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Abstract 
 

Background: In practical use of machine learning models, users may add new 

features to an existing classification model, reflecting their (changed) empirical 

understanding of a field. New features potentially increase classification accuracy of 

the model or improve its interpretability. Objectives: We have introduced a guideline 

for determination of the sample size needed to reliably estimate the impact of a 

new feature. Methods/Approach: Our approach is based on the feature evaluation 

measure ReliefF and the bootstrap-based estimation of confidence intervals for 

feature ranks. Results: We test our approach using real world qualitative business-to-

business sales forecasting data and two UCI data sets, one with missing values. The 

results show that new features with a high or a low rank can be detected using a 

relatively small number of instances, but features ranked near the border of useful 

features need larger samples to determine their impact. Conclusions: A combination 

of the feature evaluation measure ReliefF and the bootstrap-based estimation of 

confidence intervals can be used to reliably estimate the impact of a new feature in 

a given problem. 
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Introduction 
In business practice, users of machine learning (ML) models are pragmatic about 

their effort to collect data describing a business process, for example selling into 

business-to-business (B2B) market segment. As mentioned in (Bohanec et al., 2016), 

users are upfront interested to learn how many historic cases are needed for the 

model to identify the most relevant features. For example, in Bohanec et al. (2016) 

only ≈1/3 of the final data set would be needed to identify top three features with 

80% certainty (if their rank within top 3 is not relevant).  

 When the data set is collected and the model built, optimized and in use, a new 

question arises from domain-expert users, adding new features ad hoc (Guyon et al., 

2003): how many instances are needed to estimate the impact of a new, candidate 

feature? Here users try to minimize the effort needed, which in practice means that 

only a few dozen of instances could be available for an assessment of feature’s 

impact. In this paper, we extend our previous research to answer this question.  

 In (Bohanec et al., 2016) we analyzed the number of features and the number of 

instances needed to learn important features in a general business setting. Here we 

focus on reliability of ranks for new features given the context of an existing data set. 

We use a publicly available B2B sales forecasting data set (Bohanec, 2017) as a 

case study. We report the summary of applying the presented approach to two 

additional data sets, Wine (Forina et al., 1991) and Chronic Kidney Disease 

(Soundarapandian, 2015) (CKD), available from data repository at University of 

California, Irvine, US (UCI). To reliably estimate the impact of a new feature in a given 

problem, described with a data set, we combine feature evaluation measure ReliefF 

and bootstrap-sampled confidence intervals. 

 In contrast to this work, the majority of previous studies on sample size focused on 

the relationship between sample size and model performance. For example, Beleites 

et al. (2013) established that the sample size is related to the learning curve of 

classifier’s model performance in Raman spectroscopic five class classification 

problem. The relationship between sample size and model’s performance for B2B 

sales prediction problem was visually indicated in (Bohanec et al., 2015b). Figueroa 

et al. (2012) propose a sample size prediction algorithm that conducts weighted 

fitting of learning curves on clinical text and waveform classification tasks. 

 The rest of the paper is organized as follows. In Section 2 we introduce B2B data 

set and calculate ground truth. In Section 3 we formalize the problem, and continue 

with experiments in Section 4. Our conclusions are put forward in Section 5. 

 

Data set and ground truth 
In this section, we introduce the data set and ground truth for feature ranks. We try 

to identify the median rank of a particular feature obtained from the random 

samples of size |V|. We use median instead of mean to obtain robust results. 

As a use case we use a real world B2B sales data set (Bohanec, 2017) with 448 

instances, 22 features and a class variable with two values. To form an optimization 

problem we need ground truth ranks of features which, for practical problems, are 

unavailable. We estimate the ground truth ranks of features (a1,...,at), t being the 

number of features, we rank the features with a selected feature ranking algorithm 

on the complete data set using 10-fold cross-validation. In this paper, we use ReliefF 

feature evaluation (Robnik-Šikonja et al., 2003), known for its robustness and ability to 

detect strongly dependent features. Figure 1 shows box-and-whiskers plots for all 22 

attributes. The ranks of the most important features are stable, as indicated by low 
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variance around median in box-and-whiskers plots. Similarly, the least performing 

features are consistently the last.  

 

Figure 1 

Feature ranks on the complete data set (ground truth), estimated with ReliefF using 

10-fold cross-validation. Horizontal axis shows features and vertical axis shows 

distribution of their ReliefF ranks. 
 

 
Source: Authors’ work 

 

Figure 2 

Distribution of ReliefF ranks for feature “Up_sale” ranked 1st for different sizes of 

estimation set (sampled directly from the full data set). Dotted blue line indicates 

true rank. 
 

