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Markéta Matulová1,∗, and Jana Rejentová 2
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Abstract. This paper presents a performance evaluation of European airports, based on the applica-
tion of both parametric and non-parametric approaches. We have evaluated the 115 busiest airports
in Europe according to the number of passengers checked-in in 2018. The four inputs we used were
the number of Terminals, Runways, Boarding gates, and Aircraft stands. Three variables were used to
describe the outputs, namely, Passengers, Movements, and Cargo. The parametric method we chose
to apply was the Stochastic Frontier Analysis (SFA) with the Cobb-Douglas production function, the
Half-Normal distribution of inefficiency component, and the Normal distribution of an error term. As a
basic SFA model only allows for a single output, we employed different methods to get a single efficiency
score for each and every airport. Next, we evaluated the airport performance non-parametrically using
several Data Envelope Analysis (DEA) models including the super-efficiency model. We compared the
results obtained by individual approaches and discussed their pros and cons. Finally, we applied the
program evaluation procedure to explore the effect of the different forms of airports ownership on their
performance.
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1. Introduction

Airport benchmarking serves the stakeholders as a useful tool to support their decision-making.
Managers can use it to identify the best practice and develop new concepts for improvement,
and governments can assess the impact of their policy decisions. The aviation industry has
developed rapidly over the last years, and different ways of managing airports have evolved
bringing with them the opportunity for the application of various benchmarking techniques.
Our study evaluates the relative efficiency of 115 European airports using the data from the
year 2018.

One of the essential factors determining airport performance is the form of ownership. In
the past, most airports were publicly owned, which is still true in some cases. However, during
the last two decades of the 20th century, privatization took place in many countries. With
this change, competition between airports has also begun to grow. However, the majority of
privatized airports in Europe remains subject to some extent of economic regulation [9]. Current
measures taken by European countries connected to the coronavirus pandemic will have a severe
impact on transportation companies including airlines and airports. Some governments plan to
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nationalize major airlines to save them from bankruptcy and similar measures may affect the
airports. The change in the airports’ ownership may well have a significant impact on their
productivity and efficiency. So, in the final part of our analysis, we compare the performance
of airports with different forms of ownership.

The paper is organized as follows: A review of already published works in the area of
airport efficiency and the effect of ownership is presented in the second section. The models
for evaluating efficiency and statistical analysis are described in the third section and the data
sample in the fourth section. The results are presented and discussed in the fifth section, and
the last section is the conclusion.

2. Literature review

Since the late 1990s, a lot of academic research has emerged applying quantitative approaches
to assessing the productivity and efficiency of airports. The major studies on large European
airports are represented by Pels et al., [18, 19]. The authors perform analyses separately for
two different outputs for 33 European airports in 1995-1997. They use SFA to estimate the
production limit for the number of aircraft movements, obtain predicted values of aircraft
movements and then use these as another explanatory variable for the number of passengers
carried. Liebert mentions 38 studies in her survey [11] which apply parametric methodology
(mostly stochastic frontier analysis) and 29 nonparametric studies (mostly data envelopment
analysis). Some authors, however, debate the relevance of airport performance evaluation due
to inconsistencies in the data selection and model specifications which result in limited value
for managers. Different techniques and the airports’ heterogeneous character may lead to
controversies across studies [12]. Most of the research has been limited in the number of units
compared, and the regional specification; only 10 papers out of 67 covered by the survey of
Liebert [11] are based on the sample of European airports, and their number ranges only from
25 to 48, so our article aims to fill this gap.

