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Abstract. The causes and the consequences of the real exchange rates misalignment’s of European
Union (EU) members were examined in this paper by implementing stationary panel vector autore-
gression (PVAR) model with fixed effects. PVAR methodology was recognized as the most appropriate
in line with data structure and the objectives of the research. For estimation purpose, the generalized
method of moments (GMM) in first differences, with a reduced number of instruments, was applied.
Primarily objective was to find whether a collapsed matrix of instruments helps in reducing the dynamic
panel bias within the two–step estimation of PVAR model when employing the first difference GMM
estimator. Even though, the benefits of collapsed instrument matrix have been documented in rare
simulation studies, this paper empirically demonstrates it’s utility considering balanced panel data. In
that context, recommendations to potential users are given and supported by open source codes in the
RStudio environment. Besides, auxiliary findings contribute to a better understanding of influential
channels through which EU policy makers should reduce a real exchange rates misalignment’s.
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1. Introduction

Recent studies have confirmed real exchange rates misalignment’s issue regarding a different
productivity and growth among EU members, resulting in economic divergence instead of the
preferred convergence [8, 9, 10]. It is generally accepted attitude that imbalance of the real ex-
change rate and it’s volatility affect economic variables such as imports, exports, the balance of
payments, inflation and production [12, 13, 14], which directly affect the economic performance
of a particular country. Moreover, [16] pointed out that intense exchange rate fluctuations are
the main cause of uncertainty in the export and import of competitive goods and services,
and thus discourages investment in these sectors. A real exchange rate misalignment can also
affect domestic and foreign investments through the gross capital formation [27], while in other
instances, it can affect the tradable goods sector and its competitiveness vis-á-vis the trading
partners. A firm’s trade cannot be returned to the original level after extreme exchange rate
changes and real exchange rate appreciation serves as a subsidy for imports, while [2] observe
the negative effect of high and frequent volatility on the productivity growth of developing
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countries as well as countries with poorly developed financial markets. Higher real exchange
rate volatility can induce increased profit uncertainty on foreign currency–denominated con-
tracts, which causes a greater reduction in economic growth. Further, higher real exchange rate
volatility often leads to higher prices of goods traded internationally causing traders to add a
risk premium to these goods to cover unexpected exchange rate fluctuations.

Hence, the paper intends to analyze macroeconomic variables that cause real exchange rate
misalignment’s of EU members using panel vector autoregression methodology (PVAR) which
is a great challenge due to the most common, but usually overlooked and neglected issue of too
many instruments used for model estimation [22, 28]. By employing the PVAR methodology
to a real life problem, this paper empirically demonstrates whether the collapsed matrix of
instruments is more convenient in short panel with limited number of cross–sectional units N ,
which is a primary objective. The reason for employing PVAR at first is dealing with a historical
data (observed annually) of EU members (N = 27) and keeping in mind that real exchange
rate misalignment can be the cause and the consequence of economic variables simultaneously.
The second, more relevant reason, is utilizing a decreased number of instruments in the GMM
estimation to reduce the exposure to overfitting endogenous variables when cross–sectional
dimension of panel data is not large even it’s greater than time dimension. As far as we know
from the previous studies, several authors have already found interactions between real exchange
rates misalignment’s and various macroeconomic variables, see e.g. [21, 27, 30], but there is no
similar empirical study that considers the PVAR methodology within EU members and handles
the instrument proliferation.

This paper primarily contributes to the existing studies of PVAR methodology by empir-
ical demonstration of the benefits from collapsed matrix of instruments. It also enriches the
literature on real exchange rates misalignment’s, i.e. it offers a more comprehensive analysis
of EU real exchange rate behavior due to impulses in other variables by employing stationary
panel vector autoregression model with fixed effects, and contributes to a better understanding
of the explained variance of real exchange rates misalignment’s in the log–run. Finally, a less
formal purpose of this research is to encourage potential users to implement open source codes
in RStudio within panelvar package, and to popularize the improved PVAR GMM estimator
proposed by [31].

After the introduction section, Section 2 reviews the literature about real exchange rate
misalignment’s with a special attention to models and variables employed in previous studies.
In Section 3 the data and PVAR methodology are given. Section 4 presents empirical results
along with interpretation and discussion, while Section 5 concludes.

