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A new selection operator for genetic algorithms that balances
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Abstract. The research objective is to find a balance between premature convergence and population
diversity with respect to genetic algorithms (GAs). We propose a new selection scheme, namely, split–
based selection (SBS) for GAs that ensures a fine balance between two extremes, i.e. exploration and
exploitation. The proposed selection operator is further compared with five commonly used existing
selection operators. A rigorous simulation–based investigation is conducted to explore the statistical
characteristics of the proposed procedure. Furthermore, performance evaluation of the proposed scheme
with respect to competing methodologies is carried out by considering 14 diverse benchmarks from the
library of the traveling salesman problem (TSPLIB). Based on t-test statistic and performance index
(PI), this study demonstrates a superior performance of the proposed scheme while maintaining the
desirable statistical characteristics.
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1. Introduction

Development of GAs stems from the seminal work of Holland [20], which exploited the philo-
sophical basis of Darwin’s understanding of the evolution process [1, 46]. Since then, GAs have
attracted a great attention and, as a result, GAs maintain its key role in optimization literature.
For example, [39] highlight the applicability of GAs in the field of behavioral ecology to explore
the vigilance behavior in animals. Further, [44] used GAs in modelling of membership behavior
in stock market and to increase the scalability in credit risk assessment. More recently, [43]
employed GAs to achieve optimal satellite selection for global positioning system (GPS). Other
than these, a stream of applications of GAs can be witnessed in multidisciplinary fields, inter-
locking medicine [14], artificial intelligence [37], etc. The popularity of GAs is most commonly
coined with its ability of solving complex multidimensional and multi–models optimization
problems with minimum information required about objective function, see for example [6].
Furthermore, [2] recommended GAs to process multi objective optimization. A comperhensive
and detailed overview of GAs features are presented by [35, 47].

Unfortunately, GAs suffer from the premature convergence in pursuit of finding optimal so-
lutions [13], regardless of the their utility in all aspects. The problem of premature convergence
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is in fact rooted in the philosophical orientation of GAs as summarized by [24], who noted
that ”GAs are characterized by selection algorithms that favor the more fit chromosomes in
their populations and by crossover and mutation operators that combine and modify existing
chromosomes to generate novel offspring”. The fondness of more fit chromosome is more likely
to result in compromising the population diversity. Optimization literature acknowledges the
diversity of population as a vital component in search of an optimal solution. This is evident
by the discussion on the relevance of premature convergence and population diversity by [9, 25]
and a more recent by [1, 11, 35]. Based on these studies, it is clear that the performance of
GA is most affected by the choice of selection operators. Therefore developing better selection
scheme remains the most important issue in the body of contributions associated with GAs.

Acknowledging the importance of selection phase of GAs, this research contributes to the
literature by introducing a novel selection operator, namely the split–based selection (SBS). Our
proposition mainly focuses on facilitating the convergence process by maintaining desirable level
of population diversity. The objective is achieved by attaining a balance between the key con-
cepts of exploration and exploitation. We used fitness rank of participants in concordance with
normality of generations to aid the selection process. The use of underling mathematics of the
operator, enables the opportunity to all fitness classifications members be selected, from worst
to best. The encouraging results of this delicate selection scheme are documented throughout
the article.

This article is divided into six main sections. Section 2 briefly introduces existing selec-
tion operators. In Section 3 we propose new selection operator and give its theoretical and
mathematical foundations. Further, Section 4 investigates stochastic properties of the newly
proposed operator. Inspired by the stochastic features, Section 5 delineates the applicability of
proposed methodology in solving practical problems. New proposed operator is employed to
the 14 famous benchmarks instances from the library of traveling salesman problem. Lastly,
Section 6 concludes the study along with a brief discussion of future research.

2. Tradational selection procedures: theory and methods

In this section, we provide a brief review of the most commonly employed selection operators
in the GAs literature.