Many empirical studies have analyzed the effects of different ownership forms on efficiency,
but the results have not led to any clear conclusions. Parker [17] utilizes DEA to estimate the
technical efficiency of the British airports covering the period pre and post-privatization. He
finds no evidence that complete privatization leads to improved technical efficiency. Barros and
Dieke [5] analyze data on 31 Italian airports from 2001 to 2003 to reveal that private airports
operate more efficiently than their partially private counterparts. However, Lin and Hong [13]
find no connection between ownership form and efficiency after analyzing a data set of worldwide
airports for the years 2001 and 2002. The results by Vogel [24] on a European set of airports
reveal that privatized airports operate more cost efficiently and receive higher returns on total
assets and revenues. Public airports, in turn, had the advantage of higher gearing and financial
leverage. Oum et al. [15] distinguish between public airports owned by public corporations
and those owned by more than one public shareholder and conclude that different ownership
and governance structures affect the quality of managerial performance. Conversely, Oum et
al. [16] assess a sample of 100 airports worldwide covering the years 2001 to 2003, and they
reach the conclusion that the productivity of a public corporation is not significantly different
from that of a major private airport. So, the effect of ownership on airports’ efficiency so far
remains an open question, and with our paper we aim to add to this debate.

3. Methodology

The parametric approach is represented in our analysis by the stochastic frontier analysis. In
the following subsection, we describe the setting of our SFA model and various approaches
used to aggregate results obtained for the separate outputs into a single measure of inefficiency.
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Then we present several selected models of data envelopment analysis in the subsection on
non-parametric approaches.

3.1. Stochastic frontier analysis

The stochastic frontier model for one output assumes production function of the form

yi = f(xi;β) · exp(vi) · exp(−ui), i = 1, . . . , n, (1)

where yi is the level of the output and xi is an input vector for i-th unit, vi is symmetric random
error, and ui is nonnegative term representing technical inefficiency, i = 1, . . . , n.

Cobb-Douglas production function was chosen as a suitable functional form for our data:

f(xi;β) = β0

m∏
j=1

x
βj

ij (2)

The stochastic components of our model (random errors and inefficiencies) were supposed
to have Normal and Half-Normal distributions with following assumptions:

1. vi ∼ iid N(0, σ2
v),

2. ui ∼ iid N+(0, σ2
u),

3. ui and vi are independent of inputs and mutually independent as well.

The maximum likelihood method is usually applied to estimate the parameters as described in
[10]. We have also tested a more general SFA setting, such as using the translog production
function and general Truncated Normal distribution for the inefficiency term but the results
didn’t differ much, and the extra terms were statistically insignificant, so we stick to the simple
case.

As the basic SFA model is designed for a single output only, special procedures have to be
applied to generalize the approach for more outputs. The first option described by [6] is to
substitute the production function in the model by the so-called distance function. The input
distance function is defined as

di(x, y) = max{ρ : y can be produced by
x

ρ
} (3)

The natural assumptions on the production possibility set imply that this function should be
non-decreasing and concave in inputs. After some simplifications, the model for Cobb-Douglas
functional form of di(x, y) can be rewritten as

− lnxmi = β0 +

m−1∑
j=1

βj ln

(
xji
xmi

)
+

r∑
k=1

γklnyki + vi − ui, (4)

where ui = lndi(x, y). Unfortunately, the estimation of the distance function is not always as
straightforward as it might seem. The first issue can occur in application of SFA models in
general. It is the correlation between the explanatory variables and the model’s error compo-
nent, which would violate the basic assumption of the model. This problem can be solved using
the method of instrumental variables. Another issue occurs if the estimated distance function
does not meet the required property of monotonicity and concavity in inputs (unless there is
additional constraint on the coefficients β). Because of these considerations, we also applied
the approach suggested by Scippacercola et al., [20] based on the principal component analysis
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(PCA). We first estimate models for individual outputs separately, then combine the obtained
inefficiencies into one matrix, where the k-th column contains the inefficiencies of all units with
respect to the k-th output. If the first principal component of this matrix extracts enough of the
original variability, we can use it as an estimate of inefficiency. The drawback of this approach
is that using PCA, we can obtain both positive and negative values and the information on the
total size of inefficiency is lost, so it can only be used for the ranking of the units. To get more
robust results, we also used the third approach of scalarization computing the total efficiency
as geomean of efficiencies for individual outputs.

