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Abstract. In the European Union, the public sector buildings are considered significant energy con-
sumers and are, thus, the subject of several directives that aim to ensure the renovation of existing and
the construction of new buildings as nearly zero-energy buildings. Therefore, as part of the decision
making, it is necessary to properly plan the renovation or construction. This research provides models
for predicting the energy costs of the public sector buildings, which are dependent upon its character-
istics (i. e., constructional, occupational, energy, etc.). For this purpose, a real data set of Croatian
public buildings was used, which included 150 variables and 1724 observations. Since the data set
consisted of a large number of variables, the motivation for the dimensionality reduction was addressed
first. Then, the independent component analysis, the principal component analysis, and the factor
analysis were performed as the dimensionality reduction methods for variable extraction. The results
of these analyses were used as inputs for modelling the energy costs of the public sector buildings. The
obtained models were compared to the model built on original variables. The obtained models show the
application potential in decision making for building renovation and construction in the public sector
of Croatia, whereas the best performance of prediction in terms of RMSE and SMAPE was achieved
by the model that integrated the independent component analysis with the linear regression.

Keywords: energy cost, factor analysis, independent component analysis, prediction, principal com-
ponent analysis, public sector buildings
Received: April 14, 2022; accepted: July 19, 2022; available online: December 22, 2022

DOLI: 10.17535/crorr.2022.0013

1. Introduction

Excessive energy consumption causes both large financial costs and environmental pollution,
which contributes to climate change and global warming (greenhouse gas emissions, etc.). The
European Union is investing considerable effort in energy, which is evident from its following
directives. In 2012, under the Energy Efficiency Directive 2012/27/EU, the EU set an objec-
tive to increase energy efficiency and to achieve saving 20 % of the Union’s primary energy
consumption by 2020 compared to projections made in 2007 [13]. In the Directive 2018/2002,
the EU set the goal to improve energy efficiency by 2030 by decreasing energy consumption
for at least 32.5 % [15]. Furthermore, according to the Directive 2010/31/EU, 40 % of total
energy consumption in the EU belongs to the ever-expanding building sector. Within that same
Directive, EU set the goal that all new public buildings constructed after 2018, and residential
buildings constructed after 2020, should be nearly zero-energy buildings (nZEB) [12]. Moreover,
in the Directive 2018/844, the EU set the goal to ensure the renovation of existing buildings
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into nZEB [14]. Therefore, the motivation for the energy consumption modelling of the public
sector buildings, which is dependent upon its characteristics, is evident.

The sample for this research is based on a real data set obtained from Croatian Energy
Management Information System (EMIS), and consists of 1724 observations on 150 variables.
Even though the data set used for this research is not high-dimensional, since [21] consider
a data set as high-dimensional if the number of variables p is larger or much larger than the
number of observations N, the data set is undoubtedly large. Consequently, a need for a
dimensionality reduction will be justified in the following section of the paper.

The aims of this paper are: (1) to consider difficulties caused by the large number of variables
in the model, (2) to reduce the dimensionality of the given data set by using the ICA, the PCA
and the FA, and (3) to create models for predicting the energy costs (as a measure of energy
consumption) of the public sector buildings and to compare their performances. By reducing
multicollinearity and other negative aspects of a large number of correlated variables, it is
assumed that a model with input obtained by the ICA, the PCA and the FA will ultimately
achieve better performance than a model built on original variables. Finally, the expected
scientific contributions of this research are: (1) the explanation of the effects that can be
caused by a large number of variables, (2) the explanation of the advantages and disadvantages
of the ICA method regarding the PCA and the FA, and (3) their application in building models
for predicting energy costs and evaluation of their prediction performance.

The rest of the paper is structured as follows: Section 2 provides the theoretical frame-
work and previous research, Section 3 focuses on the independent component analysis as the
dimensionality reduction method and gives a comparison between the ICA, the PCA and the
FA. Further, the linear regression is explained and the data are presented. The results and the
discussion are provided in Section 4. Finally, the implications and the conclusion of the research
are given in the last section.

2. Theoretical framework and previous research

Nowadays, many measurements and variables are being collected. In that sense, there is a clear
discrepancy in the standard statistical methodology where one has dealt with many observations
for several carefully selected variables based on certain theoretical or scientific knowledge [10].
Discovering relevant and non-redundant information from the collected data simultaneously is
an important task [35].

