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Abstract. In this paper, it is aimed to computationally conduct a performance benchmarking for the
steepest descent and the three well-known conjugate gradient methods (i.e., Fletcher-Reeves, Polak-
Ribiere and Hestenes-Stiefel) along with six different step length calculation techniques/conditions,
namely Backtracking, Armijo-Backtracking, Goldstein, weakWolfe, strongWolfe, Exact local minimizer
in the unconstrained optimization. To this end, a series of computational experiments on a test function
set is completed using the combinations of those optimization methods and line search conditions.
During these experiments, the number of function evaluations for every iteration are monitored and
recorded for all the optimization method-line search condition combinations. The total number of
function evaluations are then set a performance measure when the combination in question converges to
the functions minimums within the given convergence tolerance. Through those data, the performance
and data profiles are created for all the optimization method-line search condition combinations with the
purpose of a reliable and an efficient benchmarking. It has been determined that, for this test function
set, the steepest descent-Goldstein combination is the fastest one whereas the steepest descent-exact
local minimizer is the most robust one with a high convergence accuracy. By making a trade-off
between convergence speed and robustness, it has been identified that the steepest descent-weak Wolfe
combination is the optimal choice for this test function set.
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1. Introduction

Steepest descent (SD), developed by Cauchy [8], is a fundamental optimization technique. Over
the years, it is used in many studies such as those in [20, 28, 7, 33, 45, 37]. On the other hand,
conjugate gradient (CG) method was first presented by Hestenes and Stiefel [21] to numerically
solve the linear equations. Fletcher and Reeves [17] later improved it for nonlinear optimization.
Since then, the CG methods and their variants [10, 15, 4, 16] have become the focus of many
researchers. The details about the nonlinear CG methods in more depth can be found in the
survey performed by Hager and Zhang [19]. All those methods or other optimization methods,
which are available in the literature, might exhibit a different behavior and performance from
problem-to-problem. Therefore, the benchmarking studies on the optimization methods have
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gained a great attention in recent years, because they provide the end-users an insight about
the optimization methods and help them to select an optimal method for their problems. These
studies can be seen in many areas such as computer science [12], engineering [35, 3, 11, 24],
biology [43, 41], etc. In addition to those, Khan and Lobiyal [23] conducted a performance
evaluation study on the SD, CG and Newton–Raphson methods in optimization of backbone
based wireless networks. They recommended that the SD method should be used for accuracy
whereas the CG method may be chosen for a higher solution speed. In [39], the authors per-
formed a benchmarking of five global optimization methods (i.e., particle swarm, differential
evolution, Bayesian, downhill simplex and limited-memory Broyden-Fletcher-Goldfarb-Shanno)
on the nano-optical shape optimization and the parameter reconstruction. They reported that
the Bayesian optimization method outperforms the other ones. Truong and Nguyen [42] have
recently proposed new gradient descent algorithms for the large scale optimization. The au-
thors showed that the performances of these new algorithms are better than the well-known
ones (e.g., Momentum, Nesterov accelerated gradient, Adagrad, etc.). In [44], the well-known
global optimization methods such as genetic algorithm, differential evolution and particle swarm
methods are compared each other for switched reluctance machine design. The study showed
that the differential evolution method stands out with better performance. On the other hand,
a great performance benchmarking tool, namely performance profiles, was developed by Dolan
and Moré [13]. This tool provides the end-users a valuable insight about the optimization meth-
ods being used on the problems. Therefore, many researchers have implemented this approach
in their studies to be able to perform a reliable and an efficient benchmarking on the opti-
mization methods. Andrei [2], for instance, employed the performance profiles to benchmark
newly developed conjugate gradient method with the well-known ones and the limited memory
quasi-Newton L-BFGS algorithm. Another study implementing performance profiles was car-
ried out by Dolan et. al [14] in order to explore the effect of optimality measures on a set of
solvers performances. In addition to the performance profiles, Moré and Wild [29] proposed the
data profiles to perform an independent assessment on the optimation methods or the solvers.
In other words, by means of these profiles, we may define the optimal optimization method
within the given computational budget, which is not possible using the performance profiles.
The performance and data profiles were successfully employed together in some studies such
as those in [32, 27]. Besides, they have a great potential to be implemented in other areas
including manufacturing, machining dynamics models [26, 25, 38], etc. Further information on
benchmarking of optimization algorithms can be found in [6, 5] as well.

In the optimization using the SD and CG methods, the line search techniques [18, 30, 40, 9]
are generally employed for a progress along with the given direction and the step length. In the
line search methods, the direction and the step length play a crucial role for the performance
of the optimization method being used. However, it is not found any comprehensive study
on the performances of the SD and CG methods-line search conditions combinations in the
literature. To make a contribution to this gap, therefore, in this paper, we focus on the effect
of step length computation techniques or line search conditions such as Backtracking (BC),
Armijo-Backtracking (ABC), Goldstein(GC), weak Wolfe(WWC), strong Wolfe (SWC) and lo-
cal minimizer (LM) on the performances of the SD and three well-known CG methods (i.e.,
Fletcher-Reeves (FR), Polak-Ribiere (PR) and Hestenes-Stiefel (HS)). For benchmarking pur-
pose, the optimization methods and line search conditions are considered as the combinations.
More clearly, totally 24 combinations, which consist of 4 optimization methods and 6 line search
conditions, are put to test on the 13 two-dimensional test functions. For each combination, the
total number of function evaluations required to converge to the test functions minimums are
recorded and set as a performance measure. Using those data, the performance and data pro-
files are created to benchmark the combinations. By means of these profiles, we are able to
answer the following example questions: I)What are the fastest, the most robust and the opti-
mal optimization method-line search condition combinations for those test functions?, II) What
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is the percentage of the functions that a particular optimization method-line search condition
combination is successful on?, III) What is the probability of finding functions minimums if we
choose one of these combinations? and IV) How many functions can a particular optimization
method-line search condition combination minimize within the given computational budget?