3.2. Data envelopment analysis

Basic models of data envelopment analysis are used to evaluate the relative performance of
decision making units (DMUs) in a homogeneous sample of n units. The efficiency of DMUs is
expressed on the basis of m inputs and r outputs.

If we denote the input and output vectors for i-th DMU by xi and yi, i = 1, . . . , n, we can
express the (input-oriented) efficiency of DMUq by the optimal objective value of the linear
program

min
∀θq,λi

θq,

subject to

n∑
i=1

xijλi ≤ θqxqj , j = 1, . . . ,m,

n∑
i=1

yikλi ≥ yqk, k = 1, . . . , r,

λi ≥ 0, i = 1, . . . , n,

and

n∑
i=1

λi = 1,

(5)

where θq represents the necessary reduction of the inputs and the variable λi, i = 1, . . . , n are the
coefficients of the virtual unit projecting DMUq on the efficient frontier. The last constraint
corresponds to the variable returns to scale (VRS) assumption. Although the character of
returns to scale in the area of transportation is subject to a scientific debate [25], most authors
assume the presence of economies of scale in the aircraft industry [4]. Basic DEA models
distinguish between orientation on inputs or outputs. They are called radial because they
indicate the degree of proportional reduction of all inputs (or increase of outputs) to become
effective for a given unit. However, there are groups of models whose formulation does not
require model orientation. These models are referred to as additive models or SBM models (slack
based measure) as their formulation is based on additional variables s−j , j = 1, . . . ,m, s+k , k =
1, . . . , r, expressing slacks of inputs and outputs.

As a representative of this group, the model proposed by Tone [22] was selected for our
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analysis (Tone’s Slacks Based Measure model; SBMT model):

min
∀λi,s

+
k ,s

−
j

1− 1
m

m∑
j=1

s−j
xqj

1 + 1
r

r∑
k=1

s+k
yqk

,

subject to

n∑
i=1

xijλi + s−j = xqj , j = 1, . . . ,m,

n∑
i=1

yikλi − s+k = yqk, k = 1, . . . , r,

s+k ≥ 0, k = 1, . . . , r,

s−j ≥ 0, j = 1, . . . ,m,

λi ≥ 0, i = 1, . . . , n,

and

n∑
i=1

λi = 1 (VRS) assumption

(6)

As many benchmarking studies aim to obtain a unique ranking of the DMUs, it is not
desirable to use a method that identifies a large portion of the units as fully efficient. This
situation can often occur when we use ordinary models, mainly when we use many inputs and
outputs and assume variable returns to scale. So the SBMT model has been further modified [23]
to the super SBMT model having more discriminatory power for the units identified as efficient
by the basic model. The super-efficiency SBMT model removes the evaluated unit DMUq from
the set of DMUs and looks for its projection on the efficient frontier (DMU∗) determined by
the remaining n− 1 units. The super-efficiency measure is defined as the distance of the units
DMUq and DMU∗ in their input and output space. The virtual inputs x∗i , i = 1, . . . ,m, and
outputs y∗k, k = 1, . . . , r, are determined by the fractional linear program

min
∀λi,x∗

j ,y
∗
k

1
m

m∑
j=1

x∗
j

xqj

1
r

r∑
k=1

y∗k
yqk

,

subject to
n∑
i=1

xijλi ≤ x∗j , j = 1, . . . ,m,

n∑
i=1

yikλi ≥ y∗k, k = 1, . . . , r,

x∗j ≥ xqj , j = 1, . . . ,m,

y∗k ≤ yqk, k = 1, . . . , r,

λi ≥ 0, i = 1, . . . , n, i 6= q,

λq = 0,
n∑
i=1

λi = 1 .

(7)

The last constraint corresponds to the variable returns to scale assumption. When applying
the method to our data, we followed the two-phase procedure recommended by [8]:
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1. Use the basic SBMT model (without excluding the unit under evaluation from the set
of DMUs in the model) to divide units into efficient and inefficient ones, for which we
compute the SBMT efficiency values.

