

6

Vol. 5 No. 1 / March 2013 Business Systems Research

Embedded Systems Development Tools: A

MODUS-oriented Market Overview

Michalis Loupis
Central Greece Institute of Technology, Department of Electrical Engineering

Abstract

Background: The embedded systems technology has perhaps been the most

dominating technology in high-tech industries, in the past decade. The industry has

correctly identified the potential of this technology and has put its efforts into

exploring its full potential. Objectives: The goal of the paper is to explore the

versatility of the application in the embedded system development based on one

FP7-SME project. Methods/Approach: Embedded applications normally demand

high resilience and quality, as well as conformity to quality standards and rigid

performance. As a result embedded system developers have adopted software

methods that yield high quality. The qualitative approach to examining embedded

systems development tools has been applied in this work. Results: This paper presents

a MODUS-oriented market analysis in the domains of Formal Verification tools,

HW/SW co-simulation tools, Software Performance Optimization tools and Code

Generation tools. Conclusions: The versatility of applications this technology serves is

amazing. With all this performance potential, the technology has carried with itself a

large number of issues which the industry essentially needs to resolve to be able to

harness the full potential contained. The MODUS project toolset addressed four

discrete domains of the ESD Software Market, in which corresponding open tools

were developed.

Keywords: embedded systems, formal verification, co-simulation, performance

optimization, code generation

JEL main category: Economic Development, Technological Change, and Growth

JEL classification: O31

Paper type: Research article

Received: 12, June, 2013

Accepted: 10, February, 2014

Citation: Loupis, M. (2014), “Embedded Systems Development Tools: A MODUS-

oriented Market Overview”, Business Systems Research, Vol. 5, No. 1, pp.6-20.

DOI: 10.2478/bsrj-2014-0001

Acknowledgments: This research activity is funded under the EU Research for SME

associations FP7 project, MODUS-Methodology and supporting toolset advancing

embedded systems quality (Project No.286583).

7

Vol. 5 No. 1 / March 2013 Business Systems Research

Introduction
The embedded systems technology has been perhaps the most dominating

technology in the industry, in the past decade. The industry has correctly identified

the potential of this technology and has directed its efforts in exploring its full

potential. The versatility of the application this technology serves is amazing. With all

this performance potential, the technology has carried with itself a large number of

issues which the industry essentially needs to resolve to be able to harness the full

potential contained. Embedded applications normally demand high resilience and

quality, as well as conformity to quality standards and rigid performance. As a result

embedded system developers have adopted software methods that yield high

quality. The MODUS project toolset addressed 4 discrete domains of the ESD

Software Market, in which corresponding open tools were developed. This paper

presents a MODUS-oriented market analysis in the domains of Formal Verification

tools, HW/SW co-simulation tools, Software Performance Optimization tools and

Code Generation tools.

Market overview and size
Embedded systems
Embedded system technology has positively affected a wide range of application

sectors including consumer electronics, medical electronics, automotive, and

aerospace. Serving various aspects of the needs of these application sectors has

predominantly been the challenge for developments therein. The overall market of

embedded real-time operating systems can be classified as in

Figure Figure 1, which shows the technologies involved, the main industrial segments

and the various geographic regions.

Figure 1

Market Definition and Segmentation for Embedded Systems

Source: IDC (2012)

8

Vol. 5 No. 1 / March 2013 Business Systems Research

 The embedded systems market can be divided into sectors that concern top

safety critical applications (i.e. automotive/rail, medical, aerospace) and

applications of less stringent safety requirements (i.e. consumer electronics, mobile

phones, industrial automation, telecom).

 However, a failure of any system that could entail a very high financial loss is not

to be ignored and therefore a vendor that can provide reliable applications of high

availability and integrity can potentially capture a significant portion of the

embedded systems market, regardless of market specific area. The emergence of

new processors has also raised new potentials for these embedded applications.

They can now incorporate more functionality, a feature however that inherently

increases system complexity. In turn this justifies the need to allow multiple

applications of different criticality to run on a single processor and share a common

memory. Such a software paradigm would require on the other hand independent,

protected execution time and memory space for each system application.

Partitioned software architectures are the key component to share applications on

the same hardware while increasing the security and robustness of the system

(MODUS Project, 2013).

