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1. Introduction

One of the most powerful methods for solving linear optimization (LO) problems is interior-
point method (IPM). Since the pioneering algorithm of Karmarkar [6] for LO, a lot of research
has been done on IPMs. At the same time, primal-dual IPMs have attracted more attention.
These methods use Newton’s directions, which are closely related to the primal-dual logarithmic
barrier function. In the design of primal-dual IPMs, search directions play an essential role.
Peng et al. [20, 21] replaced the logarithmic barrier function with a so-called self-regular barrier
function and modified the search direction accordingly. Then, they derived a large-update
method for which the theoretical iteration bound is O(

√
n log n log n

ε ). Bai et al. [2] proposed
a new large-update method based on a so-called kernel function (KF), which is not self-regular
and has an O(

√
n log n log n

ε ) iteration bound.
Primal-dual IPMs are divided into two cathegories: feasible IPMs and infeasible IPMs

(IIPMs). Feasible IPMs start from a strictly feasible point, which is difficult to find. In
that case an IIPM should be used. These methods have the advantage that they can start
with an arbitrary positive point and simultaneously strive to reach feasibility and optimality,
simultaneously. IIPMs were first introduced by Lustig [19] and Tanabe [25].

The first full-Newton step feasible IPM for LO was presented by Roos et al. [24]. Darvay
[3] proposed a new technique to find a set of search directions. Using an Algebraic Equivalent
Transformation (AET) of the nonlinear equations of the central path system, the author de-
signed a full-Newton step fesible IPM for LO with iteration bound O(

√
n log n

ε ). The method is
extended to convex quadratic optimization (CQO) [1], second-order cone optimization (SOCO)
[26], symmetric optimization (SO) [27] and the Cartesian P∗(κ) linear complementarity problem
(LCP) [28]. Considering the new search direction created by the ψ(t) =

√
t/2(1 +

√
t) function

in the AET technique, Kheirfam and Haghighi [17] proposed a full-Newton step feasible IPM
for P∗(κ)-LCPs. According to the ψ(t) = t −

√
t function used in the AET technique, Darvay
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et al. [4] introduced a full-Newton step feasible IPM for LO. Darvay and Takács [5] considered

the ψ(t) = t2 function in the new AET ψ(xsµ ) = ψ
(√

xs
µ

)
and proposed a full-Newton step

feasible IPM for LO.
Roos [22] proposed a full-Newton step IIPM for LO, which is a generalization of the IPM

analyzed in [24]. Some generalizations and versions of this method are presented in [8, 9, 10, 15,
18, 30]. Roos [23] introduced an improved version of the method for LO that does not require
centering steps, while the aforementioned methods require several (at most three) centering
steps in each (main) iteration. Kheirfam extended this method to HLCP [11], the Cartesian
P∗(κ)-LCP [12], the convex quadratic symmetric cone optimization (CQSCO) [13] and SO [14].
Kheirfam [7] proposed an infeasible version of the method presented in [4] for SDLCP.

Motivated by the aforementioned works, in this paper we consider a full-Newton step IIPM
for LO based on the AET strategy introduced in [5]. By applying Newton’s method in the
transformed system, the search directions are obtained. We prove the convergence of the
proposed algorithm and derive its iteration bound.

The paper is organized as follows. In the next section, we recall the problem pair (P) and
(D). We state that the perturbed problems related to (P) and (D) and then present the central
path. In Section 3, we introduce the search directions of the IIPM for LO and then present
the algorithm. Section 4 is dedicated to the complexity analysis of the proposed method. In
Section 5, some concluding remarks are followed.