2. Literature review

The real exchange rate misalignment is well–known as a discrepancy of the actual real exchange
rate from its long–run equilibrium, see e.g. [25], but the issue of establishing an equilibrium
real exchange rate remains unsolved. Conforming to [8] several approaches of the equilibrium
exchange rate exist: 1) purchasing power parity (PPP), 2) fundamental equilibrium exchange
rate (FEER), 3) behavioral equilibrium exchange rate (BEER), and 4) permanent equilibrium
exchange rate (PEER). PPP most common criticisms are focused on real exchange rate oscil-
lations that theory holds constant or approximately equal in the medium and longer period.
FEER approach engages with price elasticities that are not easy to estimate, as well as current
account targets that should be achieved, which in turn is its main drawback [25]. Due to [11],
the critique of the most commonly employed BEER and PEER approaches suggests that eco-
nomic fundamentals used in equilibrium exchange rate estimation do not necessarily have to be
at equilibrium level, which consequently results in a poor estimation.

Various authors have been studied interactions among current account balance and real
exchange rate [8, 9]. In particular [9] has applied a panel VAR analysis to 27 EU members over
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the period 1994–2012 and has found that the increase in a current account imbalance causes
an expansion of real exchange rate misalignment and thus lowering competitiveness. However,
author [9] does not report the number of instruments, which in case of T = 19 can not be less
than N = 27 when applying standard GMM–style estimator to the homogeneous PVAR model
[1]. The same author also applies a Bayesian PVAR to overcome cross–sectional dependence,
heterogeneity of groups and the bias in the small sample, but gives no explanation of it’s set-
tings or any appropriateness of it’s use. Further, authors [26, 29] have recognized public debt as
a significant explanatory variable of the real exchange rate misalignment, i.e. the higher public
debt of a specific country is associated with the real exchange rate depreciation. Using the
Johansen cointegration approach limited to a single country [24] come to a similar conclusions
about the negative impact of exchange rate depreciation which stimulates an external indebted-
ness in Croatia. Conventional economic theory also assumes that government spending affects
the real exchange rate, e.g. [7] within structural VAR for the period 2002–2012 concluded that a
positive shock to government spending in Turkey induces real exchange rate appreciation. Like-
wise, price levels have been recognized as an important source of exchange rate misalignment.
Using a dynamic panel data (DPD) model [32] on the Middle East and North Africa countries
(MENA) showed that inflation along with the institutions quality and financial development
are important factors that drift the real exchange rate from its steady–state. [19] using the
structural vector autoregressive model (SVAR) on the example of Egypt found that nominal
shock attributed to consumer price index (CPI) leads to the real exchange rate depreciation,
but only in the short–run. It is explained that higher inflation rates cause real exchange rate
depreciation. Contrary, a depreciated real exchange rate stimulates inflation.

Most of the studies involving panel analysis of the real exchange rates misalignment’s are
concentrated on a single equation approach [21, 27], such as panel ARDL (panel autoregres-
sive distributed lag model) or DOLS (dynamic OLS panel model), while others neglect panel
structure of the data by using euro area aggregated variables, see e.g. [30]. Even though,
dynamic panel models have experienced a great popularity among users, the main drawback
is the bias of the coefficient with respect to the lagged endogenous variable, which cannot be
easily annulated for small T and large N [23]. Some bias corrected estimators were proposed
in the literature, but unbiased estimators of dynamic panels considering generalized method
of moments (GMM), which are in the focus of practitioners as well as academics, still suffer
from overfitting problem and instrument proliferation [18]. This means that the number of
instruments increase quadratically with respect to T and GMM estimator is not consistent any
more.

From the methodological point of view it is advisable to address the number of instruments
when using GMM dynamic panel models, having in mind that inclusion of all available instru-
ments can cause above mentioned problems. This is a case when the number of instruments
surpasses the number of cross–sectional units [28]. Consequently, it weakens the power of the
Sargan–Hansen–J test for instrument validity [17]. Therefore, indisputable indicator of too
many instruments is a high p–value of the J–statistic, i.e. close or equal to 1, which mislead-
ingly forces the researchers to never reject the null hypothesis of instruments validity. Keeping
the number of instruments small when cross–sectional dimension is small should not be an
exception, particularly when dealing with PVAR models. [22] suggests simply to increase the
number of cross-sectional units whenever is possible, to limit the lag length of instruments, or
to reduce too many instruments by principal component analysis. Factorization of the instru-
ments can be helpful when employing a single DPD model, but not in case of a system of DPD
models such as PVAR. An elegant solution is to collapse the instruments.