 Embedded systems market value was almost €852 billion in 2010. The overall

industry has been growing at a compound annual growth rate (CAGR) of 12%

throughout the period and should reach a revenue size of €1,5 trillion by 2015. This is

growing not only at a faster pace than any traditional IT sector but also more than

150% faster than the total semiconductor industry. Energy is still the fastest growing

market (2010-2015 CAGR: 34%) while communications, automotive and healthcare

market will sustain an annual double digit growth along the same period. The

worldwide market for embedded systems development software (ESD) had a size of

about €3.31 billion in 2010. IDC forecasts that the worldwide market for ESD software

will expand at a 7.1% compound annual growth rate to surpass €6,5 billion in 2020

(IDC, 2012). European ESD software revenues in 2010 reached about €986 billion, or

30% of worldwide revenues, compared with 46% for North America and 19% for the

Asia-Pacific region including Japan. Notably Europe's and North America's 2010-2020

CAGR are slightly below the worldwide total ESD Software revenue growth during

the same period; the European one is estimated at 6.3% and the North American

one at 6.8%.

 This growth in most cases will be attributed to advanced, cloud-aware

embedded systems of increased complexity, which will entail faster hardware,

reliable connectivity and more sophisticated operating systems and analytical

software. It is expected that in 2015, more than 4 billion units will be sold, to create a

compound market of $2 trillion. In the same period the needs of embedded systems

for microprocessor cores will exceed 14.5 billion units. Moreover embedded systems

developers need to adapt to a challenging economic environment, pressing time-

to-market limitations and cost reduction requirements, while simultaneously dealing

with the actual technical impediments and particularities of their work. Often these

impediments will directly conflict with the increasing complexity now linked with

many new embedded systems. A further complication involves the growing mobility

needs and intensifying requirements for inherently safe and secure, sometimes even

critical, in a pervasive digital world (MODUS Project, 2013).

 Furthermore, the lack of effective management tools for multiple cores and

enhanced performance creates a barrier towards the adoption of multicore

architectures. Virtualization solutions for mobile and embedded applications have

emerged in recent years, as an approach addressing many of these challenges. It

should be noted however that any advantages of virtualization for enterprise

systems, which could range from potential overhead savings through server

9

Vol. 5 No. 1 / March 2013 Business Systems Research

consolidation to improved flexibility and data storage capacity, will not be identical

to the ones encountered in mobile and embedded systems (Kebemou,

Schieferdecker, 2007). Many of these differences, of course, are attributed to the

specifications inherent in many embedded designs, mainly pertaining to power and

memory limitations, and the normally small form nature of embedded devices. The

top benefits, as shown in Figure 2, include design portability to new hardware

platforms, secure partitioning of guest operating systems, and the ability to easily run

and manage multiple operating systems.

 The embedded systems market can be divided into sectors that concern top

safety critical applications (i.e. automotive/rail, medical, aerospace) and

applications of less stringent safety requirements (i.e. consumer electronics, mobile

phones, industrial automation, telecom).

 However, a failure of any system that could entail a very high financial loss is not

to be ignored and therefore a vendor that can provide reliable applications of high

availability and integrity can potentially capture a significant portion of the

embedded systems market, regardless of market specific area. The emergence of

new processors has also raised new potentials for these embedded applications.

They can now incorporate more functionality, a feature however that inherently

increases system complexity. In turn this justifies the need to allow multiple

applications of different criticality to run on a single processor and share a common

memory. Such a software paradigm would require on the other hand independent,

protected execution time and memory space for each system application.

Partitioned software architectures are the key component to share applications on

the same hardware while increasing the security and robustness of the system

(MODUS Project, 2013).

Figure 2

Primary Advantages from the Use of Virtualization in Mobile and Embedded Systems

(Percentage of respondents)

Source: IDC (2012)

27%

23%

22%

17%

17%

16%

5%

1%

5%

37%

0% 5% 10% 15% 20% 25% 30% 35% 40%

Ability to easily port designs to hardware platforms

Secure partitioning of guest operating systems

Ability to easily run and manage multiple OSs

Ability to easily integrate new applications onto…

Enable safety-critical certification of the…

Ability to partition or segment application…

Ability to consolidate discrete processors for…

Other

None of the above

Don't know

10

Vol. 5 No. 1 / March 2013 Business Systems Research

Embedded Systems SW Engineering
Embedded applications normally demand high resilience and quality, as well as

conformity to quality standards and rigid performance. As a result embedded

system developers have adopted software methods that yield high quality.

Examples of the practices used in embedded software development include the

following:

o Requirements prioritization and traceability of quality through Quality Function

Deployment (QFD).

o Model-driven design and test.

o Mathematical modelling for reliability, power consumption, thermal, and

performance analysis

o Formal design and code verification.

o Automated static code analysis for memory, performance, and security.

o Extended automatic testing.

o Design of explicitly reusable code.