2. Compute the super-efficiency according to the super SBMT model 7 for efficient units
from the first phase.

By this procedure, referred to as the (super)SBMT model we get values greater than 1 for
efficient units and less than 1 for inefficient DMUs.

3.3. Comparing efficiency across groups: program evaluation proce-
dure

In order to explore the effect of different forms of ownership on the performance of the airports,
we wanted to control for the other factors. So we applied the program evaluation procedure
outlined by Brockett and Golany [7] and Sueyoshi and Aoki [21]. The purpose of this procedure
is to distinguish between the degree of inefficiency caused by the uneconomical operation of the
units and that caused by belonging to a particular group. The procedure includes four steps:

1. Split the group of all DMUs (j = 1, . . . , n) into p subgroups consisting of n1, . . . , np DMUs
(
∑p
i=1 ni = n). Run DEA separately for the individual groups.

2. In each of the p groups, adjust inefficient DMUs to their ”level if efficient” values by
projecting each DMU onto the efficiency frontier of its group.

3. Run a pooled DEA with all n DMUs at their adjusted efficient levels.

4. Apply a statistical test (Mann-Whitney for two groups or Kruskal-Wallis for p > 2) to
the results of the previous step to determine if the groups have the same distribution of
efficiency values within the pooled DEA set.

4. Data for the analysis

There are 1093 airports with assigned IATA ( International Air Transport Association) code in
Europe, see Airport Database 2019 [3]. For our analysis, we intended to cover the 150 busiest
European airports according to the number of passengers transported in 2018. The airport
traffic report of the association Airports Council International shows that highest number of
passengers came through London Heathrow Airport, followed by Charles Airport de Gaulle
in Paris and Schiphol in Amsterdam [1]. Data collection proved to be quite problematic.
No summary was available for many airports; therefore data were searched individually, but
relevant information was missing in some cases. That is why we had to exclude 35 airports
and consequentially, our data sample covers 115 of them. The map in Figure 1 shows all the
airports considered initially for analysis. It is color-coded for airports with complete data and
airports excluded from the study. We can see that almost every European country has at least
one representative in the sample.

In our analysis, the output side is expressed by three variables, namely passengers, aircraft
movements, and cargo. The number of runways, terminals, gates, and aircraft stands were
selected for the inputs. The selection of relevant variables for the analysis was based on a
literature review. The number of terminals was used twice (further, the capacity of terminals
was used twice and the total area of terminals was used 9 times in different studies), the number
of runways was used 7 times (plus 3 further times referring to their area and 4 times to their
total length), boarding gates were analyzed 5 times, and aircraft stands 6 times (and 3 further
times referring to their area). On the output side, 20 studies used the number of passengers, 18
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Figure 1: Map of airports locations

number of aircraft movements, 17 the total tuns of cargo. In addition to the characteristics we
used, there are also sometimes other variables used, like total costs, staff, or check-in counters
on the input side and revenues on the output side [12]. Descriptive statistics of inputs and
outputs of units included in our study are in Table 1.

Terminals Runways Gates Stands Passengers Movements Cargo [t]
Minimum 1.000 1.00 4.00 6.00 1677661 13195 51
1st quartile 1.000 1.00 14.50 24.00 4310005 42853 3800
Median 1.000 1.00 23.00 40.00 6962040 76995 18543
Mean 1.687 1.67 43.52 60.85 14309037 117317 141920
3rd quartile 2.000 2.00 53.00 75.00 17900050 149867 93922
Maximum 5.000 6.00 269.00 340.00 80124537 512115 2176389

Table 1: Table 1: Descriptive statistics of inputs and outputs

5. Results and discussion

The methods described in Section 3 were applied on the data using the R packages deaR,
frontier, and npsf. First we evaluated the SFA model for each output separately. The
parameters were estimated by the maximum likelihood method. Table 5 shows the summary
statistics of these simple SFA models, where the p-values are taken from the (asymptotic) nor-
mal distribution. In all three models, the logarithm of the number of terminals appears to be
insignificant, while the other input variables appear to be significant.
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Passengers Movements Cargo