2.1. Theoretical framework

The “blessings of dimensionality” and the “curse of dimensionality” are two common terms men-
tioned in the literature that are considered to be the “two sides of the same coin” [18]. Gorban
et al. in [18] and [17] concluded that if a data set is high-dimensional, then, surprisingly, certain
problems tend to be solved more easily, i. e., by simple and robust old methods and, ultimately,
a fundamental trade-off between complexity and simplicity in high-dimensional spaces exists.
They have also discussed the main benefits (blessings) of dimensionality that are founded on
the measure phenomena “which suggest that statements about very high-dimensional settings
may be made where moderate dimensions would be too complicated”. On the other hand, the
term “curse of dimensionality” relates to many problems that become exponentially difficult in
high dimensions [17]. Dimensionality reduction is widely used as a preprocessing step in data
mining and discovering knowledge from the data. The methods can usually be divided into the
variable selection and the variable extraction approaches. The variable selection approach refers
to methods that select the subset of relevant variables, while the variable extraction methods
return new variables as a function of the original variables, i. e., transform data, potentially
to a space of fewer dimensions. Dimensionality reduction is also necessary in order to facilitate
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the data visualization and understanding, reducing training and utilization times, and reducing
measurements and storage requirements [19].

Hair et al. in [20] stated that the success of any multivariate technique depends on the
decision of the variables which are going to be used as dependent (explained) and independent
(explanatory) variables. The multiple regression analysis was performed after reducing dimen-
sionality, and the importance of that decision within the multiple regression context follows.
Namely, [20] emphasized three issues that researchers should keep in mind when making that
decision: a strong theory, the measurement error and the specification error. A strong theory
implies that the selection of the dependent and independent variables should be based on the
conceptual or theoretical grounds. The measurement error refers to the degree to which the
variable is an accurate and consistent measure of the concept being studied. If the variable used
as the dependent measure has a substantial measurement error, then even the best independent
variables may be unable to achieve acceptable levels of predictive accuracy. Nevertheless, the
specification error is considered as the most problematic issue in the independent variable selec-
tion as it concerns the inclusion of irrelevant or the omission of relevant variables from the set
of independent variables. An inclusion of an irrelevant variable may increase multicollinearity.
Multicollinearity refers to an extent to which a variable can be explained by other variables in
the analysis. If it is abundantly present, due to the independent variables’ interrelationships,
it complicates the interpretation of the regression model and it is more difficult to ascertain
the effect of any single variable. For example, it can change the value or sign of the estimated
coefficients, which could lead to certain statistically significant variables becoming insignificant.
Therefore, multicollinearity effects the estimation of the regression coefficients, as well as their
statistical significance, and it also effects the predictive ability of the regression model. What
is more, with increasing multicollinearity the total variance explained decreases, which is the
reason why multicollinearity may make the independent variable’s statistical significance testing
less precise and may reduce the statistical and practical significance of the analysis [20].

2.2. Previous research

With the advancement of machine learning, many methods from those fields are used for di-
mensionality reduction, such as convolutional neural networks [8], support vector machines
[41], decision trees [42] and others. Information criteria such as joint mutual information max-
imisation [4], statistical methods such as random forest and its Gini importance [39], [48],
correlations, x? test [48], and many other methods for dimensionality reduction are also used.
One of the most commonly used statistical variable extraction methods is the principal com-
ponent analysis (PCA) which transforms the starting space into a lower-dimensional one by
converting it into a new set of variables - principal components. Those are obtained by solv-
ing the eigenvectors and eigenvalues of the covariance/correlation matrix and are uncorrelated
and selected to retain most of the variations present in the original variables [28], [29]. In the
context of energy consumption, [32] used the principal components regression method to vector
autoregression model for the electricity consumption prediction.