 In the embedded world development methods are usually more formal in its

compared to other software domains. The main reason is that many embedded

applications are intrinsically safety-critical (for example, medical devices, industrial

automation, automotive, or aerospace). Hence developers have been led to adopt

and use formal methods that concentrate on quality on a systematic base to face

the safety and criticality constraints. Along these lines, several industries are forced to

comply with stringent quality and schedule requirements, resulting in extensive fault

criteria. For example, in the aerospace business, deadlines and quality are

unconditional requirements, and the same stands as for the automotive electronics

or industrial automation, where extensive external systems are depending on the

timely availability of robust embedded software controllers. Nowadays, SMEs have

many choices as to which target operating system to integrate in their embedded

systems depending on their needs. The key parameter is that device/system

functionality is driving complexity and increased software content, which in turn

leads to more sophisticated system interfaces, complex graphical elements, wired

and wireless capabilities, and others. Consequently, there is a notable shift regarding

the operating systems used in target devices, from not formal and in-house

developed, to a variety of other commercial and open source products (MODUS,

2013). In a recent survey it was recorded that the use of commercially licensed (not

open source) operating systems is expected to remain fairly stable, whereas almost

50% of the participating engineers stated that their target OS is selected on a

project-by-project basis.

 Real-time applications should be deterministic, exhibiting timeliness and

predictability, and the operating systems addressing these applications meet these

constraints by paying special attention to a number of OS features such as

multitasking, task synchronization, deterministic handling of interrupts and events, i/o

management, inter-task communication, provision of timers and clocks and memory

management. Various RTOSs (Real-Time OS) implementing those functional

requirements, differ in their implementation choices and strategies. Leading solutions

for the embedded domain include Real-Time Systems’ RTS Hypervisor, Green Hills

Software’s INTEGRITY Multivisor, LynuxWorks’ LynxSecure, SYSGO’s PikeOS, TenAsys’

eVM for Windows, and Wind River Hypervisor. For mobile embedded applications,

Open Kernel Labs’ OKL4 Microvisor and Red Bend Software’s VLX are two of the most

widely used solutions, while VMware – a leader in enterprise/IT virtualization– is

expected to expand in the mobile domain (MODUS Project, 2013)

11

Vol. 5 No. 1 / March 2013 Business Systems Research

Figure 3

Survey Results on the Type of Operating System Used (% of respondents)

Source: IDC (2012)

 The commercially available operating systems can be seen as a closely coupled

system of functionality, performance, and price. They range from those offering a

basic pre-emptive scheduler and a limited number of system services, which are

usually inexpensive or royalty free and include modifiable source code, to those

more sophisticated operating systems that typically include a lot of functionality

beyond the basic scheduler and can be quite expensive. With the given variety of

operating systems and corresponding features, it is usually difficult to decide which

OS is the best for a given application. Many developers base their decision on

performance, set of functionalities, or compatibility with their legacy or chosen

compiler, debugger, and other development tools, as shown in Figure 4.

 Moreover, although the actual use of multi-core and operating system

virtualization technologies is currently limited to a fraction of projects under

development (see Figure 1), an increasing number of embedded system developers

is planning to incorporate these technologies in future projects. The validity of these

plans is sustained by supplier messaging and the availability of training seminars and

product support for both operating systems and tools solutions to support both multi-

core and virtualization environments. Operating system virtualization specifically

offers advanced capabilities to cope with such issues as obsolete silicon parts,

evolving legacy software assets, for which significant investments have been made

already, and providing an environment where multiple guest operating systems and

applications can operate independently.

 For enterprise IT applications, virtualization has emerged as a key strategy to

control costs by consolidating servers, therefore reducing the related hardware, floor

and in-rack space, power consumption, and cooling. In the same time it offers an

increase of availability, reliability, redundancy and performance, leading to a new

approach to such computing infrastructures like cloud computing, grid and clusters

that can be easy implemented and managed.

44,40%

19%

20,30%

20,30%

12,50%

7,80%

3%

33,10%

27,60%

23,20%

16,50%

15,40%

9,80%

1,60%

18,60%

27,40%

27,80%

15,20%

13,50%

12,70%

16,00%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

No formal OS used

Commercially licenced OS

Publicly obtained open source OS

In-house developed OS

Chip/vendor supplied OS

Commercially licensed or consortia/industry
groub-obtained open source OS

Don't know or not yet decided

Next Project, N=237 Current Project, N=254 Previous Project, N=232

12

Vol. 5 No. 1 / March 2013 Business Systems Research

Figure 4

The Most Important Characteristics for Selecting Embedded Operating System

Source: IDC (2012)

Figure 1

Hypervisor/Virtualization Layer/Microkernel Use in Current and Future Projects

(Percentage of respondents)

Source: IDC (2012)

 In recent years, virtualization has evolved from an experimental technology used

only in test and development environments to a core infrastructure technology.