 
Source: Authors’ work 
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 Next, we observe feature ranks as the number of instances increases. We start 

with a random sample of size 10 and increase the sample size to 150 in increments of 

10. Each sample size is resampled 100-times from a complete data set. The 

distributions of obtained ranks for the feature with the strongest impact from Figure 1 

(i.e. “Up_sale”) for different sample sizes are reported in Figure 2. We see that this 

feature is consistently ranked among the best features even with very low number of 

instances. From sample size 30 this feature is ranked among top 5 features with high 

probability. 

 The rank distributions of the least performing feature “Needs_def” (ranked 22nd in 

Figure 1) are presented in Figure 3. The results show that this feature indicates a clear 

tendency to bottom ranks from the smallest subset size on. From sample size 10, the 

vast majority of obtained ranks are larger than 10, as indicated by the notch of the 

box-and-whiskers plot. 

 

Figure 3 

Distribution of ReliefF ranks for feature “Needs_def” ranked 22nd (last) for different 

sizes of estimation set (sampled directly from the full data set). Dotted blue line 

indicates true rank. 
 

 
Source: Authors’ work 

 

Formalization of the problem 
We assume that we estimate features’ impact within an existing data set. We 

evaluate the number of instances needed for a feature to reliably show its impact 

given that the ground truth is known. 

 Therefore, our goal is to find the smallest size of a random subset of instances |V|, 

which assures that for a given feature ai, ranked by function R, the rank of the 

feature computed on V is close to the the rank obtained on the complete data set:  

 

|R(aV
i ) − R(ai)| ≤ ε (1) 
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 We use the following notation: R is a ranking function, ai represents feature i, R(ai) 

is the rank of feature ai on the complete data set of size n, R(𝑎𝑖
𝑉

 ) is rank of feature ai 

on the subset V of the data set, and ε ≥ 0 is the tolerance of ranking error. 

 Eq. (1) determines the minimal size of a data set that assures with high probability 

(at least τ) that the rank of a given feature ai is close to its true rank. We approximate 

the true ranks by ranking features on the complete data set. 

 

               |V|𝑖
𝑚𝑖𝑛= arg      min [P(|R(ai) − R(𝑎𝑖

𝑉)| ≤ ε) ≥ τ] 
|V|∈[1,n] 

 
(2) 

 For example, if we set τ = 0.95, we expect that with 95% probability we will not 

make error larger than ε when estimating feature ai from sample of size |𝑉|𝑖
𝑚𝑖𝑛 instead 

of from the complete data set. We expect to find sample sizes  |𝑉|𝑖
𝑚𝑖𝑛 which will be 

robust to the variations in the randomly sampled training data for the given feature 

and the selected ranking function R. Discussion on stability of feature evaluation can 

be found in (Kalousis et al., 2007). We use bootstrap sampling (Kohavi, 1995; Davison 

et al., 1997) to obtain confidence intervals (CI) for determination of |𝑉|𝑖
𝑚𝑖𝑛. 

 For practical use we propose two variants of Eq. (1). We are interested if a given 

feature might be useful in a predictive model, in this case its rank has to be lower 

than a prespecified rank threshold L. On the other hand, we are also interested if a 

given feature can be safely discarded from further consideration. In this case its rank 

has to be higher than a threshold H. Both cases are formalized below in Eqs. (2) and 

(3) and can be estimated with ranking function R applied to bootstrap samples. 

 

|V|𝑖
𝐿    =    arg    min [P(|R(𝑎𝑖

𝑉) ≤ L) ≥ τ] 
|V|∈[1,n] 

 

(3) 

 

|V|𝑖
𝐻   =    arg    min [P(|R(𝑎𝑖

𝐻) ≤ H) ≥ τ] 
|V|∈[1,n] 

 

 

(4) 

Experiments 
The aim of our study is to show a practical method how to estimate the number of 

instances needed for a new feature to reliably estimate its rank within an existing set 

of features and existing data set. Our procedure is as follows. For each feature we 

gradually increase the sample size |V|, randomly select a sample of this size from 

the full data set 30-times, and bootstrap each sample 500 times. The bootstraped 

samples are used with ranking function ReliefF and form a basis to calculate the 

median and confidence interval (CI) for each size. The collection of these estimates 

is illustrated with pseudo code in Algorithm 1. Actual experiments are run within R 

environment using libraries caret (Kuhn, 2017), CORElearn (Robnik-Šikonja et al., 2017) 

and ggplot2 (Wickham, 2009). 

 

Results on a sales forecasting problem 
In practice, users are providing instances of data in small chunks. In order to estimate 

feature impact we can use only these instances. To account for variance in the 

obtained sample provided by users we use bootstrap confidence interval estimation 

that uses sampling with replacement. 