This paper offers several contributions to the existing literature. It empirically demonstrates
that collapsed matrix of instruments helps in avoiding instrument proliferation and ensures
GMM unbiasedness and consistency when PVAR model is implemented. Namely, in case when
N is limited and small it clearly suggests the optimal number of time units T as well as the
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number of endogenous variables m, for which the collapsed number of instruments is less than
the number of cross–sectional units. Moreover, in a given settings, results notably confirm that
Hansen overidentification test is not weakened any more. From the practical point of view
this paper provides a straightforward guidance how to get the most from the short panel data
when users decide to utilize PVAR in their studies. Further, it collects economics variables
as the leading causes of real exchange rates misalignment’s. Previous studies on this topic
have analyzed misalignment’s only in one particular country or in more countries with different
currencies in a given year, but this paper focuses on understanding of misalignment’s in all EU
countries over more years. By employing PVAR methodology with collapsed instruments, an
unbiased and consistent estimates with all endogenous variables are achieved. Finally, the most
effective channels for misalignment’s reduction are suggested.

3. Data and methodology

Current study focuses on real exchange rates misalignment’s determinants of EU member coun-
tries (N = 27) from 2010 to 2019 (T = 10) by using a PVAR model. Apart from the real
exchange rate misalignment (MIS), two additional endogenous variables were selected as the
most relevant and prevailing in the ongoing literature: current account balance (CUR) and
public debt (PD). CUR variable is given as percentage of the gross domestic product (GDP)
considering EU countries and rest of the world as trading partners, PD represents a general
government net lending or borrowing as a percentage of GDP likewise, while RER was orig-
inally reported as index (2015=100) of real effective exchange rate towards 27 EU members.
The sample of panel data was downloaded from EUROSTAT public source. A limitation to
three endogenous variables was imposed due to relatively small number of observations even
though N is greater than T . Otherwise, estimates will not be unbiased and consistent. For
the same reason predetermined or any exogenous variables are not contemplated in this paper.
Still, PVAR model includes two or more endogenous variables, which is the minimum for its use.
With three endogenous variables (m = 3) and one time lag (p = 1) nine parameters should be
estimated. However, the optimal lag length procedure of [3] is applied in the following section.
Imposed restrictions cause PVAR usage more challenging in getting the most we can achieve
from the EU members when historical data are observed annually. Moreover, annual data are
not contaminated by seasonality. Because of the large number of endogenous variables m and
the number of lags p, the PVAR model can be oversized, i.e. too many parameters have to be
estimated, hence there is a great chance that stability condition of the model is not met. This
makes even more difficult to identify valid instruments when employing GMM estimator in the
first differences.

To obtain historical data of real exchange rate misalignment (MIS) for each member of
the EU, an equilibrium real exchange rate (ERER) was initially calculated directly from the
actual real exchange rate time–series (RER) using Hodrick–Prescott (HP) filter with adjustment
parameter λ = 100. In this way short–term fluctuations are eliminated from yearly data, and
EU members’ real exchange rate misalignment’s were computed in the next step as:

MIS =
RER− ERER

ERER
× 100. (1)

A visual inspection of the real exchange rate and it’s misalignment across EU members over
10 years period is provided (Figure 1). The right panel of Figure 1 presents RER positive and
negative misalignment’s (MIS), that is, currency is overvalued or undervalued relative to it’s
long–run, while zero misalignment indicates equilibrium state. In general, RER fluctuations
induced by changes in transportation costs or tariffs don’t necessarily demonstrate fundamental
misalignment’s, but play a key role in equalizing the prices of tradables across countries. RER
misalignment ranges from −5.89% to +6.47%. The minimum is observed for Czechia (country
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code CZ) and the maximum is observed for Sweden (country code SE). Although both countries
have experienced extreme values of RER misalignment’s, and therefore can be identified as
outliers among other EU countries, they are not omitted from PVAR analysis due to requirement
of cross–sectional dimension.