Now, many businesses plan for all new servers to be virtualized and the use of virtual

servers has overcome the implementation of physical servers (Figure 2). Although

there are several parameters to be considered, server consolidation is the primary

reason that is driving the wholesale adoption of virtualization. Server consolidation

allows organizations to increase the rate of hardware utilization while decreasing the

power costs and management requirements at the same time. In addition, high-

availability technologies such as vMotion and Live Migration have also disassociated

virtual machines (VMs) from their physical hosts, creating the foundation for the

0,0% 10,0% 20,0% 30,0% 40,0% 50,0%

Overall cost

Real-time capabilities /performance

Availability of dev. tools

Reiability / stability

Technical capabilities

Run-time royalty cost

Familiar programming interface

Technical support from vendor

Customer requirements

Bundled software components

Variety of μprocessors supported

Footprint vs memory prices/avail.

Size of developer community

Security

Reputation of vendor

Support for multicore architecture

Independence from semicinductor companies

Virtualization capabilities

Support for multiprocessing architectures

(Percent of Respondents, N=234)

3,30%

10,10%

0,00% 2,00% 4,00% 6,00% 8,00% 10,00% 12,00%

Current Project, N=243

Expected in Two Years, N=227

13

Vol. 5 No. 1 / March 2013 Business Systems Research

dynamic data centre where VMs can be moved between hosts automatically in

response to changing workloads. Virtualization is a core mainstream technology that

will definitely alter the IT landscape for the foreseeable future. IDC studies have

shown that one out of every five servers is virtualized today but it seems clear that

those numbers will be reversed in just a few years, and virtual servers will far

outnumber physical ones (IDC, 2012).

 As virtualization separates the server from the underlying hardware, virtualization

technology is applied more on infrastructure such as cloud computing and mobile

computing platforms. Cloud computing is indeed an emerging trend that tends to

rely on virtualization, such as Amazon’s EC2 and Windows Azure’s Hyper-V, and

many related services are built on virtual servers. The cloud disassociates the service

or application from the underlying infrastructure and allows the management of

multiple servers and applications as part of an extended service. The cloud’s viability

has now enabled emerging businesses and services to provide businesses with

compelling and ready-to-use solutions (e.g., Windows Intune, Microsoft Office 365).

Figure 2

Top Technology Trends to Influence Infrastructure Cost and Performance

Source: IDC (2012)

 The current leverage may be limited, but the adoption of cloud technologies will

certainly grow, migrating parts of the IT infrastructure to off-premises hosting

companies. Furthermore, mobile computing platforms and smart phones such as the

iPhone, Samsung, Android and BlackBerry, are now beyond the point of phone

production alone. The torrential growth of the mobile apps market and Internet

connectivity has made smart phones a useful productivity device that could make

use of the virtualization technology. Virtualization of mobile devices would allow

carrying one device with multiple virtualized environments which could support

different levels of confidentiality and applicability.

Market Analysis of Relative Tools
Model Verification Tools
Formal verification in general is a process of verifying the correctness of a system with

respect to the formal system specification. With the help of mathematical methods

and tools the correctness of the system is proved or disproved. Formal verification

can be used for almost any system, but due to additional effort involved it usually is

used for critical systems. These systems may include protocols, digital circuits, and

software. When system needs to be formally verified, the first step of the process is

the formal description of the requirements. This alone is beneficial because it is often

a case that the specification is ambiguous, incomplete, and inconsistent. When it is

73% 68%

34%
25%

Cloud computing Virtualization (server,
storage, desktop and
management tools)

Mobile technologies Commercial devices

Percentage of infrastructure executives who cited trends in a survey conducted by the
Corporate Executive Board

14

Vol. 5 No. 1 / March 2013 Business Systems Research

required to write down the specification using mathematical formulas it is easy to

spot ambiguous parts of informal description. Model checking is the automated

process or technique for verification of properties of the finite state machine. The

idea is to ensure that the system does not reach deadlock and other forbidden

states. The algorithm that is used for model checking procedure requires the

specification and the model of the system to be described in precise mathematical

language (Schmidt, 2006).