The independent component analysis (ICA) “can be seen as a refinement of principal compo-
nent analysis or factor analysis” [40]. What distinguishes the ICA among classical multivariate
statistical methods, is the assumption of non-Gaussianity, which could capture the identification
of original, underlying components in a multivariate data [25]. Therefore, it is not unexpected
that it is quite commonly used, mainly for signal processing and data analysis. For example,
[27] presented various applications of this method, including variable extraction, biomedical
signal processing, image processing, telecommunications and econometrics. Various authors in
biomedicine used this method for extracting main characteristics from gene expression [11],
from EEG [25], and for functional magnetic resonance imaging [35]. Further, the ICA was also
used in semantic purposes where it performed better than other methods, like hierarchical clus-
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tering, in order to find invisible information from the data [7]. It was also used combined with
the PCA and neural networks for predictions in the stock market [36]. [25] also provided recent
developments in the ICA, which included various topics, such as analysis of causal relations and
others. Although the ICA has many different applications, this paper will focus on examining
its application in the context of energy costs.

Additionally, the literature review shows that in the field of public sector building energy,
authors have dealt with modelling energy consumption, energy consumption by individual en-
ergy source, energy costs, and energy intensity. Methods such as support vector machine [16],
decision trees [16], [46], Stochastic Impacts by Regression on Population, Affluence, and Tech-
nology (STIRPAT) [37], ridge regression [37], partition trees [49], CART [51], random forest
[49], [51], and linear regression [24], [49], [50] were used. Neural network was also commonly
used, as in [16], [38], [1], [48], [43], [9], [49], and [50]. The methods were performed on the whole
sample or on a sample divided into clusters, as in [38] and [22]. In addition to the methods
mentioned above, various optimizations (e. g., [2]), simulations (e. g., [9]), and also different
tools (such as the Energy Plus Software [9], [2], and others) were used.

3. Methodology and data

In this section, the independent component analysis is presented first and is followed by com-
parisons to the principal component analysis and the factor analysis. Then, the usage of the
linear regression method within this context is explained and, finally, the data set is described.

3.1. Independent component analysis

Independent component analysis (ICA) was originally designed to deal with the ”cocktail party”
problem [27], and although, today, the ICA is utilized for many various purposes, the “cocktail
party” problem will be provided as the motivation for conducting the ICA.

Suppose that two people spoke at the same time on two microphones located in different
locations. Two different signals, 21 (¢) and x2(t), were recorded, where 7 and x5 are amplitudes
and t is the time index. Each of the recorded signals is the weighted sum of the speech signals
of the two people who talked, denoted by s1(¢) and sa(t) respectively, or:

(El(t) = allsl(t) + a1282(t)

x2(t) = a2151(t) + agasa(t),

where a11, a2, as1, and asy are unknown parameters which depend on the distance of the person
from the microphone, while s (t) and s3(t) are the original sources which are also unknown. It
would be desirable to estimate the two original sources s1(t) and so(t) from x4 (t) and zo(t),
which is known as the ”cocktail party” problem. If the values a11, a12, a21, and ass are known,
the problem could be solved by simply inverting the linear system. Not knowing both the
parameters a;; and the source s;(¢) makes the problem much more difficult.

One way to solve this problem would be to use certain statistical properties of the signal s;(t)
to estimate both a,; and s;(t). It is enough to assume that s;() are statistically independent at
any time t. This is not an unrealistic assumption in many cases and may not be entirely accurate
in practice. The independent component analysis can be used to estimate the parameters a;;
based on the independence of s;(t), which then allows to extract the original signals s;(¢) from
their mixtures x;(¢). In the rest of the paper, the time index ¢ will be omitted because it is
assumed that every x; and s; are random variables, so then every z;(t) and s;(t) are realizations
of those random variables.

The problem of the ”cocktail party” is also an example of the blind source separation prob-
lem [26]. Within that problem, situations are observed in which a source emits a number of
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signals, for example, different areas of the brain emit electrical signals, or mobile phones emit
radio waves. It is also assumed that there are several sensors or receivers which are in different
positions. Each of them records a mixture of source signals with a different weight. “Source”
means the source signal, while “blind” means that very little, if anything, is known about the
mixing matrix and little is assumed about the source signals. ICA solves that problem.

Definition and assumptions

To define the independent component analysis assume that n linear mixtures x1,...,z, of n
independent components s1, ..., S, are observed:

n
T; = ;181 + Q282 + -+ QinSy = E (aiij),Vi = 1, ey
Jj=1

The independent components (ICs) sy, ..., s, are latent variables, meaning that they cannot

be directly observed. Mixing coefficients a;;,%,7 = 1,...,n are also assumed to be unknown.
It is, therefore, necessary to estimate both latent variables si,...,s, and mixing coefficients
a;j,i,j = 1,...,n using observations 1, ..., z, [27], [26]. The IC model is a generative model,

which means that it describes how the observed data are generated by the process of mixing
the components s, ..., Sp,.