 First, we analyze features in the existing data set to see what we can expect for 

new features. We are particularly interested in top performing features (which we 
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want to retain) and least performing features (which we can safely discard). Our 

testing data set contains 22 features. Based on previous research (Bohanec et al., 

2015a, Figure 2), we know that 8 features can be sufficient for random forest classifier 

to reach satisfactory performance, therefore we set the threshold L to 11 

(incorporating a safety band of 3 (this would correspond to ε = 3 in Eq. 1)). We set 

the threshold for discarding the highest ranking features to 15. Results of experiments 

produce figures similar to Figures 2 and 3. From the distributions depicted with box-

and-whiskers plots we can even visually determine how many instances are required 

to reliably recognize top ranked feature’s and how many to reliably discard the 

features with high ranks. 

 

Algorithm 1 

Distribution of feature ranks for different number of instances 
 

1: procedure SubsetSizes(parameters: data, numExperiments, initialSize, step ) 

2: subsetSize = initialSize 

3: while subsetSize ≤ size(data) do 

4: for q in 1:30 do 

5: sampleData = Sample(data, subsetSize, replace = FALSE) 

6: for k in 1: 500 do 

7: trialData = BootstrapData(sampleData, subsetSize, replace = TRUE) 

8:             trialRanks[k] = ReliefF(trialData) ◦ get ranks for all features 

9: end for 

10:     medianRanks[q] = median(trialRanks) ◦ compute median ranks for all features 

11: end for 

12: Store medianRanks for current subsetSize 

13: subsetSize = subsetSize + step 

14: end while 

15:     Return stored rank distributions for all sample sizes 

16: end procedure 

Source: Authors’ work 

 

 Figure 4 shows results we obtained for all existing features. We simulated a 

scenario where a new feature described with 60 instances is provided. Based on that 

we can provide the following guidelines for a user with a given number of available 

instances describing a new feature. To estimate feature’s rank, perform 500 

repetitions of bootstrap sampling and feature evaluation with ReliefF. The median 

rank from bootstrap repetitions shall be recorded and compared with rank 

distributions of existing features using the same number of instances. Figure 4 gives 

an example of rank distributions for 60 instances. E.g., if the median rank of a new 

feature would be 5, the horizontal line passing the rank 5 reveals which features 

exhibited similar behavior with this number of instances. Based on that one can take 

one of the three decisions: a) if the obtained rank line crosses distributions of mostly 

top ranked features, retain the feature and use it in the model from that time 

onwards, b) if the rank’s line crosses mostly distributions of least ranked features, 

discard the feature, or c) if neither a) or b) is true, postpone the decision and try to 

collect more data (depending on the effort, cost of data collection, etc.). 
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Figure 4 

Rank of all features, based on sample size 60 with 500 bootstraps, repeated 30-times 
 

 
Source: Authors’ work 

 

Two UCI data sets 
 

Figure 5 

On CKD data set with missing values true ranks are not reached, neither for (a) top 

ranked feature nor for (b) the bottom ranked feature. 
 

 
Source: Authors’ work 

 

 To strengthen our analysis and generalize the conclusions, we applied presented 

approach to two publicly available data sets from UCI Machine Learning Repository 

(Lichman, 2013). The Wine data set (Forina et al., 1991) has 12 features + class 

variable and 178 samples without missing values. The results are similar to the results 

on B2B dataset, therefore we omit further discussion. The Chronic Kidney Disease 

data set (Soundarapandian, 2015) has 24 features + class variable and 400 samples, 
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with total 1012 missing values, 10.5% of all values. For this case, Figure 5 shows that 

both the top (a) and the bottom (b) ranked feature converges toward a ground 

truth rank (dotted blue line) but don’t reach it even with a sample size of 150 

samples. Figure 6 shows that only the top three ranked features reveal their impact 

with small sample size (50 in this case), the rest of the features display high volatility. 

We assume that this might be caused by missing values; however, this needs to be 

further researched. 

 

Figure 6 

Ranks of all CKD features, based on sample size 50 with 500 bootstraps. 
 

 
Source: Authors’ work 
 

Conclusions 
We address the problem of updates to the existing classification models as a result of 

changed problem understanding of domain experts. Experts consider adding 

various new features to the classification model and are interested to assess their 

potential impact with minimal data collection effort. For this purpose, we formalize a 

problem of minimal number of instances needed to reliably estimate the impact of 

new features added to the existing data set. We use the existing data set as a proxy 

for ground truth ranks. 

 The results on the analyzed B2B data set show that relatively low number of 

instances is required to determine impacts of top performing features and least 

performing features. Such results are promising for practical use and indicate that a 

reasonably low effort of B2B practioners is required to assess the impact of useful new 

features. The results on the additional Wine data set show similar trends as the B2B 

data set. The results on CKD data set show similar trends, but exhibit higher volatility 

that may be result of many missing values present in this data set.  

 In the future, our approach shall be tested in several domains of various character 

to draw more general conclusions about the minimum number of required instances. 

In addition, the impact of missing values on the stability of feature ranks requires 

further research. A possible direction would use synthetic data sets with known 

characteristics to better control the information content and volatility of feature 

ranks due to missing values. 
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