(a) Time–series of RER indices (b) Time–series of RER misalignment’s

Figure 1: EU real exchange rates indices and misalignment’s from 2010 to 2019.

Prior to the PVAR model estimation, various panel unit root tests were conducted for 10,
9 and 8 years to examine stationarity of panel time–series over three periods of time (Table 1).
First one is a complete sample period (T = 10), while the other two are reduced for a one year
successively, keeping the most recent year fixed. Decreasing a number of years is particularly
relevant for instruments reduction. Test of Im, Pesaran and Shin as well as Levin, Lin and
Chu test were solely used as unformal tests, without heavy conclusion about stationarity when
dealing with very short time–series. In spite of that, authors intention was to check stationarity
of endogenous variables as an indicator of PVAR model stability in the post–estimation stage.
Stability condition plays important role when applying first–difference GMM with lagged level
of endogenous variables as instruments, that is, the same method fails if unit roots exist in
short PVAR model [5].

Unit root Im, Pesaran and Shin Levin, Lin and Chu
statistic T = 10 T = 9 T = 8 T = 10 T = 9 T = 8

MIS −5∗∗∗ −4∗∗∗ −8∗∗∗ −9∗∗∗ −6∗∗∗ −9∗∗∗

CUR −8∗∗∗ −7∗∗∗ −8∗∗∗ −11∗∗∗ −10∗∗∗ −12∗∗∗

PD −4∗∗∗ −10∗∗∗ −12∗∗∗ −6∗∗∗ −16∗∗∗ −18∗∗∗

Note: statistical significance at 10%, 5% and 1% level is denoted by *, **, ***

Table 1: Panel unit root test results for three time periods.

Results of panel unit root tests imply the rejection of null hypothesis in favor of alternative
indicating that all variables are stationary in the levels for all time periods considering 0.01
significance level. These results, although unofficial, are acceptable as they suggest that PVAR
model might be stable.

Since the seminal paper of [18] who have first formalized the vector autoregressive model
with panel data, it has not been extensively studied in empirical papers. A PVAR model be-
come popular after the breakthrough of [1] who provided an pvar code for Stata. However, [31]
extended the PVAR model of [18] to allow for p lags of m endogenous variables, k predeter-
mined variables, n strictly exogenous variables and provided an panelvar package for RStudio
users. The same package incorporates an Hansen overidenification test, the model selection
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procedure and Windmeijer corrected standard errors adopted to both extended estimators, the
first difference and the system PVAR GMM estimator.

Due to a low and limited number of cross–sectional units of EU countries (N = 27) this
paper considers only endogenous variables within stationary PVAR(m, p) with fixed effects:

yi,t = µi +

p∑
l=1

Alyi,t−l + εi,t i = 1, 2, ..., N t = 1, 2, ..., T, (2)

where yi,t is m–dimensional vector of endogenous variables for the i-th cross–sectional unit at
time t, terms µi represent time invariant fixed effects, and Al are the m×m companion matrices
of the coefficients with respect to the vector of lagged endogenous variables yi,t−l. Subscript
l denotes the time lag l = 1, 2, ..., p and all unit roots of companion matrices Al should lie
inside the unit circle [31]. The disturbances εi,t which are assumed to be independently and
identically distributed for all i and t with zero expectation and positive semidefinite covariance
matrix, should be independent from µi. Likewise, µi are supposed to be independent from
lagged endogenous variables yi,t−l, otherwise diagonal coefficients of companion matrix could
be upward biased, causing the endogeneity problem. The first difference transformation is used
to eliminate fixed effects:

∆yi,t =

p∑
l=1

Al∆yi,t−l +∆εi,t i = 1, 2, ..., N t = p+ 2, p+ 3, ..., T, (3)

but lagged endogenous variables might be potentially correlated with disturbances εi,t and
instrumenting is required [4, 18, 28]. The first difference GMM moment conditions for each
cross–sectional unit emerge from orthogonality conditions:

E
[
Qi∆εi

]
= 0, (4)

where Qi is a block diagonal matrix of instruments stacked over t = p + 2, p + 3, ..., T . This
means that matrix Qi has T − p− 1 columns with instruments generated for each time period
and available lag. Standard instruments are lagged levels of endogenous variables which are
orthogonal to the disturbances of first–differenced PVAR(m, p) model in Eq. (3). Unavailable
instruments cause of missing lags of endogenous variables for certain time periods are set to zero.
For simplicity of exposition lets consider standard DPD model as a special case of PVAR(1, 1)
with single endogenous variable m = 1 and one time lag p = 1. All available instruments for
periods t = 3, 4, ..., T are stacked into blocks of diagonal matrix with increasing dimension of
each subsequent block by one, which generates uncollapsed matrix of instruments:

Qi =

t = p+ 2 t = p+ 3 t = p+ 4 · · · t = T



yi,t−p−1 0 0 0 0
0 yi,t−p−1 0 0 0
0 yi,t−p−2 0 0 0
0 0 yi,t−p−1 0 0
0 0 yi,t−p−2 0 0
0 0 yi,t−p−3 0 0
...

. . .
...

0 0 0 0 yi,t−p−1

0 0 0 0 yi,t−p−2

0 0 0 0 yi,t−p−3

0 0 0 0 yi,t−p−4

0 0 0 0
...

0 0 0 0 yi,t−p−(T−p−1)

=



yi,1 0 0 0 0
0 yi,2 0 0 0
0 yi,1 0 0 0
0 0 yi,3 0 0
0 0 yi,2 0 0
0 0 yi,1 0 0
...

. . .
...

0 0 0 0 yi,T−2

0 0 0 0 yi,T−3

0 0 0 0 yi,T−4

0 0 0 0 yi,T−5

0 0 0 0
...

0 0 0 0 yi,1



. (5)
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Uncollapsed matrix in Eq. (5) has (T − p − 1)(T − p)/2 instruments, that is, for p = 1 it
equals (T − 2)(T − 1)/2. Every row of matrix Qi is orthogonal to the vector of differenced
disturbances according to the GMM moment conditions in Eq. (4). To clarify a distinction in
generating instruments between a single equation DPD and a system of two equations with two
endogenous variables, e.g. y and x, lets consider the PVAR(2, 1). Uncollapsed matrix Qi then
has m(T − 2)(T − 1)/2 unique instruments per equation, and after the Kronecker product with
m–dimensional identity matrix it results in total of m2(T − 2)(T − 1)/2 instruments:

Qi ⊗ Im×m =



yi,1 0 0 0
xi,1 0 0 0
0 yi,2 0 0
0 xi,2 0 0
0 yi,1 0 0
0 xi,1 0 0
...

. . .
...

0 0 0 yi,T−2

0 0 0 xi,T−2

0 0 0 yi,T−3

0 0 0 xi,T−3

0 0 0 yi,T−4

0 0 0 xi,T−4

0 0 0
...

0 0 0 yi,1
0 0 0 xi,1



⊗
[
1 0
0 1

]
=



yi,1 0 0 0 0 0 0
0 yi,1 0 0 0 0 0

xi,1 0 0 0 0 0 0
0 xi,1 0 0 0 0 0
0 0 yi,2 0 0 0 0
0 0 0 yi,2 0 0 0
0 0 xi,2 0 0 0 0
0 0 0 xi,2 0 0 0
0 0 yi1 0 0 0 0
0 0 0 yi1 0 0 0
0 0 xi1 0 0 0 0
0 0 0 xi1 0 0 0
...

. . .
...

0 0 0 0 0 yi,T−2 0
0 0 0 0 0 0 yi,T−2

0 0 0 0 0 xi,T−2 0
0 0 0 0 0 0 xi,T−2

0 0 0 0 0 yi,T−3 0
0 0 0 0 0 0 yi,T−3

0 0 0 0 0 xi,T−3 0
0 0 0 0 0 0 xi,T−3

0 0 0 0 0 yi,T−4 0
0 0 0 0 0 0 yi,T−4

0 0 0 0 0 xi,T−4 0
0 0 0 0 0 0 xi,T−4

0 0 0 0 0
...