The first one, noted as the most popular by [1], is known as fitness proportional selection
(FPS). The methodological orientation of this scheme is based on the understanding that fitter
individuals should have a higher chance of selection as a member of parent population. For this
purpose, first we calculate the fitness of all individuals using the following rule:

fi = β(1− β)i, i ∈ {1, 2, ...,K}, (1)

where fi is the i − th individual of ascending order population and β ∈ (0, 1) and generally
suitable within the range of 0.01 to 0.3 [51]. The selection probability of i− th individual pi is
directly proportional to it’s fit:

pi =
fi

K∑
i=1

fi

, i ∈ {1, 2, ...,K}, (2)

where K represents the size of the population. In statistical literature, one may recognize
that the operational mandate of FPS is equivalent to that of the probability proportional to
size (pps) sampling scheme. The straightforward nature of FPS procedure make it a feasible
candidate in various GA applications, see for example [34, 45].

The next procedure is the linear rank selection (LRS), which was first introduced by [5] to
cater for the issue of premature convergence attributed with FPS. In his seminal work Baker
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[5] emphasized the use of rank–based selection criteria to provide better opportunity to select
weaker individuals and thus offered a smoother selection function. Based on LRS procedure,
the selection probability of the i− th individual is assigned according to the following rule:

pi =
1

K

(
η− + (η+ − η−)

i− 1

K − 1

)
, i ∈ {1, 2, ...,K}, (3)

where i is the rank of the individual based on fitness status and K is the population size,
while η− and η+ are the parameters depicting the selection probabilities of worst and best
individuals based on their ranks, respectively. For the estimation purpose of the function (3),
Baker imposed a constraints η+ = 2 − η− and η− ≥ 0. A well documented weakness of LRS
is slower convergence of the algorithm [1, 35]. This drawback is rooted in its methodology
based on ranks instead of fitness values directly for selection. As a result, even if individuals
differ notably in fitness status, the ranks remain the same unable to reflect the difference with
desirable intensity and therefore naturally compromise relevant information. This issue becomes
more obvious in the case of a larger population where ranks can be considered as a realization
from the uniform distribution.

To resolve the issue of LRS slower convergence, [31] proposed another rank–based selection
scheme named exponential rank selection (ERS). To distinguish from LRS, [31] suggested that
the selection probabilities increase exponentially from worst individual to best:

pi =
rK−i(1− r)

1− rK
, i ∈ {1, 2, ...,K} (4)

where r is a constant ratio defining the inclusion weights of individuals based on their fitted
ranks. The constant ratio, r, is capable of taking values over the range 0 < r < 1, but for
maximum gain values of r closer to 1 is recommended by [28, 31, 40]. The acceptability of ERS
as a popular selection method is evidenced by various applications, for example see [28, 40].

Another selection procedure BTS (binary tournament selection) was introduced by [3], who
argued that instead of relying on probabilities, selection of individuals should be based on direct
competition. Recognizing the importance of population diversity, [3] urged lower tournament
size. Thereby, pair–wise comparison becomes the most common theme in tournament selection
schemes [4, 27]. The selection probability of i− th ordered individual is given as:

pi =
1

Kt

(
(i)t − (i− 1)t

)
, i ∈ {1, 2, ...,K} (5)

where t represents the array of tournament size. Many have appreciated the logical orienta-
tion of binary tournament selection (BTS) in persuasion of the population comprises of fitter
individuals [27].

The selection oriented literature was further enriched by [24] employing a probability based
threshold level to select the winner of the tournament called probabilistic 2–tournament se-
lection (PTS). Julstrom showed that the competition winner will survive with a probability
0.5 < q < 1, where the loser will get another chance of competing, with probability 1− q. The
mathematical expression providing the selection probability of the i− th ordered individual is
calculated as:

pi =
2(i− 1)

K(K − 1)
q +

2(K − i)
K(K − 1)

(1− q) i ∈ {1, 2, ...,K}. (6)

This selection procedure has been used in various applications [28, 40].
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3. Proposed selection procedure

3.1. Motivation

From the aforementioned studies, one may recognize the urge of adaption of selection pressure
while maintaining population diversity in the selection process to facilitate the achievement of
optimal conditions. Figure 1(a) presents four hypothetical and most likely scenarios depicting
the initial fitness status of individuals in a population. The fitness of individuals is represented
through (i) moving along curvature, (ii) uniform distribution, (iii) increasing trend and
(iv) decreasing trend. Figure 1(b) highlights the resultant fitness behavior after few generations.