Constant 12.936 *** 8.492 *** 4.117 ***
(0.189) (0.196) (0.864)

ln(Terminals) -0.007 -0.037 -0.493
(0.084) (0.079) (0.341)

ln(Runways) 0.290 *** 0.181 ** 0.705 *
(0.092) (0.085) (0.360)

ln(Boarding gates) 0.558 *** 0.592 ** 0.770 *
(0.076) (0.071) (0.283)

ln(Aircraft stands) 0.383 *** 0.283 ** 1.221 *
(0.078) (0.073) (0.299)

Table 2: Estimations of separate SFA models; standard deviations in brackets; *,**,***
denotes statistical significance of 10%, 5%, 1%

We focused on model diagnostics and checked the distribution assumptions for both error mem-
bers in the model. Figure 2 shows histograms and the probability density of the individual terms.
Using the Kolmogorov-Smirnov test, we do not reject the null hypothesis about the normality
of the error component. The inefficiency component should follow a Half-Normal distribution,
and according to the graphs, it seems that this assumption should be met for all three mod-
els. So we can express the individual efficiencies and subsequently apply a suitable method of
their aggregation because we are most interested in approaches that take into account all three
outputs together so they can be compared with DEA models.

As a first approach for multiple inputs, the distance function (4) was used. The logarithm
of the number of terminals was chosen as the normalization variable; however, the same results
would be obtained for any other input. Again, we have checked the assumptions about the
distribution of error and inefficiency component terms. However, all the model parameters
appeared to be insignificant; it is therefore possible that some of the other model assumptions
were not met. The other two possible approaches directly aggregate the efficiencies obtained
using simple SFA models. First, we applied the PCA method to individual efficiencies. The
obtained first main component covered about 58% of the total variability and efficiency of
outputs were represented as follows: number of passengers with a coefficient −0.69, number
of aircraft movements by a coefficient −0.70, and cargo with a coefficient −0.19. We checked
the direction of correlation of the first principal component with the original efficiencies, and
since this correlation was negative, we multiplied the PCA scores by −1 to maintain the same
interpretation as the efficiency rate - the higher the value of the main component, the more
efficient the airport. Now we could arrange the airports from the most to the least efficient. The
last approach was probably the simplest of all mentioned so far, it was based on a geometric
mean of efficiencies obtained by simple models.

We compare the results using Spearman correlation coefficients, which is shown in Figure 3.
If we look at the correlations of simple models, we can see that the model for the number of
passengers is strongly correlated with the model for aircraft movements, but their correlation
with the model for cargo is weak. This may be due to the correlations between the inputs
themselves. Benchmarking of airports using the cargo model is therefore quite different from
the other two. The results of distance function and PCA models are strongly correlated with
the individual models for the number of passengers and the number of aircraft movements,
which again corresponds to the correlations between simple models. The correlation between
all methods for multiple outputs is relatively strong in general. It is surprising that even a
simple concept of geometric mean can compete with more sophisticated approaches.

It is know that basic DEA models can identify several DMUs as fully efficient. As expected,
the model (5) identified only 22 airports as inefficient. The non-radial model defined by equation
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Figure 2: Distribution of error terms of simple SFA models

(6) gave better results with 77 inefficient units. But there is still some space for improving the
results because we cannot rank the units with efficiency equal to 1. So we finally evaluated
the performance of the airports by the two-stage procedure combining the results of (6) with
the super-efficiency model (7). The rank correlations of DEA scores with the SFA results are
shown in Figure 4.