...
0 0 0 0 0 yi,1 0
0 0 0 0 0 0 yi,1
0 0 0 0 0 xi,1 0
0 0 0 0 0 0 xi,1



. (6)

The number of uncollapsed instruments reduces with respect to p for unchanged time dimen-
sion T and the number of endogenous variables m. For example, there would be m2p(p− 1)/2
less instruments by cutting the first 4 rows and the first 2 columns from a full instrument ma-
trix in Eq. (6) for time lag p = 2. Therefore, a general expression for counting the number of
uncollapsed instruments in PVAR(m, p) model, as long as all variables are endogenous, is:

nrow(Qi) = m2

[
(T − 2)(T − 1)− p2 + p

2

]
(7)

It is evident that the number of uncollapsed instruments is equal to the number of rows of
matrix Qi. Given expression in Eq. (7) is valid for PVAR(m, p) model with m ≥ 2 and without
any predetermined or exogenous variables. To reduce the number of instruments the blocks of
matrix Eq. (6) can be collapsed vertically to the top of the matrix:
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Q∗
i =



yi,1 0 yi,2 0 · · · yi,T−2 0
0 yi,1 0 yi,2 0 yi,T−2

xi,1 0 xi,2 0 xi,T−2 0
0 xi,1 0 xi,2 0 xi,T−2

0 0 yi,1 0 yi,T−3 0
0 0 0 yi,1 0 yi,T−3

0 0 xi,1 0 xi,T−3 0
0 0 0 xi,1 0 xi,T−3

0 0 0 0
. . .

...
...

0 0 0 0 yi,1 0
0 0 0 0 0 yi,1
0 0 0 0 xi,1 0
0 0 0 0 · · · 0 xi,1



. (8)

Collapsed matrix Q∗
i imposes instruments which number is invariant of lag p:

nrow(Q∗
i ) = m2(T − 2). (9)

Thus, if researcher decides to use PVAR in short panels then collapsing of instrument matrix is
recommended as the number of instruments can be reduced bellow the number of cross–sectional
units with respect to the number of endogenous variables m and time period T .

4. Results and discussion

Results from estimated PVAR models are presented and discussed in this section. In short
panels (N = 27) uncollapsed and collapsed number of instruments should be reported before
employing the first difference GMM estimator to determine possible m and T over multiple
lags p for which PVAR(m, p) meets the necessary constraints for it’s use. This study allows
different number of endogenous variables m (2 or 3), different number of time periods T (10, 9
or 8) and different time lags p (1, 2 or 3). Considering these settings and according to Eq. (7)
and Eq. (9) the number of uncollapsed and collapsed instruments are given in Table 2.

T = 10 Uncollapsed instruments Collapsed instruments
m = 2 m = 3 m = 2 m = 3

p = 1 144 324 32 72
p = 2 140 315 32 72
p = 3 132 297 32 72

T = 9 Uncollapsed instruments Collapsed instruments

p = 1 112 252 28 63
p = 2 108 243 28 63
p = 3 100 225 28 63

T = 8 Uncollapsed instruments Collapsed instruments

p = 1 84 189 24 54
p = 2 80 180 24 54
p = 3 72 162 24 54

Table 2: Number of uncollapsed and collapsed instruments with respect to T, m and p.

It is not surprising that among all combinations in Table 2 only one is feasible for running
PVAR which indisputably confirms it’s very restrictive usage in practical applications. These
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feasible settings refer to 24 collapsed instruments with only 2 endogenous variables and 8 years of
observation at any time lag, that is, the number of collapsed instruments is less then the number
of cross–sectional units (27 EU members). Although uncollapsed instruments are decreasing
with respect to the time lag p it is not acceptable to have a large number of estimated parameters
for computational reasons. This feature is not an issue when dealing with collapsed instruments
as they are invariant from p, leaving some flexibility to appropriate lag selection according to
commonly used information criteria.

Two PVAR models are estimated which combine different pairs of endogenous variables as
collapsed number of instruments 24 is only feasible for PVAR(2, p) with N = 27 and T = 8.
Thus, theModel 1 analyzes the interdependency between real exchange rate misalignment (MIS)
and current account balance (CUR), while in the Model 2 current account balance is replaced
with the public debt (PD) keeping real exchange rate misalignment as a crucial variable in
this study. For estimation purpose panelvar package was used within RStudio programming
environment (link to the reproducible commands is in the appendix). Since the aim of the
paper is to determine the variables that most influence real exchange rate misalignments of EU
members, in Tables 3-4 estimation results are presented along with lags p = 1, 2, 3.