It is noticeable that regardless of initial population trends, fitness of generations ultimately
approaches to a normal distribution. The essence of our proposed approach lies in achieving
the expected individuals fitness behavior in more cohesive manner. To formally proceed, let
us consider two highly employed extremes of selection in the GA literature; LRS and FPS.
The LRS emphasizes on maintaining higher levels of population diversity (in more technical
language also known as exploration) at the cost of selection pressure and results in slowest
convergence of GAs. On the other hand, FPS emphasizes high selection pressure (also known
as exploitation) while scarifying the diversity and as a result remains the prime candidate
suffering from premature convergence. Given the delicate nature of the matter, in the next
subsection, we propose a new operator capable of achieving more balance between exploration
and exploitation. This new scheme not only eliminates the fitness scaling problem but also
provides an adequate selection pressure throughout the selection process.

(a) Initial behavior of population (b) Behavior after few generations

Figure 1: Expected behavior of population

3.2. Proposed scheme: split-based selection (SBS) procedure

Let us consider that a population of size K (usually it is even) is ranked on the basis of fitness
status of individuals from worst to best. In our proposition, to ensure the population diversity
each individual gets a unique rank based on fitness status. Keeping Figure 1(b) in view, one
may agree that rank–based populations usually remain classified into three categories; lower fit,
average fit and best fit. In order to maintain selection pressure, our proposed scheme pursues
the assigning of probabilities of selection within the fitness categories, in systematic way. In our
scheme, the bottom 40% ranked individuals are labeled as lower fit. The resultant proportion
of this category in a population of size K is:

K

5

(
2K

5
+ 1

)
. (7)

Further, the average fit category contains individuals covering the middle 20% ranks such as:

K

10
(K + 1). (8)
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The remaining 40% individuals comprise the best fit category. The proportion of the highest
ordered category is calculated as:

K

25
(8K + 5). (9)

The general expression of selection probability associated with every individual to be a
participant of parent population is:

pi =



α

(
25i

K(2K + 5)

)
, i ≤ 2K

5

β

(
5

K

)
,

2K

5
< i ≤ 3K

5

γ

(
25i

K(8K + 5)

)
, i >

3K

5
,

(10)

where α, β and γ are selection parameters and remain subject to the constraints such as,
0 ≤ α, β, γ ≤ 1 and α+ β + γ = 1.

One may appreciate the generality and flexibility of proposed scheme as the different values
of α, β and γ parameters, permit the investigator to adjust the selection pressure at a desired
level. For demonstration purposes, in this article, we considered α = β = 0.2 and γ = 0.6.
This setting indicates that the bottom 40% individuals are assigned the weights equals to 0.2,
whereas the middle 20% individuals are assigned a weight of 0.2 and the weight of most fit 40%
individuals is set as 0.6. This gives:

pi =



5i

K(2K + 5)
, i ≤ 2K

5
1

K
,

2K

5
< i ≤ 3K

5
15i

K(8K + 5)
, i >

3K

5
.

(11)

In the next section, we explore the statistical characteristics of this new operator with other
competing selection schemes.

4. Empirical analysis

The selection process in genetic algorithms can be divided into two steps. The first step is to
assign the selection probability to each individual with respect to its fitness level. The expected
number of offspring rate ei of individual i for the next generation is calculated as ei = K × pi
where K is the population size and pi denotes the selection probability of individual i. The
second step entails the selection of K individuals from the current population using various
sampling algorithms (roulette wheel or universal sampling, etc.). The sampling algorithms
then proceed by providing the observed number of offspring of individual i, let us say oi, such
that E[oi] = ei.