 Formal specification languages are the languages used during system design,

and analysis, describing in a formal way the system requirement. Typically

specification languages are not intended for creating executable code. They are

tailored for description of certain system properties often using mathematical syntax.

There are many formal specification languages: VDM (++), Z, B, RSL, CASL, Petri Nets,

CSP, Temporal, Logic, OCL, and JML. The specification languages differ as some of

them were intended to deal with different types of services. Many of the languages

were inspiration for creation of automated verification and validation methods and

tools. These tools for model checking available within different frameworks are

summarised in Table 1(MODUS project, 2013).

Table 1

Summary Table for Formal Verification tools

Features RAISE MATLAB

Simulink

SPIN UPPAAL NuSMV UML

Language RSL Graphical +

Matlab syntax

Promela

Graphical NuSMV Graphical

Functional features Formal

specification

(RSL),

verification

(SAL)

Specification

– Stateflow,

Verification

Simulink

Formal

verification

Formal

specification,

Verification

Formal

specification,

Verification

Formalisation

of the

specification

Integration

in the

process

flow

Previous

step

Informal

specification

Informal

specification

Informal

specification

Informal

specification

Informal

specification

Informal

specification

Next

Step

Verification

(using SAL)

Final system

design, code

cogeneration

using Matlab

tools

Final system

design, code

cogeneration

Final system

design, code

cogeneration

3rd parties

System

implementation

System

verification

Interface Text, Emacs Graphical Graphical or

Emacs (text)

Graphical Text Graphical

Extensions Translator to

SML, SAL

and UML

Simulink

Coder or

Embedded

Coder,

integration

with xPC

Target board

Eclipse plug-

in,

UML to SPIN

(Hugo/RT)

UML

translator, C

translation

UML translator

Eclipse extension

Extensions to

verification

and code

generation

tools

Environment Solaris, Linux,

Windows

Windows,

Linux, and

Mac OS

Windows,

Linux, and

Mac

Requires

Java

Linux, Mac OS X,

Microsoft

Windows

Windows,

Linux, and

Mac

License Open

Source

Requires

license

Open-source

software

Requires

license

LGPL Free and

commercial

tools

available

Source: Author

15

Vol. 5 No. 1 / March 2013 Business Systems Research

Co-Simulation Tools
The aim of this section is to make an analysis and evaluation of co-design tools

available in the market (Table 2). In this extent, several criterions have been taken

into account: Technical approach of the tool, Ability to be integrated into MODUS

design flow, Compliance to industry standards, Extensibility, Support, Price, Licensing

models, and Long-term availability. Within MODUS we have identified 5 tools,

considered as representatives of the current industrial practises: CarbonStudio,

Cadence Virtual Prototyping, SpaceStudio, OVP, and Mentor Graphics ModelSim.

 Further analysis of the respective tools is available in (MODUS Project, 2012), where

an overview of the features and capabilities of the relevant available tools in the

market are presented. Among these tools we have eliminated CarbonStudio and

Cadence Virtual Prototyping as cost of a license is too high (starting from 100k€).

Table 2

Summary table for HW/SW co-simulation tools
Features Open Virtual Platform Space Studio ModelSim

Language C/C++, SystemC,

assembly

C/C++, SystemC SystemC, VHDL, Verilog

and SystemVerilog

Functional

features

Instruction-accurate

simulator

LGPL’d peripherals

models

API for creating new

components

Integrates SystemC

models

Design environment for

embedded systems and SOCs

Timed and untimed simulations

In-depth non-intrusive

hardware/software

Integrates external SystemC

models

SystemC – VHDL translator

Native support of

VHDL,Verilog,

SystemVerilog and

SystemC

Full code coverage

Post-simulation analysis

Open TCL/tk or C API

Interface Command line,

graphical is using gdb

front-ends

Graphical Graphical

Environment Windows, Linux Windows Windows

License Requires license only

for simulator part

Requires license Requires license

Source: Author

Software Performance Optimization Tools
Software performance optimization is a critical component in achieving high

performance for embedded systems. Performance optimization can be defined as

the process of modifying specific software system components in order to work more

efficiently or use fewer resources. Computational specialists have adopted

programming strategies affecting the utilisation of hardware resources and have

parameterized their software implementations to accommodate the architectural

variety of modern computing platforms. While this approach has been quite

successful, it is largely susceptible to errors and extremely time consuming for

developers to manually program the management of hardware resources. This

approach mandates a repeatedly modify-compile-execute development cycle

until a sufficient performance gain is achieved (or the development deadline has

been expired) (Falk et al., 2004). Towards overcoming the aforementioned problems,

there has been considerable work in the domain of iterative optimisation in an effort

to effectively automate this process. Those practices concentrate on choosing

optimal program modifications or transformations in order to reduce the number of

modify-compile-execute cycles (see Table 3).

