3 

The influence of the length h  of subintervals between two successive time points 

,  1,2, ,i i T , on the accuracy of the approximation (7) 

 

 
 

Source: Author’s illustration 

 

It can be seen from Figure 3 that for 1.2T   all the curves overlap. This proves that for 

fairly short times our approximation (7) provides accurate results irrespective of the value of h

. When T  increases the error of ( )H T  calculated using (7) increases. However, we can see 

that shortening of h  diminish the error efficiently. When 30h   the error does not exceed 

1% for times between   and 2 . For smaller values of h  still better accuracy is obtained. For 

example, if 50h   the error does not exceed 1% even for 3T  . 

 

Conclusion 
The renewal function is an important characteristic, needed in the areas of reliability analyses, 

maintenance optimization and spare components inventory planning. Its calculation 

depends on the form of the probability density function of failure times during the region of 

component operation. In the region of random failures, the calculation of the renewal 

function is trivial because the probability density function of component failure times is 

                                                      

5The approximation 
6

1

( ) ( )r

r

H T F T


  is used. The maximum error does not exceed 3E-6.  
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described by the exponential density function. In the region of wear-out failures, the 

probability density function of component failure times exhibits a peak-shaped form. In that 

case, the calculation of the renewal function is in general difficult because the analytical 

solutions hardly ever exist. The derivation of an approximate solution of the renewal function 

for a peak-shaped failure time distribution has attracted the attention of many authors, but 

simple approximate formulas are obtained for a limited range of functions only. 

In this paper, we have proposed a discrete approximation for estimating the value of the 

renewal function. The approximation is derived from the so called renewal equation. Due to 

simple mathematical operations involved, it enables a simple and fairly accurate calculation 

of the renewal function for any type of the probability density function of component failure 

times. It is especially applicable to the peak-shaped density functions when the analytical 

solutions hardly ever exist. To prove the usefulness of the approximation some numerical 

results are given considering the normal, lognormal, Weibull and gamma probability density 

functions. It is also shown that satisfactory accuracy of the approximation can be achieved 

by division of the time interval into sufficiently short subintervals. 

Since the approximation proposed meets the requirements of the simplicity as well as the 

applicability to different types of peak-shaped density functions, the practical value of the 

approximation is significant. The approximation is useful everywhere in the reliability analysis 

and the maintenance policy optimization where the renewal function needs to be 

evaluated. 

The main limitation of our approximation is the following: The accuracy of our 

approximation depends on the length h  of subintervals between two successive time points, 

where smaller h  ensures better accuracy (see Figure 2). However, the negative effect of the 

decreasing of h  results in the increasing of the number of recursive calculations. 

Consequently, when someone wants to calculate very accurate estimation of the renewal 

function in a very large value of time (i.e. t  ), our approximation becomes time 

consuming, and therefore probably useless. However, it has been shown that within the 

acceptable limits of calculating time the error less than 1%  in the time span up to 3  can be 

achieved. In our opinion, for practical purposes this is good enough, even because a simple 

asymptotic formula for the renewal function (Cox, 1970; Beichelt, 2006) can be used for larger 

values of time. 
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