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Estimating the tail conditional expectation of Walmart stock data
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Abstract. Stable distribution, also known as Lévy stable distribution, which is a rich class of heavy–
tailed distributions can capture asymmetry and heavy tails observed in financial data. In this paper, we
fit an AR(1) process with α–stable innovations to the logarithms of volumes of Walmart stock traded
daily on the New York Stock Exchange and estimate the TCE (Tail Conditional Expectation) risk
measure.
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1. Stable AR(1) process

The heavy–tailed auto–regressive models have various practical applications [7, 12, 18]. Stable
distributions are often used to specify the innovations process of auto–regressive processes
with infinite variance because of their interesting mathematical properties (heavy tails and
asymmetry).

A random variable X has a stable distribution if and only if for every k and any family of
independent and identically distributed variables X1, . . . , Xk, there exists ak > 0 and bk, two
reals, such as:

X1 + . . .+Xk
D
= akX + bk,

where
D
= denotes equality in distribution. When bk = 0, we speak of strictly stable distribution.

It is shown in [5] that there exists a constant α, 0 < α ≤ 2, such that ak = k1/α for k ∈ N.

If X has a stable distribution, then we denoted by X ∼ S(α, µ, β, σ) and its characteristic
function is written as:

ϕX(t) = exp

{
iµt− σα|t|α

(
1 + iβ

t

|t|
w(t, α)

)}
, (1)

where

w(t, α) =


tg(

απ

2
) if α 6= 1

2

π
ln |t| if α = 1.

(2)
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A stable law is defined by four parameters:

• index of stability 0 < α ≤ 2 is the main parameter. It characterizes the distribution
tails. If α decreases, the tails are heavy. The case of α = 2 corresponds to the normal
distribution.

• position parameter µ ∈ R. It characterizes the law mean when α > 1.

• asymmetry parameter −1 ≤ β ≤ 1. If β = 0, the law is symmetrical about the parameter
µ. Moreover, when µ = 0 the law is called symmetric α–stable law.

• scale parameter σ > 0.

According to [19], the stable laws have the following properties:

1. Let X1, X2, . . . i.i.d. ∼ S(α, µ, β, σ) and cj a sequence of real values with
∑
j |cj |α < ∞,

then

∞∑
j=0

cjXj ∼ S(α∗, µ∗, β∗, σ∗) with



α∗ = α

µ∗ = µ

∞∑
j=0

cj

β∗ = β

∞∑
j=0

|cj |αsign(cj)

 ∞∑
j=0

|cj |α
−1

σ∗ = σ

 ∞∑
j=0

|cj |α
1/α

(3)

2. If 0 < α < 2, the variance of a stable law is infinite and for 0 < α < 1, the mean becomes
infinite.

3. Let X ∼ S(α, µ, β, σ), so as x→∞, we have

xαP(X > x) −→ Cα
1 + β

2
σα (4)

and

xαP(X < −x) −→ Cα
1− β

2
σα, (5)

where Cα = 2
πΓ(α)sinπα2 .

If we denote by G(x) := P(|X| ≤ x) = FX(x)− FX(−x), x > 0, the d.f. of Z = |X|, then
we have both following conditions:

• The regular variation condition

lim
t→∞

1−G(tx)

1−G(t)
= x−α, x > 0 (6)
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• The tails balance condition for 0 ≤ a ≤ 1

lim
x→∞

1− F (x)

1−G(x)
= a , lim

x→∞

F (−x)

1−G(x)
= 1− a, (7)

where a =
1 + β

2
.

The problem of estimating the parameters of a stable distribution is in general hampered by
the lack of known closed–form density functions. However, there are numerical methods that
have been found useful in practice like the quantile method proposed by [14], the method based
on linear regression [11] and the maximum likelihood approach [16].

Let the AR(1) process:

Xt = λXt−1 + εt, t = 1, . . . , n

−1 < λ < 1

{εt} i.i.d. ∼ S(α, µ, β, σ)

1 < α < 2.