From here on in, the remainder of this paper is structured as follows. Section 2 provides a
summary on the mathematical background of the methods used in the study. Section 3 covers
the test functions used in the computational experiments and the benchmarking procedures.
Section 4 presents the benchmarking results with discussion. Finally, in Section 5, conclusions
on the study are performed.

2. Mathematical Preliminaries

This section is intended to give a summary on the mathematical concepts of the SD and CG
methods, and the line search conditions used in the study.

2.1. Steepest Descent Method

The steepest descent method, which was presented by Cauchy [8], is one of best known opti-
mization methods in the literature. It performs a line search along the descent direction. In this
method, the minimization of a function f(x), which depends on real values (i.e., x ∈ IRn with
n ≥ 1) [30] and might be unimodal, multimodal, linear, nonlinear, continuous, discontinuous,
convex, non-convex [22], can be completed as follows:

xq+1 = xq − γq∇f(xq) (1)

where the xq and xq+1 are the current and next points, respectively. The ∇f(xq) is the gradient
of the function at the current point and the γq > 0 is the step length at the q. iteration. In (1),
notice that the search direction in the SD method is the opposite of the function gradient. It
is also noteworthy that γq > 0 is a scalar and it defines the amount of movement along the
descent direction in the line search . Hence, the γq plays a major role on the performance of the
optimization methods being applied as well as the search direction. Computationally exploring
its role in the minimization with the SD and CG methods is the main focus of this paper, which
is elaborated in Section 4.

2.2. Conjugate Gradient Methods

Hestenes and Stiefel [21] developed the linear CG method to iteratively solve the linear equa-
tions. Later on, the method was improved by Fletcher and Reeves [17] for solving nonlinear
optimization problems. Polak and Ribiere [31] presented another version of the Fletcher and
Reeves method as well. For the mathematical derivation of the CG methods, the interested
reader is referred to Refs. [21, 17, 31, 18, 30]. Only a summary for those methods are provided
in this section.

The next point in the CG methods is computed as follows:

xq+1 = xq + γqsq (2)

where γq is the step length and sq is the search direction. s0 at the starting point x0 is the
same with the SD method which means that it is the negative direction of the function gradient
at the current point. This is mathematically written in (3).

s0 = −∇f(x0) (3)
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The successive search directions are then computed as:

sq+1 = −∇f(xq+1) + βq+1sq (4)

where βq+1 is the CG coefficient. There are many formulas to calculate this coefficient in the
literature. In this study, we use three best known formulas that are shown below.

Fletcher-Reeves:

βFR−q+1 =
∇f(xq+1)

T∇f(xq+1)

∇f(xq)T∇f(xq)
(5)

Polak-Ribiere:

βPR−q+1 =
∇f(xq+1)

T (∇f(xq+1)−∇f(xq))
∇f(xq)T∇f(xq)

(6)

Hestenes-Stiefel:

βHS−q+1 =
∇f(xq+1)

T (∇f(xq+1)−∇f(xq))
sTq (∇f(xq+1)−∇f(xq))

(7)

In these equations, the ∇f(xq) the ∇f(xq+1) are the function gradients at the previous and
current points, respectively.

2.3. Line Search Conditions

This section covers the well-known line search conditions that are frequently used to compute
the step length in a line search. For the sake of better understanding how the step length is
computed, we first define the line search as follows:

xq+1 = xq + γqsq (8)

As previously mentioned, in the line search, the next point is achieved along the given direc-
tion sq. The amount of movement along this direction is defined by the step length γq. Its
computation is actually one dimensional minimization problem, as described in (9).

minimize
γ>0

g(γ) ≡ f(xq + γsq) (9)

The function g is a univariate function [30], and for a significant progress in the line search,
one of the local minimizers or global minimizer of the g are desired to be found (see Figure 1).
However, this requires an exact solution for (9) with a very high computational cost.

Local minimizers

Global minimizer

g(γ)

γ

Figure 1: Schematic description of step length computation problem

On the other hand, inexact methods or line search conditions for computing step length provide
reasonable progress in the line search with a minimal computational cost. In the following sec-
tions, five line search conditions as the inexact methods and an exact method, which numerically
finds one of the local minimizers of the g, are given.
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2.3.1. Backtracking

The backtracking condition focuses on only a reduction in the function value. The initial step
length (e.g., γ0 = 1) is decreased by multiplying with a coefficient ζ (e.g., ζ = 0.5) until the
condition below is met.

f(xq + γqsq) ≤ f(xq) (10)

2.3.2. Armijo-Backtracking

In some cases, the BC may not provide sufficient decrease in the function value. This might lead
to poor performance in the optimization method, even it could result in failure to converge [30].
To avoid this fact, Armijo-Backtracking condition, which is defined in (11), is available in the
literature.

f(xq + γqsq) ≤ f(xq) + µγq∇f(xq)T sq (11)

In this inequality, µ ∈ (0, 1) is some scalar. Notice that the sufficient decrease in the function
value is ensured by including the directional derivative ∇f(xq)T sq [30].