16

Vol. 5 No. 1 / March 2013 Business Systems Research

Table 3: Summary table for Software Performance Optimization tools

Features MENTOR EDGE System

Profiler

IAR Embedded

Workbench

RAPITA

Verification Suite

QNX Momentics

Tool Suite

Language Embedded C, C++,

assembly

C/C++ C/C++, Ada C/C++

Functional

features

Dynamic Memory

Problem Analysis,

System OS Analysis

Automatic

checking of

MISRA C rules,

Power debugging

Eliminates

unnecessary test

activities, on-

target coverage

and timing

measurement

Source debugger,

target system

information,

application

profiler, system

profiler, memory

analysis

Interface Graphical Graphical Graphical Graphical

Environment Windows, Linux,

Nucleus OS

Windows Windows, Linux Windows, Linux

License Requires license Requires license Requires license Requires license

Source: Author

Code Generation Tools
As already outlined, emerging technology gives rise to an increase in the complexity

of applications. To deal with this code generators are a used practice to increase

code quality and decrease development time. Their objective is to generate

repetitive source code while maintaining a high consistency level of the generated

program code. The act of code generation is based on an ontological model such

as a template. Code generation tools will normally produce chunks of repetitive

code, allowing programmers to concentrate on specific code. Thus generators

increase productivity; generate large volumes of code, which would require a

longer development time if coded manually (see Table 4). The need for consistent

code quality is satisfied throughout the entire automated code generation by

applying consistently coding conventions, unlike manual coding, where the quality is

usually inconsistent. If errors are traced in the generated code, they can be

corrected in short time through the revision of templates and rerunning the process

of code generation (Vestal, 1994).

Table 4

Summary table for Code Generation tools
Features Acceleo MTL IBM Rational

Software

Architect

MagicDraw Mia-

Generation

SinelaboreRT SunRPC

Language input metamodel

compatible

with EMF like

UML

UML UML, SysML UML UML .x IDL

output C, Fortran,

Java, , any

Markup

Language

Java, C#,

C++ and

other

J2EE, C#,

C++,

CORBA IDL

and other

C++, Java,

Delphi

C++, Java

and C#

ANSI C

Functional features Code

generation

from EMF

based

models

Model-to-

code and

code-to-

model

transformatio

ns

Code

generation

from model

static

structure

Code

generation

from model

static

structure

Code

generation

from model

static

structure

Automatically

generates the

client and

server stubs

for RPC calls

Interface Graphical Graphical Graphical Graphical Graphical Command

line

Environment Windows,

Linux,

Nucleus OS

Windows Windows,

Linux

Windows,

Linux

Windows,

Linux, Mac

OS X

Unix, Linux,

Windows

License Open-source

(EPL)

Requires

license

Requires

license

Requires

license

Requires

license

Sun (Free)

Source: Author

17

Vol. 5 No. 1 / March 2013 Business Systems Research

Virtualisation Tools
Embedded hypervisors differ from their conventional counterparts in that they

implement a specific type of abstraction with different constraints than other

platforms. Efficiency is the objective in all cases, but embedded hypervisors must

deal with further constraints, beyond the conventional virtualization environments.

Besides processor sharing, memory tends to be one of the main performance

limitations in embedded applications. To that extent, embedded hypervisors need to

be small and extremely efficient as to their use of memory. Normally smaller code

sizes are easier to validate and verify. In fact, several embedded hypervisor vendors

offer a formally verified hypervisor and guarantee their bug-free operation.

 Furthermore a smaller hypervisor results in a more secure and reliable

development platform, effectively because the hypervisor is typically the only

portion of the system to run in a privileged mode, implementing what is known as the

Trusted Computing Base (TCB) and constituting a secure platform. Embedded

hypervisors are normally built to share a hardware platform with multiple guests and

applications but also extend communication methods to allow them to interact. This

communication means is both efficient and secure, permitting privileged and non-

privileged applications to coexist. In addition to providing containment for security

and reliability, the embedded hypervisor provides benefits in terms of license

segregation.

Table 5

Virtualization Techniques Overview
Technique Advantages Disadvantages Products

Operating System

Level

Virtualization

(separation kernel)

Adequate performance. No strong isolation between

virtualized environments.