(8)

The AR(1) process defined in (8) is strictly stationary and it can be written as:

Xt =

∞∑
j=0

λjεt−j , t = 1, . . . , n. (9)

Using (3) and (9) we have X ∼ S(α∗, µ∗, β∗, σ∗) with

α∗ = α

µ∗ =
µ

1− λ

β∗ =


β , 0 ≤ λ < 1

1− |λ|α

1 + |λ|α
β , −1 < λ < 0

σ∗ =
σ

[1− |λ|α]
1/α

(10)

The estimator for the auto-regressive coefficient λ is given by the following expression:

λ̂n =

n−1∑
i=1

(Xi+1 − X̄n)(Xi − X̄n)

n−1∑
i=1

(Xi − X̄n)2

, (11)

where X̄n = 1
n

n∑
i=1

Xi. It has been proven in [2] that this estimator is consistent.
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2. Tail conditional expectation

Distortion risk measure Πg is a mapping from the set of losses random variables to R+ defined
by

Πg(X) =

∫ ∞
0

g(1− FX(x))dx, (12)

where g : [0, 1] −→ [0, 1] is a non–decreasing and concave function with g(0) = 0 and g(1) = 1.
Πg(X) was introduced by [3] in terms of Choquet integral and have been extensively been used
in finance and insurance [21]. This class of risk measure fulfils all four axioms of a coherent risk
measure [1].

The conception of tail distortion risk measure was introduced by [23] as:

Πg(X|X > V aRp(X)) =

∫ ∞
0

gp(1− FX(x))dx, (13)

with
V aRp(X) = F−1

X (p) = inf{x ∈ R : FX(x) ≥ p}, 0 < p < 1 (14)

and gp is a distortion function defined by

gp(s) =


g

(
s

1− p

)
if 0 ≤ s ≤ 1− p

1 if 1− p ≤ s ≤ 1.

(15)

If g = 1, then we find the tail conditional expectation TCE

Πg(X|X > V aRp(X)) = TCEp(X) =
1

1− p

∫ 1

p

V aRs(X)ds. (16)

Let the order statistic X1,n ≤ X2,n ≤ . . . ≤ Xn,n associated to the sample (X1, X2, . . . , Xn)
of X. The empirical estimate of TCEp(X) is:

̂TCEp(X)
emp

=
1

1− p

 1

n

n∑
k=[np]+1

Xk,n +

(
[np]

n
− p
)
X[np],n

 , (17)

where [x] is the integer part of x [17].
If X v S(α, 0, β, 1), 1 < α < 2, [20] have represented TCE as follows:

TCEp(X) =
α

(1− α)

|V aRp|
π(1− p)

∫ π/2

−θ̄0
g(θ) exp(−|V aRp|α/(α−1)v(θ))dθ, (18)

where

g(θ) =
sin(α(θ̄0 + θ)− 2θ)

sin(α(θ̄0 + θ))
− α cos2(θ)

sin2(α(θ̄0 + θ))

and

v(θ) = (cos(αθ̄0))1/(α−1)

[
cos(θ)

sin(α(θ̄0 + θ))

]α/(α−1)
cos(α(θ̄0 + θ)− θ)

cos(θ)
,

with

θ̄0 =
1

α
arctan

(
β̄ tan

(πα
2

))
, β̄ = −sign(V aRp)β.
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For Y v S(α, µ, β, σ), we have σX + µ v Y , then

TCEp(Y ) = σTCEp(X) + µ.

Limit (4) means that FX is in Fréchet maximum domain of attraction [4]. More precisely,
for a sample X1, . . . , Xn from the random variable X ∼ S(α, µ, β, σ), we have

max(X1 . . . , Xn)

F−1
X (1− n−1)

D→ Φα, (19)

where
D→ denotes convergence in distribution and

Φα(x) =

{
exp(−x−α) , x > 0
0 , x ≤ 0.