2.3.3. Goldstein Conditions

The Goldstein conditions consist of two inequalities [30] as follows:

f(xq) + (1− ν)γq∇f(xq)T sq ≤ f(xq + γqsq) ≤ f(xq) + νγq∇f(xq)T sq (12)

where ν ∈ (0, 1/2) is some scalar. It is noteworthy that the ABC can be seen in the right
inequality. The GC with this form provides a sufficient decrease in the function value as well.

2.3.4. Wolfe Conditions

The Wolfe conditions are other alternative ways to efficiently compute the step length. They
can be achieved by adding the curvature condition to the sufficient decrease condition (i.e.,
ABC). This is mathematically described with two inequalities as follows:

f(xq + γqsq) ≤ f(xq) + µγq∇f(xq)T sq (13a)

∇f(xq + γqsq)
T sq ≥ η∇f(xq)T sq (13b)

(13a) provides a sufficient decrease, as been in the ABC, whereas (13b) denotes the curvature
condition. In (13b), η is a scalar satisfying 0 < µ < η < 1. With the combination of these two
conditions, the step length γq can be computed to be close to one of the local minimizers of the
g(γ) (i.e.,(9)). (13a) and (13b) are referred to as weak Wolfe conditions. To approach the one
of the local minimizers of the g(γ) as much as possible, the curvature condition can be modified
to be:

|∇f(xq + γqsq)
T sq| ≤ η|∇f(xq)T sq| (14)

The combination of the inequalities (i.e., (13a) and (14)) is referred to as strong Wolfe condi-
tions [30].

2.3.5. Local Minimizer

In this study, the exact local minimizer of the g(γ) is numerically computed using a Golden
section method based procedure. The procedure has the following steps.

(i) use the ABC so that γq provides sufficient decrease in the function value
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(ii) ensure that slope of the g(γq) is negative, if it is positive, reduce the γq until the slope is
negative and set it as γlowq

(iii) increase the γq to find the γupq where the slope of g(γ) starts being positive

(iv) compute the local minimizer of the g(γ) by applying the Golden section method between
the γlowq and γupq

3. Test Functions and Benchmarking Procedures

Table 1 shows the details about the test functions used for the benchmarking purpose. All the
test functions are two-dimensional with having smooth and non-smooth properties. Note that
those thirteen test functions are selected from the Refs. [34, 36, 1, 22, 18]

Function
number

Function Function plot

1

f(x1, x2) = x21 + 4x22 +
2x1x2
fmin = 0 at x1 = 0, x2 =
0 Search domain:
-3 ≤ x1, x2 ≤ 3 x0 =
[−3,−3]T

x1x2

3.00
3.0

10

1.5

20

1.5

30

f
(x

1
,x

2
)

40

0.00.0

50

60

-1.5-1.5

70

-3.0-3.0

-3.0 -1.5 0.0 1.5 3.0

x1

-3.0

-1.5

0.0

1.5

3.0

x
2

0

10

20

30

40

50

60

70

2

f(x1, x2) = 3x21 − sin(x2)
fmin = -1 at x1 = 0, x2 =
π/2 Search domain:
-1 ≤ x1 ≤ 1, -1 ≤ x2 ≤ 3
x0 = [0.9,−0.2]T

x1x2

1.0-1.0
3.0

0.0

0.5

1.0

2.0

f
(x

1
,x

2
)

0.0

2.0

1.0

3.0

-0.50.0

4.0

-1.0-1.0

-1.0 -0.5 0.0 0.5 1.0

x1

-1.0

0.0

1.0

2.0

3.0

x
2

-1.0

0.0

1.0

2.0

3.0

4.0

3

f(x1, x2) = 100(x2 −
x21)

2 + (1 − x1)
2 (Rosen-

brock)
fmin = 0 at x1 = 1, x2 =
1 Search domain:
-2 ≤ x1, x2 ≤ 2
x0 = [−1.8,−1.8]T

x2
x1

-2.00
-2.0 -1.0

1000

-1.0

2000

f
(x

1
,x

2
)

0.00.0

3000

1.01.0

4000

2.02.0

-2.0 -1.0 0.0 1.0 2.0

x1

-2.0

-1.0

0.0

1.0

2.0

x
2

0

1000

2000

3000

4000

Table 1: Test functions
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Function
number

Function Function plot

4

f(x1, x2) = (1.5 − x1 +
x1x2)

2 + (2.25 − x1 +
x1x

2
2)

2 + (2.625 − x1 +
x1x

3
2)

2 (Beala)
fmin = 0 at x1 = 3, x2 =
0.5 Search domain:
-4.5 ≤ x1, x2 ≤ 4.5
x0 = [−1.5,−3.75]T