We can see that the basic DEA model scores are poorly correlated with all the other results.
The main reason is probably the low discriminatory power of this model. The best agreement
of non-parametric and parametric approaches (with correlation equal to 0.64) is achieved using
(super)SBMT model of DEA and the geometric mean of individual SFA scores. So for further
comparison, we select these two methods. The top ten performers identified by particular
methods are listed in Table 5.
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Figure 3: Spearman correlations of SFA results

Figure 4: Spearman correlations of DEA and SFA results

Rank DEA: (super)SBMT TE Size rank SFA: Geometric mean TE Size rank
1 Frankfurt- Hahn 1.321 111 Reykjav́ık 0.826 46
2 London Heathrow 1.266 1 Zagreb 0.789 91
3 Amsterdam Schiphol 1.258 3 London Heathrow 0.744 1
4 Reykjav́ık 1.241 46 Bologna 0.739 54
5 Kos 1.234 101 Belfast 0.735 7
6 Santorini 1.1 81 108 Moscow Sheremetyevo 0.734 9
7 London Stansted 1.163 19 Naples 0.730 45
8 London Luton 1.160 32 Lisbon 0.728 16
9 Chania 1.156 97 Milan Orio al Serio 0.722 37
10 East Midlands 1.153 80 Belgrade 0.719 71

Table 3: Technical efficiencies of top ten performers

Only two airports are on both top ten lists. London Heathrow, with 80 million of transported
passengers, is the busiest European airport, and Reykjav́ık - Keflav́ık is the main airport for
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international connections to the whole of Iceland. It seems that smaller airports are preferred
when we apply the DEA method; the best airport Frankfurt-Hahn is actually one of the smallest
in our sample. It has the advantage of geographic location between Frankfurt and Luxembourg,
about 120 km to both cities, so it represents a cheaper alternative to Frankfurt Airport. Other
smaller airports on the list (Kos, Santorini, Chania) serve mainly for seasonal flights of charter
operators. But, on the other hand, big international hubs such as London Heathrow and
Amsterdam Schiphol occupy the top positions of the DEA ranking. Concerning SFA results,
the smallest airport among the top performers is Zagreb which is the second best. Zagreb
airport is the largest and busiest international airport in Croatia, the Croatian flag carrier
Croatia Airlines hub and a focus city for charter operator Trade Air.

Using these results, we analyzed the effect of ownership on airport efficiency measures using
the procedure presented in subsection 3.3. We have classified the airports into three groups:
Fully public (including Fully public - corporatized and Fully public - part of public administra-
tion), Fully private, and Mixed group (including Mostly public, Mostly private, Equally public
and private). Our sample comprises 21 fully private airports, 44 fully public, and 50 airports
in mixed ownership. A preview of the DEA and SFA results for 30 busiest airports together
with the ownership cathegory can be found in Table 5.

DEA SFA
Name Ownership TE rank TE rank

London Heathrow Fully private 1.266 2 0.744 3
Paris Charles de Gaulle Mostly public 1.011 36 0.620 39
Amsterdam Schiphol Mostly public 1.258 3 0.568 55
Frankfurt am Main Mostly public 1.152 11 0.683 20
Madrid Mostly public 0.310 64 0.401 91
Barcelona Mostly public 0.222 71 0.370 97
Munich Fully public - corporatized 1.071 18 0.545 61
London Gatwick Fully private 1.089 14 0.500 75
Moscow Sheremetyevo Mostly public 1.054 22 0.734 6
Rome Fiumicino Mostly private 0.396 55 0.548 59
Orly Mostly public 1.001 38 0.482 80
Dublin Fully public - corporatized 0.396 56 0.620 38
Zurich Mostly private 0.483 49 0.630 36
Copenhagen Mostly private 0.505 48 0.618 41
Palma de Mallorca Mostly public 0.027 99 0.333 99
Lisbon Fully private 1.071 17 0.728 8
Manchester Mostly public 0.299 65 0.616 43
Oslo Fully public - corporatized 1.078 15 0.660 27
London Stansted Mostly public 1.163 7 0.695 14
Vienna Mostly private 0.421 52 0.615 44
Stockholm Arlanda Fully public - corporatized 0.175 79 0.485 79
Brussels Mostly private 0.705 40 0.572 53
Malpensa Mostly public 0.509 47 0.535 64
D usseldorf Equal public and private 0.162 83 0.488 77
Athens Mostly public 1.034 26 0.691 17
Berlin Tegel Fully public - corporatized 0.314 63 0.539 63
Helsinki Fully public - corporatized 1.037 25 0.698 13
Malaga Mostly public 0.010 106 0.253 106
Saint Petersburg Pulkovo Fully private 1.014 34 0.375 94
Geneva Fully public - corporatized 1.034 27 0.682 22