(20)

The tail index α can be estimated by the Hill estimator [10] defined by

α̂H =

[
1

k

k∑
i=1

logXn−i,n − logXn−k+1,n

]−1

, (21)

where k = kn is an intermediate sequence such that k →∞, k/n→ 0, n→∞.

The semi–parametric estimator of a high quantile (p→ 1) proposed in [22] has the following
form

V̂ aR
H

p = Xn−k,n

(
k

n(1− p)

)1/α̂H

. (22)

It is known (e.g., [23]) that, for p→ 1 and α > 1 we have

TCEp =
α

α− 1
V aRp. (23)

Then we obtain the following estimator

T̂CE
H

p =
α̂H

α̂H − 1
Xn−k,n

(
k

n(1− p)

)1/α̂H

. (24)

3. Application

Our study is carried out on the natural logarithms of the volumes of Walmart stock traded daily
on the New York Stock Exchange (time–series Xt) during the period from November 19, 2003
to January 4, 2005. The observations are shown on the Figure 1 and their empirical density
is plotted on the Figure 2. The data, were taken from the public source https://finance.

yahoo.com.

https://finance.yahoo.com
https://finance.yahoo.com
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Figure 1: Daily logarithms of the volumes of Walmart stock
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Figure 2: Empirical density of time–series Xt

To verify the stationarity of the data, we perform a Phillips-Perron test, we get a p− value
of 0.01, so the data are stationary. The data exhibit a high excess kurtosis 4.593 > 3, indicating
that the observations are not normally distributed. The p− value of the Kolmogorov-Smirnov
normality test is 4.7×10−6, thus confirming the rejection of the assumption that the data would
normally be distributed.
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On the Figure 3, since the ACF decreases gradually and the partial ACF cut off after the
first lag, it seems that the data follow an AR(1) process.
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Figure 3: ACF and PACF of time–series Xt

Moreover, we use the AICC (Akaike’s Information Criteria Corrected) and BIC (Bayesian
Information Criterion) for all ARMA(p, q) models with p+ q ≤ 2 as given in the Table 1.

ARMA(p, q) AICC BIC

AR(1) 96.67423 100.3054
AR(2) 97.68286 104.9309
MA(1) 110.6942 114.3254
MA(2) 101.2229 108.4709

ARMA(1,1) 97.82286 105.0709

Table 1: AICC and BIC criteria’s for different ARMA(p,q) models

From this, it is obvious that the best model for Xt with respect to both criteria was an AR(1)
defined by

Xt = λXt−1 + εt, t = 1, . . . , 283 (25)

with X0 = 0 and {εt} i.i.d. whose distribution we will specify later.

The estimator provided by (11) of the coefficient λ is λ̂ = 0.4437255. Statistical analysis of

the residuals ε̂t = Xt − λ̂Xt−1, 2 ≤ t ≤ 283, leads to the following results:

1. The empirical ACF and PACF of the residuals on the Figure 4 shows the non–significance
of auto–correlation coefficients.
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Figure 4: The empirical ACF and PACF of the residuals ε̂t
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2. Empirical density function of residuals on the left of the Figure 5 shows some asymmetry
and the kurtosis of 6.941248 > 3 indicates a heavy tail of distribution, which is confirmed
by the deviation at the extremes of the normal Q-Q plot (Figure 5 on the right).
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Figure 5: Empirical density of ε̂t (left) and the normal Q-Q plot (right)

The phenomena of heavy tails and excess kurtosis of the residues ε̂t suggest that a stable
distribution S(α, µ, β, σ) would be an appropriate model for ε̂t. To estimate the parameters
α, µ, β and σ we use the method of McCulloch [14]. The results are summarized in Table 2.

α̂ µ̂ β̂ σ̂

1.834 8.9203869 0.95 0.1701674

Table 2: Stable parameters of residuals

To estimate the parameters of the AR(1) process defined in (25) we use the equations (10).
The results are given in Table 3.