5

f(x1, x2) = (x1 + 2x2 −
7)2 + (2x1 + x2 − 5)2

(Booth)
fmin = 0 at x1 = 1, x2 =
3 Search domain:
-10 ≤ x1, x2 ≤ 10
x0 = [−9.5, 9.5]T

x2
x1

100
10

500

5

1000

5

1500

f
(x

1
,x

2
)

0

2000

0

2500

-5-5

3000

-10-10

-10 -5 0 5 10

x1

-10

-5

0

5

10

x
2

0

500

1000

1500

2000

2500

3000

6

f(x1, x2) = 0.26(x21+x
2
2)−

0.48x1x2 (Matyas)
fmin = 0 at x1 = 0, x2 =
0 Search domain:
-10 ≤ x1, x2 ≤ 10
x0 = [−8,−9.5]T

x1x2

10
10

20

5

40

5

f
(x

1
,x

2
)

0

60

0

80

-5-5

100

-10-10

-10 -5 0 5 10

x1

-10

-5

0

5

10

x
2

0

20

40

60

80

100

7

f(x1, x2) =
− cos(x1) cos(x2) exp(−((x1−
π)2 + (x2 − π)2)) (Easom)
fmin = -1 at x1 = π,
x2 = π Search domain:
1.75 ≤ x1, x2 ≤ 4.5
x0 = [1.9, 4.35]T

8

f(x1, x2) = sin(x1 + x2) +
(x1−x2)2−1.5x1+2.5x2+
1 (McCormick)
fmin = -1.9133 at x1 = -
0.54719, x2 = -1.54719
Search domain:
1.5 ≤ x1 ≤ 3.5,
0.5 ≤ x2 ≤ 2.5
x0 = [1.6, 2.4]T x2

x1

3.51
2.5

2

3.0

3

2.0

f
(x

1
,x

2
)

2.5

4

1.5

5

2.01.0

6

1.50.5

1.5 2.0 2.5 3.0 3.5

x1

0.5

1.0

1.5

2.0

2.5

x
2

1

2

3

4

5

6

Table 1: (continued)
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Function
number

Function Function plot

9

f(x1, x2) = 5x41 + 6x42 −
6x21+2x1x2+5x22+15x1−
7x2 + 13
fmin = -6.4931 at x1 =
-1.1515, x2 = 0.5455
Search domain:
-2 ≤ x1, x2 ≤ 2
x0 = [1.9,−1.9]T x1x2

2-50
2

0

1

50

1

100

f
(x

1
,x

2
)

0

150

0

200

-1-1

250

-2-2

-2 -1 0 1 2

x1

-2

-1

0

1

2

x
2

-50

0

50

100

150

200

250

10

f(x1, x2) =
max(|x1|, |x2|)
fmin = 0 at x1 = 0, x2 =
0 Search domain:
-50 ≤ x1, x2 ≤ 50
x0 = [−48, 43]T

x2
x1

50
50

10

25

20

25

f
(x

1
,x

2
)

0

30

0

40

-25-25

50

-50-50

-50 -25 0 25 50

x1

-50

-25

0

25

50

x
2

0

10

20

30

40

50

11

f(x1, x2) = |x1| + |x2| +
|x1|.|x2|
fmin = 0 at x1 = 0, x2 =
0 Search domain:
-5 ≤ x1, x2 ≤ 5
x0 = [2.75,−5]T

x1x2

5.00
5.0 2.5

10

2.5

20

f
(x

1
,x

2
)

0.00.0

30

-2.5-2.5

40

-5.0-5.0

-5.0 -2.5 0.0 2.5 5.0

x1

-5.0

-2.5

0.0

2.5

5.0

x
2

0

10

20

30

40

12

f(x1, x2) = (x21)
(x2

2+1) +

(x22)
(x2

1+1)

fmin = 0 at x1 = 0, x2 =
0 Search domain:
-1.5 ≤ x1, x2 ≤ 1.5
x0 = [−1.5, 1.25]T

13

f(x1, x2) = |x1−1|+ |x2−
1|
fmin = 0 at x1 = 1, x2 =
1 Search domain:
-20 ≤ x1, x2 ≤ 20
x0 = [−8, 20]T

x1x2

200
20

10

10

20

10

f
(x

1
,x

2
)

0

30

0

40

-10-10

50

-20-20

-20 -10 0 10 20

x1

-20

-10

0

10

20

x
2

0

10

20

30

40

50

Table 1: (continued)
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For a performance measure, we use the total number of function evaluations required to
converge to test functions minimums among others such as algorithm running time, memory
usage, success rate, computational accuracy, etc. [6]. Note that the central finite difference
method is used to calculate functions gradients (i.e., ∇f(x)) when they are required, and the
number of function evaluations for those computations are also included in the total number of
function evaluations. In case of the fact that a optimization method-line search condition com-
bination fails to converge within the defined convergence tolerance, the total number of function
evaluations for it are simply set as ∞. For search termination, the following expression [18] is
used.

||∇f(xq+1)||2
1 + |f(xq+1)|

≤ ϵ (15)

In (15), ϵ is the convergence tolerance value. To investigate influence of the convergence tol-
erance on the optimization method-line search condition combinations, the computational ex-
periments are completed for both ϵ = 10−4 and ϵ = 10−3. On the other hand, for the sake of
consistency and making a reliable benchmarking, all the coefficients (i.e., γ0, µ, ν, η) used in
the line search conditions and the starting point (i.e., x0) for each test function are kept same
for all the optimization method-line search condition combinations.