Time lag p = 1 p = 2 p = 3

Endo. variable ∆MISi,t ∆CURi,t ∆MISi,t ∆CURi,t ∆MISi,t ∆CURi,t

∆MISi,t−1 0.7665∗∗∗ −0.2089∗∗ 0.8000∗∗∗ −0.1340∗∗ 0.8509∗∗∗ 0.6294
(0.0451) (0.1046) (0.0925) (0.0475) (0.1479) (0.4970)

∆CURi,t−1 0.1221∗∗∗ 0.0723 0.2266∗∗ 0.4049 0.1807∗∗ 0.5898
(0.0298) (0.2352) (0.1198) (0.4606) (0.0686) (0.4261)

∆MISi,t−2 0.2561∗∗ 0.0873 0.2313∗∗ 0.1699
(0.0783) (0.1524) (0.0417) (0.2917)

∆CURi,t−2 −0.0401 0.4126 0.0522 0.4928∗

(0.0560) (0.2255) (0.0686) (0.2439)
∆MISi,t−3 −0.0858 −0.4232

(0.1570) (0.2642)
∆CURi,t−3 0.0871 0.1958

(0.0896) (0.2015)

Observations 162 135 108
Groups 27 27 27
Obs per group 6 5 4
Instruments 24 24 24
Hansen p−value 0.198 0.292 0.244
MMSC–BIC −88.9522 −77.6045 −69.3243
MMSC–AIC −21.0251 −19.4991 −21.0460
MMSC–HQIC −52.1835 −46.2920 −43.3998
Stability Yes Yes Yes

Note: statistical significance at 10%, 5% and 1% level is denoted by *, **, ***, while
Windmeijer robust standard errors are in the parentheses

Table 3: PVAR(2,p) estimation results from Model 1.

All three types of model and moment selection criteria (MMSC) indicate the appropriateness
of Model 1 with one lag over the models with two and three lags. These criteria are analogous
to the already known information criteria for deciding between alternative models (Akaike,
Bayesian and Hannan–Quinn information criteria). Each PVAR(2, p) model satisfies stability
condition as all the eigenvalues lie inside the unit circle. Hansen test is not weakened due to
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collapsed number of instruments, and the null hypothesis of joint instrument validity can not
be rejected, that is, model is correctly specified as the p−value of J−statistic, with degrees of
freedom equal to the number of instruments corrected for the number of estimates, is greater
than any significance level. These findings confirm that overfitting of endogenous variables is
successfully avoided and there is no risk of instrument proliferation. Another issue in short
panels concerns biased standard errors [20]. For the same reason a Windmeijer finite sample
correction of the two–step GMM standard errors are obtained [6, 33]. According to model
PVAR(2, 1) in Table 3 current account balance is positively significant at the 1% level. This
result is contrary to [9], but expected as the current account imbalance leads to the RER
misalignment. Likewise, autoregressive coefficient is significant at 1% level in the first equation
and it is significant at 5% level in the second equation although negative. However, results from
Table 4 indicate that RER misalignment effects public debt significantly but not otherwise, while
autoregressive coefficient is still persistent and significant at 1% level. The same conclusion
about adequacy of the Model 1 with one lag can be carried as for Model 2 with respect to
Hansen test, MMSC information criteria and stability condition. Regarding both models with
lags p = 3 it is common that most estimates are not significant cause of the many parameters.

Time lag p = 1 p = 2 p = 3

Endo. variable ∆MISi,t ∆PDi,t ∆MISi,t ∆PDi,t ∆MISi,t ∆PDi,t

∆MISi,t−1 0.7653∗∗∗ 0.5921∗∗ 0.7848∗∗∗ 0.6072∗ 0.8886∗∗∗ 0.3530
(0.0439) (0.2204) (0.0968) (0.2724) (0.1641) (0.3531)

∆PDi,t−1 −0.0020 0.4111∗∗∗ 0.0096 0.3168∗∗∗ −0.0299 0.0866
(0.0149) (0.1172) (0.0165) (0.0901) (0.0212) (0.1437)

∆MISi,t−2 −0.3028∗∗ −0.1853 −0.1663 −0.0483
(0.0995) (0.1869) (0.1453) (0.1910)

∆PDi,t−2 0.0094 0.0690 0.0167 0.1026
(0.0101) (0.0759) (0.0166) (0.1137)