.
α̂∗ µ̂∗ β̂∗ σ̂∗

1.834 16.03594 0.95 0.1955845

Table 3: Stable parameters of AR(1)

In the Figure 6 the plots of the empirical density of the data and the estimated stable density

S(α̂∗, µ̂∗, β̂∗, σ̂∗) show a good fit.
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Figure 6: The goodness of fit
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To confirm this, the p − value = 0.6161 of the Kolmogorov–Smirnov test implies that for
our data there a better fit of the stable model around the center of the distribution while
the p − value = 0.3176 of the Anderson–Darling test implies a better fit in the tails at the
significance level 5%. The P -P plot on the Figure 7 is linear, also confirming the quality of fit
for the stable distribution.
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Figure 7: The P-P plot

From (18) we calculate the estimator T̂CE
1

Xt
using the parameters α̂∗, µ̂∗, β̂∗ and σ̂∗.

We adjust a stable law to the data Xt without passing by the residuals using the McCulloch
estimators (Table 4).

α̂Xt
µ̂Xt

β̂Xt
σ̂Xt

1.678 16.0172717 0.821 0.1788372

Table 4: Stable parameters obtained by McCulloch estimators

Then, using stable parameters from Table 4, we calculate T̂CE
2

Xt
from (18). For comparison,

we calculate the empirical T̂CE
emp

of the real data using (17) which are presented in Table 5.

p 0.90 0.95

T̂CE
emp

16.70186 16.83251

T̂CE
1

Xt
16.66029 16.81588

T̂CE
2

Xt
16.75967 17.00363

Table 5: Estimation of TCE at 90% and 95% confidence levels

To apply the Hill estimator for data coming from stable distribution, [6] proposed to center
the data by subtracting the median. In the Figure 8 we have plotted (k, α̂H) for the data
Yt = Xt −median(Xt).
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Figure 8: Hill estimator for Yt

We see that there is a region of stability between k = 52 and k = 58, so we compute α̂H

for each value of this region and calculate T̂CE
H

Yt
using (24), then we deduce T̂CE

H

Xt
from the

following equation:

T̂CE
H

Xt
= T̂CE

H

Yt
+median(Xt) (26)

and obtain results in the Table 6.

T̂CE
H

Xt

k α̂H p = 0.90 p = 0.95

52 1.844519 16.91662 17.31423
53 1.801733 16.93763 17.35649
54 1.832314 16.92239 17.32583
55 1.799902 16.93892 17.35889
56 1.829332 16.92386 17.32878
57 1.832247 16.92248 17.32599
58 1.845455 16.91603 17.31314

Table 6: T̂CE
H

Xt
for 52 ≤ k ≤ 58.

From the Tables 5-6 we remark following:

1. The estimators of a stable AR(1) via the residuals estimators give better results of T̂CE
than the estimators applied directly to the data. [13] have shown by simulations on
synthetic samples that the estimates of the distribution parameters of the α–stable AR(1)
process are better via the residuals.

2. The values of T̂CE
H

are farther from the values of T̂CE
emp

because [15] shows that the
Hill estimator performs poorly on stable data when 1 < α < 2 leads to overestimates of
α and thus overestimates the TCEH .
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4. Conclusion

In this paper, we adjusted a stable AR(1) model to the logarithms of the volumes of Walmart
stock data and estimated the coherent risk measure TCE taking into account the dependence
structure that exists in the model by estimating the parameters of the stable AR(1) via the
residuals. Results are similar to [9] assuming the hypothesis of independence of the data involved
in the modeling. The continuous evolution of risks in insurance and finance leads to reflections
aimed at relaxing this hypothesis.

There are many possibilities for defining dependency, e.g. [8] estimated the TCE risk mea-
sure using the extremal index and the POT method.

Among the many possible mathematical tools to take into account such dependencies, we
find the copulas which allow the introduction and characterization of a very flexible form of
dependence between different random variables. It would be interesting to mix the concept
of copula with the auto–regressive processes to describe another form of dependence in the
multivariate case. These are topics for future research.
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