To conduct a reliable and an efficient benchmarking, the performance [13] and data [29]
profiles are employed. For this purpose, we first define a test function and a optimization
method-line search condition combination sets as F (i.e., Table 1) and C (i.e., Section 2),
respectively. Then, the second step for the performance profiles is to compute the performance
ratio to be:

Rf,c =
NFEf,c

NFEmin
f

(16)

where the NFEf,c is the total number of function evaluations required to converge to the
minimum of the function f : f ∈ F while using the optimization method-line search condition
combination c : c ∈ C. The NFEmin

f is the minimum number of function evaluations provided
by the fastest optimization method-line search condition combination for the function f . By
using the corresponding ratio, finally the performance profile, Pc(υ) ∈ (0, 1), of a combination
being used is then obtained as follows:

Pc(υ) =
1

Nf

∑
f∈F

λf,c(Rf,c, υ) (17)

where υ ≥ 1 is a performance factor and the Nf is the number of functions in the test set. The
λf,c(Rf,c, υ) is defines as:

λf,c(Rf,c, υ) =

{
1, if Rf,c ≤ υ

0, otherwise

For a quick interpretation of (17), it can be stated that the Pc(υ) provides information about
how many test functions are able to be minimized by a specific optimization method-line search
condition combination within a factor υ of the best combination. In addition, it can be achieved
the number of wins for a combination by just looking at the Pc(1) value, which also enables
to rank the combinations. As noticed from (16) and (17), the performance profiles of the
combinations always depend upon each other. Hence, it is not straightforward to make an
independent assessment on the combinations. To overcome this issue, the data profiles [29] are
used and they can be obtained with following expressions.

Dc(ψ) =
1

Nf

∑
f∈F

Γf,c(NFEf,c, ψ) (18)
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Γf,c(NFEf,c, ψ) is:

Γf,c(NFEf,c, ψ) =

{
1, if NFEf,c ≤ ψ

0, otherwise

In (18), ψ is the number of function evaluations and Dc(ψ) is the amount of test functions that
can be minimized by the combination with that ψ. This information is very useful in case of
having a computational budget (i.e., maximum allowed number of function evaluations).

4. Results and Discussion

A series of computational experiments have been completed to perform an overall assessment
on the optimization method-line search condition combinations. Specifically, in total, 624 com-
putational experiments, which consist of f ∈ F = 13 and c ∈ C = 6 for the SD method, and
f ∈ F = 13 and c ∈ C = 18 for the CG methods, have been carried out with the two convergence
tolerance values (i.e., ϵ = 10−4 and ϵ = 10−3). During each experiment, x1 and x2 values, the
corresponding function and norm of gradient values (i.e., f(x1, x2) and ||∇f(x1, x2)||2, respec-
tively) are monitored for each iteration. Once the optimization method-line search condition
combination converges to the function minimum, which means that the combination in question
satisfies the converge condition (see (15)), the experiment is terminated and the total number
of function evaluations are recorded for a performance measure of the combination. As a results
of those experiments, the total number of function evaluations for all the optimization method-
line search condition combinations are shown in Figures 2 and 3 for ϵ = 10−4 and ϵ = 10−3,
respectively. Note that, in these figures, the total number of function evaluations are simply
set as ∞ if the optimization method-line search condition combination fails to converge to the
function minimum in question.

βHS

βPR

100

1
2

3
4 βFR5

6
7

8
9

10
11

12

102

SD13

104N
F
E 106

108
1010

Function numbers

Backtracking Armijo-Backtracking Goldstein Weak Wolfe Strong Wolfe Local minimizer (Numerical)

∞

∞

∞

∞

∞

∞

∞

∞
∞

∞

∞

∞
∞

∞

∞
∞∞

∞
∞

∞∞
∞∞

∞
∞

∞∞
∞

∞

∞
∞

∞

∞
∞

∞
∞

∞
∞

∞
∞∞

∞

∞
∞

∞

∞
∞

Figure 2: Total number of function evaluations for all the optimization method-line search con-
dition combinations on the test function set for ϵ = 10−4



A Benchmark Study on Steepest Descent and Conjugate Gradient Methods 87

βHS

βPR

100

1
2

3
4 βFR5

6
7

8
9

10
11

12

102

SD13

104N
F
E 106

108
1010

Function numbers

Backtracking Armijo-Backtracking Goldstein Weak Wolfe Strong Wolfe Local minimizer (Numerical)

∞

∞

∞

∞
∞

∞

∞∞

∞
∞

∞
∞

∞

∞
∞

∞
∞

∞∞
∞

∞
∞∞

∞∞
∞

∞
∞∞

∞
∞

∞
∞

∞
∞

∞

∞∞
∞

∞
∞

∞

∞
∞

Figure 3: Total number of function evaluations for all the optimization method-line search con-
dition combinations on the test function set for ϵ = 10−3