Simultaneous execution of

multiple OSs not supported.

Only Linux distributions

supported.

Related OSs provides no real-

time characteristics.

Linux VServer,

Solaris Zones &

Containers,

FreeVPS,

openVZ

Full Virtualization No modification of the guest OS

required.

Multiple levels of abstraction,

lead to low performance.

Related OSs provides no real-

time characteristics.

VMWare Server,

Virtual Box,

Kernel-based

Virtual Machine

(KVM)

Paravirtualization

(Hypervisor

virtualization)

Good performance.

Strong isolation of virtual

environments.

Safety critical applications can

coexist with non-critical ones.

Applications of different levels

of security can securely coexist.

(separation kernels)

Small footprint kernel easier to

validate.

Ability to monitor the guest OSs.

Guest OSs has to be modified. Xen

VMWare ESX Server

PikeOS

RTS Hypervisor

OKL4

Virtual Logix

Wind-River VxWorks

Integrity-178B

LynxSecure

QNX

XtratuM

Source: Author

 Embedded hypervisors also offer a communication mechanism which permits

proprietary software and open source software to coexist in isolated environments.

Because of embedded devices becoming more open, the need to mix proprietary

software with third-party and open source software is a key issue. Finally, the

embedded hypervisor must support real-time scheduling. In the case of handsets,

the hypervisor can share the platform with core communication capabilities and

third-party applications. Real-time scheduling allows the critical functions to coexist

18

Vol. 5 No. 1 / March 2013 Business Systems Research

with applications that operate on a best-effort basis.

 Two main approaches to build a partitioned system through virtualization can be

found; separation kernel, also known as operating system level virtualization and

platform virtualization that can be divided as well in full virtualization and para-

virtualization. Most of the several virtualization solutions fall under one of these

virtualization mentioned techniques that are in common use today: operating

system level virtualization, full virtualization and para-virtualization. Table 5 provides a

summary of advantages and disadvantages of these virtualization techniques and

the most representative products that use them.

Table 6

Virtualization Solutions Using the Hypervisor Technique
Product OS support Licensing scheme Areas of use

Xen FreeBSD, NetBSD, Linux,

Solaris, Windows XP & 2003

Server (needs vers. 3.0 and

an Intel VT-x (Vanderpool) or

AMD-V (Pacifica)-capable

CPU), Plan 9

GPL Server/Desktop Consolidation,

Development/Testing

VMWare ESX

Server

Windows, Linux, Solaris,

FreeBSD, Osx86 (as FreeBSD),

Virtual appliances, Netware,

OS/2, SCO, BeOS, Darwin,

others: runs Arbitrary OS

Proprietary Enterprise Server Consolidation,

Business Continuity,

Development/Testing

PikeOS PikeOS, Linux, RTEMS, OSEK,

ARINC 653 APEX, ITRON

Proprietary Safety and security critical

embedded systems.

RTS Hypervisor Windows XP, XP- Embedded,

Linux, VxWorks, Windows CE,

Android (OS), OS-9, RTOS-32,

QNX, proprietary Oss

Proprietary x86 based devices for robotics,

industrial automation, medical,

telecom, testing and measurement,

real-time applications.

OKL4 Linux GPL / proprietary Embedded, mobile

telecommunications, soft-real time

applications

Virtual Logix Linux, Windows XP, C5,

VxWorks, Nucleus, DSP/BIOS,

proprietary Oss

Proprietary Embedded, mobile

telecommunications

Wind-River

VxWorks

VxWorks, bare metal virtual

board

Proprietary Embedded, safety critical, secure

(defence, aerospace etc).

Integrity-178B integrity Proprietary Embedded, safety critical, secure

(defence, aerospace etc).

LynxSecure LynxOS, Linux, Windows Proprietary Embedded, safety critical, secure

(defence, aerospace etc).

QNX QNX Proprietary Embedded, safety critical, secure

(defence, aerospace etc).

XtratuM UPVLC/FENTISS open source Embedded, safety critical, secure

(aerospace, etc).