2. Preliminaries

Consider the LO problem in the following standard form

(P ) min {cTx : Ax = b, x ≥ 0},

where A ∈ Rm×n with rank(A) = m, b ∈ Rm and c ∈ Rn. Its dual problem is in the following
standard form:

(D) max {bT y : AT y + s = c, s ≥ 0},

where y ∈ Rm and s ∈ Rn. In accordance with the routine of IIPMs, we consider the starting
point (x0, y0, s0) = ξ(e, 0, e) such that ∥(x∗; s∗)∥∞ ≤ ξ for some primal-dual optimal solution
(x∗, y∗, s∗), where e = (1, ..., 1)T and 0 < ξ ∈ R. It should be noted that for the optimal
solution (x∗, y∗, s∗) the inequality ∥(x∗; s∗)∥∞ ≤ ξ is true if and only if

0 ≤ x∗ ≤ ξe, 0 ≤ s∗ ≤ ξe. (1)

For an IIPM, a triple (x, y, s) is said to be an ε-solution of (P) and (D) if

max
{
xT s, ∥b−Ax∥, ∥c−AT y − s∥

}
≤ ε,

where ε is a accuracy parameter. Following [22], for any 0 < ν ≤ 1 we consider the perturbed
problem pair (Pν) and (Dν) as follows:

(Pν) min {(c− νr0c )
Tx : b−Ax = νr0b , x ≥ 0},

(Dν) max {(b− νr0b )
T y : c−AT y − s = νr0c , s ≥ 0},

where r0b := b− Aξe and r0c := c− ξe. It is easy to see that (x0, y0, s0) = ξ(e, 0, e) is a feasible
solution of the problem pair (Pν) and (Dν) if ν = 1. We conclude that the problem pair (Pν)
and (Dν) satisfies the interior point condition (IPC) if ν = 1. We recall the following lemma.
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Lemma 1. (Theorem 5.13 in [29]) The original problems, (P) and (D) are feasible if and only
if for each ν satisfying 0 < ν ≤ 1 the perturbed problems (Pν) and (Dν) satisfy the IPC.

In the view of Lemma 1, we assume that the original problem pair (P) and (D) is feasible
and ν ∈ (0, 1], the central path of the perturbed pair (Pν) and (Dν) exists; that is,

b−Ax = νr0b , x ≥ 0,
c−AT y − s = νr0c , s ≥ 0,

xs = µe,
(2)

has a unique solution (x(µ, ν), y(µ, ν), s(µ, ν)), for every µ > 0. This solution consists of the
µ-centers of the perturbed problems (Pν) and (Dν). Note that for x, s > 0 and µ > 0 from the
third equation of system (2) we deduce that

xs = µe⇔ xs

µ
= e⇔

√
xs

µ
= e⇔ xs

µ
=

√
xs

µ
. (3)

Now the perturbed central path can be equivalently expressed as follows

b−Ax = νr0b , x ≥ 0,
c−AT y − s = νr0c , s ≥ 0,

xs

µ
=

√
xs

µ
.

(4)

In the following, the parameters µ and ν always satisfy the relation µ = νµ0 = νξ2.

3. Search directions

As mentioned previously (see Section 1), large-update IPMs based on KFs are presented to
solve LO.

A twice continuously differentiable function ψ : R++ → R+ is a KF if:

i) ψ(1) = ψ
′
(1) = 0, ii) ψ

′′
(t) > 0 for all t > 0.

The KF is called coercive if limt↓0 ψ(t) = limt→+∞ ψ(t) = +∞.
The main idea of full-Newton step IIPMs based on KFs is to determine the search directions

(∆x,∆y,∆s) such that

A∆x = θνr0b ,
AT∆y +∆s = θνr0c ,

s∆x+ x∆s = −√
µxs ∇Ψ

(√
xs
µ

)
,

where the generalized barrier function Ψ(t), t ∈ Rn
++ is in the following form:

Ψ(t) =

n∑
i=1

ψ(ti).

In the what following, we propose an AET-based method for introducing search directions.
In accordance with Darvay’s idea, we consider the function ψ defined and continuously

differentiable on the interval (k2,∞), where 0 ≤ k < 1, such that 2tψ
′
(t2)− ψ

′
(t) > 0,∀t > k2.