Table 4: Technical efficiencies of 30 busiest airports



12 Markéta Matulová and Jana Rejentová

In Figure 5 we can see two graphs showing the boxplots of DEA efficiency for individual types
of ownership. The black line in the box diagram corresponds to the median, and the black dot
to the mean efficiency. The graph on the left shows the situation when the program evaluation
procedure of subsection 3.3 was not used. It is therefore a comparison of efficiencies between
different ownership groups using an overall model. If we perform the Kruskal-Wallis test for
these values, we obtain a p-value of 0.762, and thus we do not reject the null hypothesis that
there is no effect of ownership on efficiency. However, this evaluation includes possible aspects
of the uneconomical operation of individual airports. The boxplot on the right side of Figure 5
is obtained by the proposed procedure for group comparison using (super)SBMT models. The
differences between groups are more pronounced. In this case, the Kruskal-Wallis test returns
a p-value of 0.064, and therefore we reject the null hypothesis that there is no effect of airport
ownership on the efficiency level at the significance level of 10%. On average, privately owned
airports seem to be the most efficient, followed by a group of mixed-owned airports, and public
airports appear to be the least efficient.

Figure 5: Efficiency comparison; on the left model for the original data, on the right model for the corrected values

6. Conclusion

In this paper, we have evaluated the performance of 115 European airports. We have based
our computations on five inputs, including the number of terminals, runways, boarding gates,
and aircraft stands, and three outputs represented by the number of passengers, aircraft move-
ments, and tons of cargo. We applied SFA model with the Cobb-Douglas production function
and Normal/Half-Normal distribution of error and inefficiency terms. We employed three dif-
ferent scalarisation techniques for the efficiency scores obtained using the individual outputs,
namely distance function, principal component analysis, and geometric mean. The usage of
distance function is restricted by rather demanding assumptions, so it cannot be recommended
as a generic method. The disadvantage of the approach based on PCA is that it provides
no information on the absolute inefficiency level. Another problem may arise when the main
component does not extract enough variability of inefficiency terms. So, for its simplicity and
universal usage, we selected the last option based on geometric average as the most suitable SFA
multi-output model. Next, we evaluated airport performance non-parametrically using three
DEA models (basic model for variable returns to scale, Tone’s additive model, and the super-
efficiency SBMT model). The last option was selected as the most appropriate to get a unique
ranking of DMUs. We confronted results obtained parametrically and non-parametrically and
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realized that there is a strong positive association between SFA and DEA scores (Spearman
correlation of 0.64). We used these obtained results to explore how airports’ performance is
affected by their form of ownership. Applying the naive approach comparing the efficiency
scores of individual airports, we found no statistically significant difference in the performance
of airports with different forms of ownership. After applying an advanced approach controlling
for the influence of inefficiencies caused by individual managerial failures we obtained quite
contrasting results identifying private airports as the most efficient and public airports as the
least efficient.

The limitation of similar studies is given by the sensitivity of results to the methodology em-
ployed. The values of the effective scores are influenced by the model specification including the
selection of a particular model from the portfolio of parametric or non-parametric approaches
and determination of inputs and outputs, economies of scale, etc. In addition, some annual
reports on airport performance show evidence of inconsistencies over time and there is also
high possibility of the occurrence of other biases caused e.g. by longer-term effects of lumpy
capital investments. [14]. This paper aims at getting more robust results by combining findings
obtained by different models. Nevertheless the topic deserves further examination; one possible
way of extending the study is to cover longer time period.
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