Next, we explore the statistical characteristics of our proposed operator (11) while comparing
with aforementioned four rank–based operators (LRS, ERS, BTS and PTS). The first operator,
that is FPS is not considered in this section because it is a purely population dependent operator
and not rank–based, see also [28, 40]. Moreover, for a fair comparison, we consider optimal
parametric values for the above mentioned operators to ensure their maximal performance. For
example, in the case of LRS, Backer [5] recommended the value of η+ = 1.1 in equation (3) to
achieve optimal performance of the operator. For ERS, the value of r closer to one is advised
in the literature to gain better performance [28, 31]; we use r = 0.99 in this study. Finally, for
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PTS, the recommended range of the parameter q in (6), ensuring higher performance of the
operator, is (0.5− 1) [28]; we use q = 0.8.

To resolve the issue of approximation and to achieve higher accuracy, we follow the rec-
ommendations of [28, 40] suggesting the population size K ≥ 250 with at least 10 categories.
Thus, we generate a population of 300 individuals and ordered them according to their fitness
status. In the next phase, through each operator, we assigned the selection probability pi to
each individual and distributed them into 10 categories to attain the expected number ei. To
estimate the observed frequencies oi of each category, we repeat this process 300 times, where
sampling is conducted through the roulette wheel (RW) sampling mechanism, see also [20]. The
discrepancies between expected and observed numbers of offspring are then quantified using a
χ2 goodness–of–fit measure. Let us consider, there are c disjoint classes, such as {C1, C2, ..., Cc},
where Cj ⊂ {1, 2, ...,K} and ∪cj=1Cj = {1, 2, ...,K}. Also let ξj =

∑
i∈Cj

ei denote the overall

expectation, where Oj =
∑
i∈Cj

oi represents the observed copies of individuals in the mating

pool after the sampling procedure. Ideally, ξj should be of the order K/c for 1 ≤ j ≤ c, so that
each class contains the same number of individuals on average. [40] defined the χ2 test as a
measure to determine the accuracy of the sampling process as:

X =

c∑
j=i

(ξj −Oj)
2

ξj
. (12)

Table 1 presents the expected counts associated with each category with respect to all selection
procedures. As noted by [28, 40], under the assumptions of Cj ≥ 10, ξj ≥ 10 and K ≥ 100, the
sampling distribution of X in (12) will follow a χ2 distribution with c − 1 degrees of freedom,
such that E[X] = c− 1 and V ar[X] = 2(c− 1). Table 2 confirms this anticipated distributional
behavior of the sampling operators.

LRS ERS BTS PTS SBS

j Cj ξj Cj ξj Cj ξj Cj ξj Cj ξj

1 1–33 30.05 1–107 29.88 1–95 30.08 1–75 29.85 1–85 30.21
2 34–65 29.84 108–158 30.36 96–134 29.77 76–117 29.86 86–120 29.79
3 66–96 29.56 159–191 29.78 135–164 29.80 118–150 30.09 121–150 30.00
4 97–127 30.20 192–216 30.13 165–190 30.68 151–178 30.09 151–180 30.00
5 128–157 29.84 217–236 30.19 191–213 30.90 179–203 30.42 181–205 30.09
6 158–187 30.44 237–253 30.89 214–233 29.73 204–225 29.53 206–227 29.71
7 188–216 30.00 254–267 29.72 234–252 30.72 226–246 30.61 228–247 29.63
8 217–245 30.56 268–279 29.02 253–269 29.52 247–265 29.73 248–266 30.46
9 246–273 30.04 280–290 29.86 270–285 29.55 266–283 29.94 267–283 29.16

10 274–300 29.47 291–300 30.16 286–300 29.25 284–300 29.87 284–300 30.96

Table 1: The overall expected counts ξj with respect to their classes Cj (j = 1, 2, ..., 10)