From these figures, we can simply say that the line search conditions have a great influence
on the performance of the SD and CG methods. However, we can not obtain the answers
for the following questions by just looking at these figures. What are the fastest, the most
robust and the optimal optimization method-line search condition combinations for those test
functions?, What is the percentage of the function that a particular optimization method-line
search condition combination is successful on?, What is the probability of finding functions
minimums if we choose one of these combinations?, etc. Those questions play a crucial role for
an efficient and a reliable benchmarking of the optimization methods and line search conditions.
Therefore, they are strongly required to be answered. To this end, the performance profiles of
each optimization method-line search condition combination for ϵ = 10−4 and ϵ = 10−3 in a
factor range from 100 to 103 (i.e., 100 ≤ υ ≤ 103) are illustrated in Figures 4 and 5. The reader
may note that, in these figures, the performance profiles in three steps, as an example, are given
for ranking purpose of the optimization method-line search condition combinations. The details
about this ranking process will be provided later on. On the other hand, from these figures,
we can determine the fastest combination/combinations on the test function set by looking at
the probability values at the factor of υ = 1 (i.e., Pc(1)). In Figure 4(a), for instance, the
SD-GC combination is the fastest one with the probability of Pc(1) = 30.77%. It means that
the combination has the highest number of wins (i.e., finds the minimums of 30.77% of the test
functions) compared to others. From the factor υ = 1 to υ = 1.1 of the fastest combination,
the SD-GC combination preserves being the fastest one. At the factor υ = 1.1, the SD-ABC
combination catches up the SD-GC one with the same probability. Until the factor υ = 1.27 of
the fastest combination, the SD-GC combination keeps the same probability whereas the SD-
ABC combination has the same probability till the factor υ = 1.38. The fastest combination,
the SD-GC, performance keeps rising as the υ increases until the υ = 14.28. At that factor,
the combination reaches maximum performance which is Pc(14.28) = 69.23%. From that factor
on, even if we increase the υ, the combination performance remains same. In other words,
the SD-GC combination is able to find the minimums of 69.23% of test functions (i.e., 9 out
of 13 test functions). The combination in question fails on 4 test functions which are the
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functions 3, 10, 11 and 13 (see Figure 2). However, the other combination options, which are
more successful than the SD-GC combination, are available for υ ≥ 14.28. For instance, the
SD-WWC combination is able to be successful on the 76.92% of the test functions for the factor
υ = 14.28 of the fastest one (i.e., the SD-GC). And its performance keeps rising until υ = 44.76
where reaches up to its maximum probability Pc(44.76) = 92.31%. The other options for the
υ ≥ 14.28 might be the SD-BC, SD-ABC, SD-SWC, SD-LM, FR-LM, PR-LM and HS-LM
combinations if we desire to find the minimums of more than 69.23% of the test functions.
One could also notice that only the LM is able to provide highest success rates to CG methods
whereas the SD is quite successful with the help of other line search conditions. This observation
shows the sensitivity of the CG methods to the computation of the step length γ. To put a finer
point on it, if we choose a line search condition other than LM, we would expect a significant
drop in the performance of the CG methods. This is attributed to the fact that the second
term in (4) may be dominant on defining search direction sq+1, which results in a direction
of ascent [30]. On the other hand, it is also evident from Figure4(a) that the choosing of the
LM as a line search condition for the SD and CG methods brings high computational burden.
However, the LM is the most robust one among others. In other words, it is the only one that
is successful on all the test functions for the SD method within the factor υ ≥ 634.1 of the
fastest combination . For the FR, PR and HS methods, the success rates are 76.92%, 76.92%
and 92.31% within the factors υ ≥ 272.4, υ ≥ 148.6 and υ ≥ 74.14 of the fastest combination,
respectively. Besides those, in case of choosing the LM for a line search condition of the CG
methods, the HS one draws attention with the highest probability of 92.31% and the lowest
factor υ ≥ 74.14 compared to other CG methods. This method could be the best one among
other CG methods on this test function set with the convergence tolerance value ϵ = 10−4. In
addition to that, the HS-LM combination with the factor υ = 74.14 of the fastest one has more
number of wins than SD-LM combination at υ = 74.14 (i.e, Pc(74.14) = 61.54%). However,
at the first glance, the SD method generally exhibits better performance than CG methods
in the line search conditions except for the LM. To elaborate this observation and rank the
combinations according to convergence speed, the successive excluding procedure is utilized.
The purpose of the successive excluding procedure is to determine the second, third and so
on fastest combinations, because the performance profiles are relative, which means that they
depend on each other. Therefore, it is not possible to extract the data for the speed sequence
of the combination from Figure4(a). The idea behind the successive excluding procedure is to
subtract the performance profile of the fastest combination in question in order to determine
next fastest one. From Figure 4(a), for instance, the SD-GC combination is determined to be
the fastest one as previously explained. With excluding this combination, we can generate new
performance profiles with a new combination domain (i.e., f ∈ F = 13 and c ∈ C = 5 for the
SD method, and f ∈ F = 13 and c ∈ C = 18 for the CG methods), as shown in Figure 4(b).
The same procedure to determine fastest combination as conducted before is also valid for this
figure. In this case, the fastest combination is the SD-ABC with the probability Pc(1) = 30.77.
From global perspective, we can say that this combination is the second fastest one and it
holds the second place until the factor υ = 2.18 with the probability Pc(2.18) = 46.15. At
that factor, the HS-GC combinations beats the SD-ABC with probability Pc(2.18) = 53.85.
However, the HS-GC reach up the maximum performance at this factor whereas the SD-ABC
performance keeps rising as the υ increases. Moreover, the SD-ABC is capable of converging to
92.31% of the test functions minimums within the factor υ ≥ 683.9. In a similar manner, the
third fastest combinations are determined to be the SD-WWC and PR-GC with the probability
Pc(1) = 23.08 (see Figure 4(c)). Totally 15 steps are completed to rank the combinations based
on the convergence speed, but, to explain the combination ranking concept, the figures for only
3 steps are given here as examples. However, the exact speed sequence of the combinations with
the probability values for ϵ = 10−4 are provided in Table 2. Here, the reader may note that the
steps in Figure 4 and Table 2 denote corresponding fastest combination or combinations. For
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example, Step-4 in Table 2 points out that the SD-BC is the fourth fastest combination. This is
achieved by consecutively excluding first, second and third fastest combinations corresponding
to Step-1, Step-2 and Step-3, respectively. The same is also valid for the following figure and
table related to performance profiles.