Let us denote by x the random vector whose elements are the x4, ..., x,, by s the random
vector with elements s, ..., s, and by A the matrix with elements a;5,7,7 = 1,...,n. Then, the
IC model can be written as:

T = As.

The following theoretical assumptions and restrictions are required for the IC model to be
estimated: (1) the components s; are mutually independent, (2) components s; come from
a non-Gaussian distribution, (3) without loss of the generality, it can be assumed that the
expectation of mixed signals xz; and components s; is zero (if it is not zero, they should be
centred), and (4) for simplicity, it will be assumed that matrix A is square, i. e., there is an
equal number of mixed and original signals, although this condition can be relaxed [26].

After estimating the matrix A, its inverse, say B, can be calculated and the independent
components can be obtained simply by:

s = Buz.

Here, it is also assumed that matrix A is invertible. If this is not the case, there are redundant
mixtures that could be omitted, in which case matrix A would no longer be square; which
is again the case when the number of mixtures is not equal to the number of independent
components [26].

Thus, according to the previous four assumptions (or at least the first two), the IC model
can be identified, meaning that the mixing matrix and the independent components can be
estimated up to some trivial uncertainties which will be discussed shortly.

Estimation
Now, the question is how to get independent components, i. e., how to estimate the matrix
A? Non-Gaussianity is the key to estimating the IC model, with a central limit theorem in the
background that claims that the distribution of the sum of independent random variables tends
towards the Gaussian distribution, under certain conditions. Thus, the sum of two independent
random variables usually has a distribution that is closer to Gaussian than either of the two
original random variables [26].

Suppose that all of the independent components have an identical distribution. To estimate
one of the independent components, consider a linear combination of x; which can be denoted



178 Marinela Mokri§

by y,i. e. y =wlx = >; wix; where w must be determined. If w is row of the matrix inverse

to the matrix A, the linear combination, ¥, is just one independent component. How to use the
result of the central limit theorem in this context?

Let us define z with z = ATw. y is then y = w” s, 1. e., a linear combination
of s; with weights z;. According to the central limit theorem, z* s is more Gaussian than any
s;, and is least Gaussian when it is exactly equal to s;, which is true when exactly one of z;
is non-zero. Therefore, if w is a vector that maximizes the non-Gaussianity of w”z, it will
correspond to z which has exactly one component other than zero. This further means that
wTz = 275 is equal to one independent component. In that way, one independent component
is obtained. The n-dimensional space of the vector w has 2n local maxima, two for each
independent component, which corresponds to s; and —s; (independent components can be
estimated only up to the sign). To find all the independent components, it is necessary to
find all those local maxima. Because the independent components are uncorrelated: one can
always limit the search to a space that gives estimates uncorrelated with the previous ones.
This corresponds to orthogonalization in a suitably transformed space.

Besides maximizing non-Gaussianity, minimization of mutual information and maximum
likelihood estimation can also be used in order to estimate the IC model. All approaches are
(approximatively) equivalent (more can be read in [27] and [26]).

The mixing matrix and independent components can be estimated with some uncertain-
ties: (1) the variances (energies) of independent components cannot be determined, and (2)
the order of independent components cannot be determined, which could be considered as a
disadvantages of the ICA.

z=wlAs=zT
T

Preprocessing

Before applying the ICA on the data, it is usually very useful to do some preprocessing tech-
niques that make the problem of ICA estimation simpler. The techniques are centering and
whitening [27], [26]. Centering of the observed vector x is performed by subtracting its mean
in order for it to be zero-mean. On the other hand, whitening of z refers to a transformation
after which a white vector is obtained, i. e. a vector with components that are uncorrelated
and whose variances equal unity.