LRS ERS BTS PTS SBS

µ̂ 8.70 9.32 9.40 9.08 9.31

σ̂2 17.53 19.96 19.96 19.05 17.90

Table 2: Simulated means and variances of the χ2 test statistics
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5. Performance evaluation

5.1. Traveling salesman problem and state–of–the–art settings

In this section, we evaluate the performance of the proposed scheme in comparison with the
aforementioned competing schemes. The test problem is one of the most famous and popular
benchmarks available in the optimization literature. We considered the traveling salesman
problem (TSP), first documented by Euler in 1759 to resolve the knight’s tour problem. The
applicability of this classical problem is extensive in multidisciplinary research. For example in
the fields of bioinformatics [12], transportation [17, 19], and genetics [14]. The unified nature
of the TSP enables its prominence at the core of GA literature. Many researchers, such as,
[8, 22, 23, 33, 38] have used the TSP to test the performance of new search algorithms.

To ensure the generality of performance comparison, we considered 14 diverse problems
from the library of the traveling salesman problem (TSPLIB). Our choice of problems include
Euclidean and two–dimensional problems incorporating symmetric as well as asymmetric in
nature, where the number of cities varies from 52 to 442. In addition, we considered two
most widely used crossover schemes, namely the partially–mapped crossover (PMX) and order
crossover (OX) along with two common mutation operators, which are the exchange mutation
(EM) and inversion mutation (INV). Table 3 details these state–of–the–art settings, for further
information one may consult to Larranaga et. al [26]. In our simulation experiments, all
GA programs were implemented in MATLAB. Moreover, we used two stopping criteria for
our simulation experiments, i.e. attaining the maximum number of generations and if the tour,
shorter than the current optimal tour is not being found during last 300 consecutive generations.

Parameter Setting

Representation Path
Population size 300
Crossover criteria PMX and OX
Crossover rate 80%
Mutation method EM and INV
Mutation rate 5%
Maximum generation 10000
Number of trails 30
Replacement in GA Steady-state GA

Table 3: Parameters configuration for GA

5.2. Results and discussion

Since GAs belong to the class of stochastic search algorithms [49], therefore, for compara-
tive purposes, we recored average values, standard deviations (S.D.) and relative errors (R.E)
based on 30 runs and for all 14 problems while considering six contemporary selection schemes.
Moreover, to evaluate the relative performance of existing approaches with respect to proposed
scheme, we used two criteria: (i) t-test statistics [49, 23] and (ii) performance index (PI)
[10, 46].

Criterion (i): The t-test statistic under the null hypothesis of ”SBS is at least as good (at
least as small) as the solution obtained with the competing operator” is employed for pairwise
comparisons of proposed scheme with existing techniques. The expression given in equation
(13) provides the test–statistic:
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t =
x̄1 − x̄2

Sp

√
1

n1
+

1

n2

, (13)

where Sp is pooled standard deviation from both samples, x̄1 represents the average of
proposed operator and x̄2 belongs to the contemporary approach. If the null hypothesis is true,
the test–statistic will follow a t–distribution with 58 degrees of freedom.

For 14 problems across four combinations of crossover and mutation operators for studying
six procedures, we obtain 336 average optimal distance values. We observe that, out of 336
instances, our proposed procedure (SBS) outperforms competing schemes 318 times. Moreover,
t–test statistics indicate that in 162 cases, our selection strategy provides statistically signifi-
cantly better performance when compared with contemporary operators. We observe no case
where significantly lower performance can be attributed to our proposition. These results are
not presented here to preserve the space, but they are available upon request.