To be able explore influence of the convergence tolerance value on the optimization method-
line search condition combinations, the same computational experiments are run for a higher
tolerance value ϵ = 10−3. By using the data obtained through those experiments, the perfor-
mance and data profiles are generated for this convergence tolerance value as well. Figure 5
displays the performance profiles, which includes three plots achieved via successive excluding
procedures as previously explained. It is observed from Figure 5(a) that the SD-GC combina-
tion still keeps being fastest one with the same probability Pc(1) = 30.77% in this convergence
tolerance value too. The second place, the SD-ABC, also remains same as before, but it has
lower probability of 23.08%. This lower probability means that some other combinations per-
formance improve with increasing convergence tolerance value because the performance profiles
are relative. In other words, any changes in a combination performance are directly reflected
on others performances. As an example on improving performance of the combination with
increasing convergence tolerance value, the SD-WWC can be pointed out. More specifically, for
ϵ = 10−4, this combination is able to find the minimums of 92.31% of the test functions within
the factor υ ≥ 44.76 of fastest combination whereas its maximum probability is 100% within
the factor υ ≥ 104.89 for ϵ = 10−3. In a similar manner, the HS-GC combination performance
improves as the convergence tolerance value increases. As such, its maximum probability in-
creases from Pc(υ ≥ 2.18) = 53.85% for ϵ = 10−4 to Pc(υ ≥ 4.56) = 61.54% for ϵ = 10−3. In
other words, it finds one more function minimum (i.e., totally 8 out of 13 test functions) with
lowering accuracy. On the other hand, some combinations, including SD-GC, SD-LM, FR-GC,
FR-BC, FR-LM, PR-BC, PR-GC, PR-WWC, PR-LM, HS-BC, HS-ABC, HS-SWC, HS-LM,
maximum probability are not influenced by the convergence tolerance value at all. There are
only small reductions in the number of function evaluations. The reduction in the number
of function evaluations with increasing convergence tolerance value (i.e., decreasing converge
accuracy) is an inherent phenomena, because lower accuracy generally requires lower iterations.
This means that we would expect lower number of function evaluations to compute step length
γ. Similar observations on the influence of the convergence tolerance value, which have been
conducted so far, can be completed for other combinations as well. As stated before, to rank
the combinations, the successive excluding procedure is also applied for the ϵ = 10−3, as seen
Figures 5(b) and (c). In addition, the complete speed sequence is given in Table 3. By per-
forming a comparison between Tables 2 and 3, one could say that changing of the convergence
tolerance value leads to different combination rank. The end-users should consider this fact
while selecting the combination.

On the other hand, the end-users may have a computational budget (i.e., maximum number
of function evaluation for this study) for finding minimums of the test functions. And they need
to know how many function minimum can be found within the given budget. This requires an
independent assessment on the optimization method-line search condition combinations, which
can not be provided by the performance profiles. Hence, we use data profiles in this case.
As such, Figures. 6(a) and (b) show the data profiles of all the combinations within a range
101 ≤ ψ ≤ 105 for ϵ = 10−4 and 10−3, respectively. Those plots provide valuable information for
selecting the optimal combination based on the computational budget. Let’s say, for instance,
we are given a computational budget of 102 number of function evaluations (i.e., ψ = 102) and
the convergence tolerance ϵ = 10−4 for finding minimums of at least 50% test functions. In
these conditions, by looking at Figure 6(a), one can observe that there are no any combination
options which have sufficient probability (i.e., Dc(10

2) ≥ 50%). For ψ = 102 and ϵ = 10−4,
the maximum probability is 30.77% that belongs to the SD-ABC combination. To meet these
terms, the computation budget has to be raised approximately two times. As such, for 2× 102
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(a) Step-1

(b) Step-2

(c) Step-3

Figure 4: Performance profiles of all the optimization method-line search condition combinations
for ϵ = 10−4
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(a) Step-1

(b) Step-2

(c) Step-3

Figure 5: Performance profiles of all the optimization method-line search condition combinations
for ϵ = 10−3
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Table 2: Speed sequence of all the optimization method-line search condition combinations for
ϵ = 10−4