∆MISi,t−3 −0.1057 −0.0539
(0.1388) (0.2172)

∆PDi,t−3 −0.0047 −0.0357
(0.0171) (0.0599)

Observations 162 135 108
Groups 27 27 27
Obs per group 6 5 4
Instruments 24 24 24
Hansen p−value 0.424 0.390 0.257
MMSC–BIC −91.3771 −81.1799 −69.5541
MMSC–AIC −23.4499 −23.0745 −21.2757
MMSC–HQIC −54.6084 −49.8675 −43.6296
Stability Yes Yes Yes

Note: statistical significance at 10%, 5% and 1% level is denoted by *, **, ***, while
Windmeijer robust standard errors are in the parentheses

Table 4: PVAR(2,p) estimation results from Model 2.

A particular advantage of PVAR is the ability to estimate the responses to the orthogonal
shocks, i.e. the impact of a shock of one variable on another variable, holding the shocks of
the other variables equal to zero [15]. Orthogonal impulse response function (OIRF) shows
the size and duration of the shock response with a confidence limits in order to determine the
uncertainty of the shock response using bootstrapping method (Figure 2).
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(a) OIRF from Model 1 (b) OIRF from Model 2

Figure 2: Orthogonalized impulse response functions and 95% confidence limits.

The forecast error variance decomposition (FEVD) is another tool for interpreting the PVAR
model that determines how much of the forecast error variance of each variable can be explained
by shocks of other variables. As seen in Table 5, variable current account can explain 2.29% of
the variation in real exchange rate misalignments up to 6th year while public debt can account
for more than 5% of the variation in the MIS. Contrary, results indicate that variable MIS
account more explained variation in CUR then on PD.

Forecast PVAR(2,1) Model 1 PVAR(2,1) Model 2

horizon MIS → CUR CUR → MIS MIS → PD PD → MIS

1 0.0000 0.00476 0.0000 0.0005
3 0.0051 0.0178 0.0001 0.0283
6 0.0059 0.0229 0.0002 0.0559

Table 5: Forecast error variance decomposition from Model 1 and Model 2.

5. Conclusion

Although PVAR models are suitable for capturing both static and dynamic interdependencies
in the panel data and treating the causality between variables symmetrically, a great causation
should be given do the number of instruments when dealing with short panels. Contrary, in
case of long panels (large N) it is advised to report the number of instruments and to check the
robustness of results to instrument reduction, as too many instruments might cause overfitting
problem. When N is small the only feasible solution is to collapse the matrix of instruments
and accordingly adopt the number of endogenous variables and time periods for which PVAR
can be applied. This makes PVAR utility very restrictive, particularly as the first difference
two–step GMM estimator requires all eigenvalues of companion matrices inside the unit circle
and all valid instruments. Indisputable indicator of too many instruments issue is a high p–value
of the Hansen J−statistic, i.e. close or equal to 1, which misleadingly forces the researchers
to never reject the null hypothesis of instruments validity. Keeping the number of instruments
small when cross–sectional dimension is small should not be an exception, particularly when
dealing with PVAR models.
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This paper primarily contributes to the existing studies of PVAR methodology by empirical
demonstration of the benefits from collapsed matrix of instruments, i.e. in a given settings
of 24 collapsed instruments results notably confirm that Hansen overidentification test is not
weakened any more. It also enriches the literature on real exchange rates misalignment’s, that
is, it offers a more comprehensive analysis of EU real exchange rate behavior due to the shocks
in other variables by employing stationary panel vector autoregression model with fixed effects,
and contributes to a profound understanding of the explained variance of real exchange rates
misalignment in the log–run. Summarized findings imply that real exchange rate misalignment
effects more current account balance than public debt, while public debt effects more real
exchange rate misalignment then otherwise. This paper is limited to a PVAR(2,1) model, but
from the practical point of view it provides a straightforward guidance how to get the most
from the short panel data when users decide to utilize PVAR in their studies.

Appendix

Implementation of the codes in RStudio requires installation of three additional packages with
accompanying dependencies: pdfetch for loading the data directly into RStudio from EURO-
STAT web source, mFilter for employing Hodrick–Prescott filter, and panelvar package for
PVAR estimation by pvargmm() command. Codes are available at this link.
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