Criterion (ii): The performance index (PI) is aslo used – a comprehensive and widely
used criterion comparing the performance of population–based heuristic algorithms [10, 46].
The overall relative performances of competing schemes using PI is calculated by considering
average values, S.D and R.E. The expression of PI with respect to aforementioned statistics is
given as:

PI =
1

Np

Np∑
i=1

(k1α
i
1 + k2α

i
2 + k3α

i
3), (14)

where

αi
1 =

Ai

MAi

αi
2 =

Si

MSi

αi
3 =

Ri

MRi
, i = 1, 2, ..., Np

(15)

and

Np: total number of problems analyzed

Ai: least average values of objective function of ith problem for all competing selection oper-
ators and for nominated state-of-art settings

MAi: minimum of average values of the array of Ai

Si: least standard deviations of objective function of ith problem for all competing selection
operators and for nominated state-of-art settings

MSi: minimum of Standard deviations of the array of Si

Ri: least relative errors of objective function of ith problem for all competing selection oper-
ators and for nominated state-of-art settings

MRi: minimum of relative errors of the array of Ri.

The weights of aforementioned criteria are k1, k2 and k3, such that k1 + k2 + k3 = 1 for
all 0 ≤ k1, k2, k3 ≤ 1. From the above definition, it is clear that PI is a function of k1, k2 and
k3. Since k1 + k2 + k3 = 1, one of the ki, i = 1, 2, 3 can be wipe out to lessen the quantity
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depended variables from the expression of PI. We adopt the strategy of [32] of assigning equal
weights to two terms at a time to aid the visualization of PI. Along these lines, the resultant
cases are as follows:

case(a) : k1 = w, k2 = k3 = (1− w)/2, 0 ≤ w ≤ 1

case(b) : k2 = w, k1 = k3 = (1− w)/2, 0 ≤ w ≤ 1

case(c) : k3 = w, k2 = k3 = (1− w)/2, 0 ≤ w ≤ 1.

The graphs corresponding to each of the cases (a), (b) and (c) are shown in Figures 2–4
respectively, where the horizontal axis represents the weights and the vertical axis present the
PI with respect to considered attribute. The case (a) evaluates the PI with respect to average
values while considering S.D. and R.E. with equal weights. In case (b), we consider average
values and R.E. of the same weights where the PI is calculated for S.D. Lastly, case (c) denotes
the situation where the PI is quantified for R.E. while taking average values and S.D. of equal
weights. For all cases, a superior overall performance of the proposed scheme is evident. From
Figures 2–4, it is clear that over the permissible range of PI, i.e. (0 1), the proposed operator
shows higher performance while comparing with existing schemes. Moreover, the consistent
and least fluctuated behavior of the PI associated with proposed operator also highlights its
robustness with respect to the assigned weights to average values, S.D. and R.E.
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Figure 2: The performance index when S.D. and R.E. are assigned equal weights
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Figure 3: The performance index when averages and R.E. are assigned equal weights
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Figure 4: The performance index when averages and S.D. are assigned equal weights

6. Conclusion

Throughout the optimization literature, a major concern of experts lies in the trade–off between
population diversity and selection pressure, see for example [1, 9, 23, 35]. This article presents
a novel selection operator–split–based selection (SBS). Our proposed technique facilitates the
optimization problem by ensuring a balance between diversity and selection pressure and thus
avoids premature convergence. In its essence, our SBS technique is rank–based, where individ-
uals are prioritized according to their fitness status. The ranked individuals are then assigned
selection weights by classifying them into three fitness categories; lowest–fit, average–fit and
best–fit. The selection weights are further employed within each class to ensure population
diversity. At the same time, higher weights are offered to the most fit individuals and thus
selection pressure is maintained. Throughout this article, we demonstrated a superior per-
formance of the newly proposed operator in comparison to the existing operators. Based on
a rigorous performance evaluation study, considering 14 highly regarded benchmarks in opti-
mization literature, the proposed strategy is shown to not only cope with the fitness selection
but also maintain the selection pressure and thus facilitates the optimization processes. In
future, it will be interesting to explore the performance of selection operator when there exists
a group-structure at the population level. Moreover, the use of auxiliary information to aid the
selection operator is also a plausible avenue for future research.
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