Source: Author

 The para-virtualization is currently the fastest virtualization technique because of

the provided virtual machine is near the native machine. With para-virtualization, it is

possible to provide a higher-level interface to the hardware customized to be

efficiently used by the partition. Thus, the para-virtualization is the technique more

suited to the requirements of embedded systems, namely faster, simpler, and smaller

code. The customization (para-virtualization) of the guest operating system is also not

http://en.wikipedia.org/wiki/PikeOS
http://en.wikipedia.org/wiki/VxWorks
http://en.wikipedia.org/wiki/VxWorks

19

Vol. 5 No. 1 / March 2013 Business Systems Research

a problem because the source code is available. Additionally, this technique does

not call for special processor functionality that may increase the cost of the end

product. In the use of para-virtualization techniques, the most common way of

implementing virtualization is the use of hypervisors. Nevertheless, it is possible to find

systems using the called microkernel. It is not fully clear and no consensus exist about

which is the better solution for real-time embedded multicore systems, as we are

talking about a very recent implemented technology. It is possible nowadays to find

several solutions for embedded systems using para-virtualization, some based on

microkernel and some in hypervisors: Xen, LynxSecure, PikeOS. Nevertheless, one of

the drawbacks of the µkernels is the overhead introduced by the different layers of

software. A most representative set of products that can be found is summarized in

Table 6 (MODUS Project, 2012).

Conclusions
MODUS provides a software solution that complements existing CASE tools, by

allowing the effective interfacing with formal model verification engines and

SystemC-based HW/SW co-simulation platforms, as well as the effective design

performance-tuning and customisable source-code generation, respecting coding

standards. As shown in this market overview, existing CASE tools present limitations in

terms of supporting quality strategies as model verification, HW/SW co-simulation,

performance optimisation and customisable source-code generation for embedded

software development. On the other hand, there are indeed different stand-alone

and specialised tools (e.g. model verification engines, HW/SW co-simulation

platforms, etc.) that the industry has not adopted mainly due to the fact that these

cannot interface to popular CASE tools (i.e. they do not support common

formalisms).

 The aforementioned problems are magnified when considering the needs and

capabilities of SMEs active in the embedded systems sector, which have to cope

with increasing market pressure and rapid changes in demand. Indeed, big

embedded-system development companies may have the means to apply

expensive SW quality approaches (TQM) and iterative quality/design/development

cycles or even having the associated tools customised to their development

practises and different customer requirements. Therefore, software quality practises

are presenting a competitive challenge to small and medium sized organisations

with limited budgets and resources as compared to large industrial players.

References
1. Falk, H. Marwedel P. (2004). Source Code Optimization Techniques for Data Flow

Dominated Embedded Software, Dordrecht: Kluwer Academic Publishers.

2. IDC (2012), “Final Study Report: Design of Future Embedded Systems (SMART

2009/0063)”, available at: http://cordis.europa.eu/fp7/ict/embedded-systems-

engineering/documents/idc-study-final-report.pdf (1 April 2012).

3. Kebemou, A., Schieferdecker I. (2007), „Evaluating modeling solutions on their

ability to support the partitioning of automotive embedded systems“, in Mieso K.

D. et al. (Eds.), Proceedings of the 2007 conference on Emerging direction in

embedded and ubiquitous computing (EUC'07), Springer-Verlag, Berlin,

Heidelberg, pp. 674-685.

4. MODUS Project (2012), State-of-the-art review and identification of technological

requirements’, Deliverable D2.1, Internal documenation

http://cordis.europa.eu/fp7/ict/embedded-systems-engineering/documents/idc-study-final-report.pdf
http://cordis.europa.eu/fp7/ict/embedded-systems-engineering/documents/idc-study-final-report.pdf

20

Vol. 5 No. 1 / March 2013 Business Systems Research

5. MODUS Project (2013), Title: Interim Market Assessment and Business Plan,

Deliverable D7.7, Internal documenation

6. Schmidt, D. C. (2006), “Model-Driven Engineering”, IEEE Computer, Vol. 39, No. 2,

pp. 25-31.

7. Vestal, S. (1994), “Assuring the Correctness of Automatically Generated Software”,

AIAA/IEEE Digital Avionics Systems Conference, Vol. 13, pp. 111–118.

About the author

Michael I. Loupis was born in Athens in 1962. He earned a Dipl.-Ing. in Electrical

Engineering, an M.Sc. in Microprocessor Engineering, a Dr.-Ing. in Information

Technology and an M.Sc. in Quality Assurance. He is currently an Assistant Professor

with the Central Greece Institute of Technology, Department of Electrical

Engineering, Greece. His current research interests include software and modelling

tools for embedded systems and design tools for renewable energy systems and

energy management. Professor Loupis is a Senior Member of IEEE, a Member of the

Technical Chamber of Greece, the Greek Union of Electrical and Mechanical

Engineers and the Greek Association of Computer Engineers. Author can be

contacted at mloupis@teiste.gr