# Combination Pc(1) %

Step-1 SD-GC 30.77
Step-2 SD-ABC 30.77
Step-3 SD-WWC and PR-GC 23.08
Step-4 SD-BC 23.08
Step-5 HS-GC 23.08
Step-6 SD-SWC, FR-ABC, FR-GC and PR-ABC 15.38
Step-7 FR-BC 30.77
Step-8 HS-ABC and HS-WWC 23.08
Step-9 FR-WWC 30.77
Step-10 HS-LM 30.77
Step-11 SD-LM 30.77
Step-12 HS-BC and HS-SWC 23.08
Step-13 PR-SWC and PR-LM 30.77
Step-14 FR-SWC and FR-LM 38.46
Step-15 PR-BC 7.692

– PR-WWC 0

Table 3: Speed sequence of all the optimization method-line search condition combinations for
ϵ = 10−3

# Combination Pc(1) %

Step-1 SD-GC 30.77
Step-2 SD-ABC 23.08
Step-3 SD-WWC, FR-ABC and FR-GC 15.38
Step-4 SD-BC and PR-GC 23.08
Step-5 HS-GC 38.46
Step-6 PR-ABC 38.46
Step-7 FR-BC 38.46
Step-8 HS-ABC and HS-WWC 23.08
Step-9 FR-WWC 38.46
Step-10 SD-SWC 30.77
Step-11 HS-BC and HS-LM 23.08
Step-12 SD-LM 30.77
Step-13 HS-SWC 30.77
Step-14 PR-SWC 38.46
Step-15 FR-SWC 53.85
Step-16 PR-LM 69.23
Step-17 FR-LM 76.92
Step-18 PR-BC 7.692

– PR-WWC 0
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and ϵ = 10−4, two combination options, SD-GC and HS-GC, stand out with the probability
of 53.85%. On the other hand, instead of increasing the computational budget, we may also
reduce the converge accuracy to ϵ = 10−3. In this case (i.e., ψ = 102 and ϵ = 10−3), the
maximum probability is 38.46% for the SD-ABC and SD-GC combinations (see Figure 6(b)).
They still can not meet the solution requirement, Dc(10

2) ≥ 50%, but they are able to find one
more function minimum compared to ϵ = 10−4 ones. Similar interpretations can be carried out
for any computational budget within 101 ≤ ψ ≤ 105, and for ϵ = 10−4 and 10−3 through those
plots as well.

(a) ϵ = 10−4

(b) ϵ = 10−3

Figure 6: Data profiles of all the optimization method-line search condition combinations for
two convergence tolerance values

So far, through Figures 2, 3, 4 and 5, and Tables 2 and 3, we have conducted an efficient and
a reliable comparative evaluations on the optimization method-line search condition combina-
tions. Based on those, now it is time to decide which optimization method-line search condition
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combination/combinations would be the optimal one for this test function set. As stated pre-
viously, the CG methods requires the LM for reasonable performance because their sensitivity
to the step length. This fact brings high computational cost. Hence, the CG methods-LM
combinations may be ruled out for this test function set. On the other hand, it is noteworthy
that the CG methods-LM combinations exhibit better performance than the SD-LM one. Espe-
cially, the HS-LM combination outperforms the other CG and SD methods-LM combinations.
Considering all those and by making a trade-off between convergence speed and robustness,
the SD-WWC combination is determined as the optimal combination for this test function set.
Note that, the most robust combination, having highest probability Pc(υ) = 100% (i.e., finds
all functions minimums), for the ϵ = 10−4 is the SD-LM whereas the SD-WWC and the SD-LM
combinations are the most robust ones for the ϵ = 10−3.

5. Conclusion

This paper has presented a benchmarking study on the combinations of the well-known opti-
mization methods and line search conditions. A series of computational experiments on the
thirteen test functions have been completed with these combinations. An iterative procedure
has been applied to find the test function minimums and number of function evaluations at
each iteration have been recorded. For benchmarking purpose, the total number of function
evaluations when the combination in question converges to the function minimum within the
defined convergence tolerance have been set as a performance measure. The same procedure
have been conducted for all the combinations and the test functions. The obtained data through
those computational experiments have been used to create the performance and data profiles.
These profiles have enabled us to perform a reliable and an efficient benchmarking on the
combinations. The study has provided the following conclusions:

• The step length computation technique is crucial for the SD and CG methods success and
performance. For optimal performance and remarkable success, both the step length and
the search direction require a special care.

• Generally speaking, the WWC, SWC and LM, which are the gradient related step length
computation methods, provide the lower number of iterations for converging to the func-
tions minimums, but the number of function evaluations per iteration is notably high.
Therefore, they are refereed to as computationally expensive techniques in this study.

• Considering the fact stated in the previous conclusion, it has been determined that the
SD-GC combination is the fastest one for both convergence tolerance values. The SD-
ABC combination takes second place. The fact behind this convergence speed is that
the ABC and GC do not require gradient computation while trying to satisfy line search
conditions for computing step length.

• It has been determined that the CG methods success rate with using line search conditions
except for the LM is quite lower than those in SD method. This shows the sensitivity of
the CG methods to the exact local minimizer. For a reasonable performance in the CG
methods, the choice should be the LM or in some cases, the SWC can be also used even
if they bring high computational burden.

• The optimal combination for the test function set used in this study is the SD-WWC
whereas the most robust one is the SD-LM combination with a high convergence accuracy.
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ing discrete optimization heuristics with iohprofiler. Applied Soft Computing, 88, 106027.
doi:10.48550/arXiv.1912.09237
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