Furthermore, since it is mentioned that independent components cannot be naturally or-
dered, the fundamental issue is also to determine the number of generated independent compo-
nents. There are several theoretical approaches to this. Some of them were originally developed
for PCA analysis (e. g., the Kaiser rule [6]), whereas others use information theory (e. g., the
Akaike information [6]) or are based on cross-validation [30], [5]. However, few methods have
been proposed specifically for the ICA analysis. For example, the Bayesian information crite-
rion (BIC) can be applied to the Bayesian formulation of ICA to select the optimal number of
components [33]. [30] defined a novel criterion that considers the global properties of transcrip-
tomic multivariate data. The Maximally Stable Transcriptome Dimension (MSTD) is defined
as the maximal dimension at which the ICA still does not generate a large proportion of highly
unstable signals. In addition, components can also be ranked according to the value of the
non-Gaussianity measure used (e. g., kurtosis) or the variance explained by the components,
etc.

Nevertheless, since whitening is a very simple and standard procedure, it is advisable to
reduce the complexity of the ICA problem by reducing the dimension of the data at the same
time as performing whitening [27]. In this research, whitening was performed with the PCA, as
in [27], because the PCA is a whitening procedure that can also discard some of the principal
components and, at the same time, reduce the dimensionality. Criteria such as the scree graph,
the percentage of the variance of each principal component (the Kaiser rule), the cumulative
percentage of total variance [28] and the parallel analysis [23] were compared in order to deter-
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mine the number of retained principal components.
FastICA algorithm

One of the most commonly used algorithms for independent component analysis is the FastICA
algorithm with properties as follows: (1) convergence is cubic (or at least square) under the
assumptions of the IC model, (2) it is easy to use since, unlike gradient-based algorithms, a step
size parameter does not have to be selected, (3) finds the independent components of almost
any abnormal distribution using any nonlinear function g, unlike in many algorithms where
some estimate of the probability distribution function must be initially available, and then the
nonlinearity selected accordingly, (4) the performance of the algorithm can be optimized by se-
lecting a suitable nonlinearity g (especially, robust and/or minimal variance algorithms can be
obtained), (5) independent components can be estimated one by one, which is roughly similar
to the search for a projection, and (6) it is parallel, distributed, computationally simple, and
requires little memory space [27].

Comparison between the principal component analysis and the factor analysis (FA)

PCA is a linear transformation based, mostly, on the variance maximization representation
that is not based on a generative model, although it can be derived from one. The PCA
model is invertible if all principal components are retained. Once the principal components are
found, the original observations can be expressed as their linear functions, and the principal
components can also be easily obtained as linear functions of the observations. On the other
hand, the FA model is a generative latent variable model; the observations are expressed by
the factors, but the values of the factors cannot be calculated directly from the observations.
Furthermore, the FA, like the PCA, is a purely second-order statistical method: only covariances
between the observed variables are used in the estimation, which is due to the assumption of
Gaussianity of the factors. Finally, the factors are assumed to be uncorrelated, which also
implies independence in the case of Gaussian data. On the other hand, the ICA is a similar
generative latent variable model, where the factors or independent components are assumed to
be statistically independent and non-Gaussian, which is a much stronger assumption [26].

When considering the problem of blind source separation, it would be possible to find
many different uncorrelated representations of the signals that would not be independent and
would not separate the sources, i. e. uncorrelatedness by itself is not enough to separate the
components which is the reason why the PCA or the FA cannot separate the signals. The
PCA and the FA yield components that are uncorrelated, and independence is a much stronger
property than uncorrelatedness [26].

In this research, all three mentioned dimensionality reduction methods were performed
separately.

3.2. Linear regression

Linear regression is one of the most widely used method in social sciences [47]. The standard
model can be written as:

y=Po+ Bix1+ -+ Bpxp + €,

where y is the explained (dependent) variable, x1, ..., x, are explanatory (independent) variables,
Bo is the intercept, 31, ..., B, are coeflicients associated with variables z1, ..., z, and € is the error
term. The ordinary least squares method is used to estimate the model coefficients [47].

In this research, four linear regression models were produced to predict the energy costs of the
public sector buildings. Model 1 uses the original variables as explanatory variables, Model 2
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uses the independent components obtained from the ICA as the explanatory variables, Model
3 uses the principal components obtained through the PCA, whereas Model 4 uses the factors
extracted by the FA as explanatory variables. Adjusted coefficient of determination (R?), root
mean square error (RMSE) and symmetric mean average percentage error (SMAPE) were used
for the evaluation of the models’ prediction performance and the comparisons between the
models.

3.3. Data

The real data set that was used was obtained from the Energy Management Information System
(EMIS), which is managed by the Agency for Legal Trade and Real Estate Brokerage (APN)
in Croatia. It consists of the of the following characteristics of the public sector buildings in
Croatia: constructional (share of windows, number of floors, energy coefficients of character-
istic parts of the building, etc.), geospatial (region, county, etc.), meteorological, occupational
(number of users, number of used days in a year, number of used hours in a day, etc.), energy
data (energy costs), and heating and cooling characteristics (heated / cooled surface, internal
heating / cooling temperature, etc.).

The total data set contains 1724 observations on 150 variables. 149 of them are explanatory
variables, whereas the annual energy costs is an explained variable. For the ease of reading and
clarity of the paper, the descriptive statistics of the variables are omitted. Before producing
a linear regression models to predict the energy costs of the public buildings, the sample was
first divided into a training and a testing part in the ratio 80:20, i. e., 1379 observations were
in training, whereas 345 obsevations were in the testing part.

The Kaiser-Meyer-Olkin measure of sampling adequacy is used to check whether the corre-
lation matrix of the sample is suitable for conducting the factor analysis, and is also used for
the purposes of the principal and independent components analysis [31]. The Bartlett’s test is
used for the same purpose as it tests whether a correlation matrix is an identity matrix [3].

4. Results and discussion

The whole following analysis was performed in the R software. Firstly, the Kaiser-Meyer-Olkin
(KMO) measure and the Bartlett’s test were used in order to check the sampling adequacy.
The KMO measure resulted in 0.85, and the Bartlett’s test showed the p-value as significant (p-
value = 0). Both of which justifiy the adequacy of sampling. As a first preprocessing step, prior
the independent components analysis, the explanatory variables were centered by subtracting
their means. The second step that precedes the ICA was whitening. Within that step, the
principal component analysis was performed. The principal component analysis was chosen as
a whitening procedure since the independent component analysis does not sort the components,
and, in that way, does not perform the dimensionality reduction by itself, while the principal
component analysis can discard some of the principal components according to certain criteria.
In order to determine a number of retained principal components, the following criteria were
compared: (1) the scree graph, (2) the Kaiser rule, (3) the cumulative percentage of total
variance, and (4) the parallel analysis. The scree graph is shown in Figure 1., and the results
according to all criteria are presented in Table 1.
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Scree graph
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Figure 1: Scree graph
Criteria Number of retained princi- | Total variance explained (%)
pal components

Scree graph 5 27.16 %
Kaiser rule 45 76.48 %
Cumulative percentage of | 37 70.69 %
total variance
Parallel analysis 34 68.26 %

Table 1: Number of retained principal components according to all used criteria and percentage of the total variance
that is explained

The parallel analysis results were used, and 34 components were retained as they explain a
substantial proportion of the total variance (68.26 %), while, at the same time, reduce the
dimensionality the most.

The independent component analysis was then performed by the FastICA algorithm, which
resulted in 34 components that are as independent and non-Gaussian as possible. Consequently,
the original data set of buildings characteristics was significantly reduced, from 149 to 34
dimension. This finding is in conjunction with the literature that states that this method greatly
contributed to reducing the dimensionality of the data set and extracting main underlying
components from various data.

Moreover, for the purpose of a comparison, the factor analysis was also performed. The
FA resulted in 39 factors (as suggested by the parallel analysis) that also explain a substantial
proportion of the total variance (65.2 %).

Finally, four different linear regression models were trained and their performance on the
testing subsample was evaluated. Model 1 was trained on original variables, Model 2 on in-
dependent components, Model 3 on principal components and Model 4 on factors as input
(explanatory variables). The models were compared in terms of adjusted R? coefficient, RMSE
and SMAPE with results given in Table 2.

’ \ Model 1 \ Model 2 \ Model 3 \ Model 4 ‘
R? [%)] 80.06 71.97 68.21 80.06
RMSE 274 107.5 180 289.8 195 728.1 274 107.5
SMAPE | 54.78 49.15 60.25 54.78

Table 2: The evaluation of models performance
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It can be seen that Model 2, Model 3 and Model 4 reduced the dimensionality to a certain
extent. In addition, Model 4 (FA - LR) had the same performance as Model 1 (LR) in terms
of R?, RMSE and SMAPE. Model 1 and Model 4 had the highest R?, but also the highest
RMSE, while they had SMAPE lower than Model 3 (PCA - LR). Model 3 also had the lowest
R? coefficient. Finally, Model 2 (ICA - LR) had the R? coefficient lower than Model 1 and
Model 4, but it resulted in the lowest RMSE and SMAPE errors. Therefore, it can be said that
Model 2 outperformed other models in terms of prediction.

5. Conclusion

This paper initially addressed the motivation for building a model which predicts the energy
costs of the public sector buildings. Considering that the building sector is one of the largest
individual consumers of energy, in order to be able to implement the directives of the European
Union to increase energy efficiency and achieve nearly zero-energy buildings, it is necessary to
properly plan measures for the construction of new buildings or the renovation of existing ones.
A real data set of public sector buildings in the Republic of Croatia was used, which contained
a large number of variables (construction, occupational, energy, etc.). The effects that can
be caused by a large number of variables in the model was discussed in terms of “blessings”
and “curses” of dimensionality, with the emphasis on the latter. It is also mentioned that an
inclusion of an irrelevant variable may increase multicollinearity and a technique’s ability to
fit the sample data, with a cost of overfitting the sample data and making the results less
generalizable to the population, whereas the omission of relevant variables can bias the results
and negatively affect any interpretation.

Secondly, the analysis of independent components was conducted and presented as one of
the methods for reducing dimensionality, i. e., extraction of variables. It is a method that
has recently become more common in order to find the hidden factors behind a set of random
variables. The method estimates a linear representation from the data that would consist of
components that are statistically independent (or at least as independent as possible) and non-
Gaussian. It is often considered as an extension of the principal component analysis or the
factor analysis. Therefore, a comparison between the principal component analysis and the
factor analysis is provided, along with the motivation, definition, assumptions, estimation and
ambiguities of the independent component analysis. In addition, the main properties of the
FastICA algorithm, one of the most commonly used algorithms for the independent component
analysis, were mentioned. Furthermore, since the ICA does not result in sorted components,
in this paper, data whitening was performed by the principal component analysis that may,
according to certain criteria, discard some of the components. In this paper, criteria such as
a scree graph, the percentage of the variance of each principal component (the Kaiser rule),
the cumulative percentage of the total variance and the parallel analysis were compared and
34 components were retained, as suggested by the parallel analysis, which explained around
68.26 % of the total variance. The FastICA algorithm was performed in order to estimate
independent components and the initial set of explanatory variables were reduced from 149 to
34 dimensions. Moreover, the factor analysis was performed which resulted in 39 factors that
explained 65.2 % of the total variance.

Finally, the ultimate goal of this research was to create a model for estimating and predicting
the annual energy costs of the public sector buildings based on the mentioned characteristics.
With that purpose, four different linear regression models were created and evaluated: Model 1
was conducted on original variables, Model 2 was conducted on independent components, Model
3 was conducted on principal components and Model 4 was conducted on factors as input. The
purpose of all models is to support decision-making and planning for the implementation of
energy renovation measures or construction of buildings. The models were compared in terms
of adjusted R? coefficient, RMSE and SMAPE on testing the sub-sample, and Model 2 resulted
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in the lowest RMSE and SMAPE errors. Finally, Model 2 could be implemented in the infor-
mation system of decision makers in order to be used in planning measures for the construction
of new buildings or renovation of existing ones. This is an important applied contribution in
the context of achieving energy efficiency and the objectives of the European Union directives.
Further research should include many different dimensionality reduction methods, e. g., meth-
ods and optimization algorithms for variable selection, and methods for modelling this data
set such as machine learning methods, in order to achieve the best prediction performance.
However, more accurate models could be created if data on the characteristics of the buildings
before and after renovation were available. It would then be possible to directly observe and
model differences in energy costs over time. The limitation of the buildings’ characteristics used
in this research is that they were collected at one point in time and there is no information on
the changes that occurred as a result of renovations. This could be solved by changes in the
information system of the decision makers and by introducing the obligation to enter such data
in the information system when a change in the buildings’ characteristics occurs. Ultimately,
that could have a significant impact not only on governmental financial costs, but also on the
environmental care and sustainability.
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