Now, if we apply the AET strategy to (4), we get

b−Ax = νr0b , x ≥ 0, (5)

c−AT y − s = νr0c , s ≥ 0, (6)

ψ
(xs
µ

)
= ψ

(√xs

µ

)
. (7)
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Let (x, y, s) be a feasible solution of the perturbed pair (Pν) and (Dν). We consider the notation

f(x, y, s) =


ν+r0b − b+Ax

ν+r0c − c+AT y + s

ψ
(xs
µ

)
− ψ

(√xs

µ

)
 = 0,

where ν+ = (1− θ)ν and θ ∈ (0, 1). By applying Newton’s method in this system, we have

Jf (x, y, s)

∆x∆y
∆s

 = −f(x, y, s),

where Jf (x, y, s) denotes the Jacobian matrix of f at (x, y, s). After some computations, we
obtain the following system:

A∆x = θνr0b ,
AT∆y +∆s = θνr0c ,

1
µ

(
s∆x+ x∆s

)
=

−ψ(xsµ ) + ψ(
√

xs
µ )

ψ′(xsµ )− 1
2
√

xs
µ

ψ′(
√

xs
µ )
.

(8)

We define the following scaled search directions

dx :=
v∆x

x
, ds :=

v∆s

s
, where v =

√
xs

µ
. (9)

Then we rewrite the system (8) as follows:

Ādx = θνr0b ,

ĀT ∆y
µ + ds = θνvs−1r0c ,

dx + ds = pv,

(10)

where

pv :=
2ψ(v)− 2ψ(v2)

2vψ′(v2)− ψ′(v)
, and Ā := Adiag

(x
v

)
.

If we use the function ψ : ( 1√
2
,∞) → R, ψ(t) = t2 introduced in [5], then we obtain

pv =
v − v3

2v2 − e
. (11)

After a full-Newton step, the new iterate is given by

x+ := x+∆x, y+ := y +∆y, s+ := s+∆s. (12)

In addition, in each iteration of the algorithm, a quantity is needed to measure the distance of
an iterate from the central path. For this purpose, We consider the proximity measure defined
by the following quantity

δ(v) := δ(x, s;µ) =
∥pv∥
2

=
1

2

∥∥∥ v − v3

2v2 − e

∥∥∥, (13)

which was first proposed for a feasible IPM in [5].
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Let qv = dx − ds. Then

dx =
pv + qv

2
, ds =

pv − qv
2

, dxds =
p2v − q2v

4
, (14)

and

∥qv∥2

4
=

∥dx − ds∥2

4
=

∥dx + ds∥2

4
− dTx ds =

∥pv∥2

4
− dTx ds. (15)

Suppose that for some µ ∈ (0, µ0], our algorithm starts from a feasible solution (x, y, s) of
the problem pair (Pν) and (Dν) with ν = µ

µ0 , and such that δ(x, s;µ) ≤ τ, τ ∈ (0, 1). Then, the

algorithm finds a feasible solution (x+, y+, s+) of (Pν+) and (Dν+), where ν+ = (1 − θ)ν, θ ∈
(0, 1). In this case, µ is reduced to µ+ = (1 − θ)µ and such that δ(x+, s+;µ

+) ≤ τ . This
procedure is repeated until an ε-solution is found. We are now in a position to express the
theoretical framework of the infeasible interior-point algorithm as follows:

Algorithm1 : an infeasible interior− point algorithm
Input :

Accuracy parameter ϵ > 0;
barrier update parameter θ, 0 < θ < 1;
threshold parameter τ > 0.

begin
x := ξe; y := 0; s := ξe; µ := νξ2; ν = 1;

while max(xT s, ∥rb∥, ∥rc∥) > ϵ do
begin
solve the system (10) and use (9) to obtain (∆x,∆y,∆s);

(x, y, s) := (x, y, s) + (∆x,∆y,∆s);
update of µ and ν :

µ := (1− θ)µ;
ν := (1− θ)ν;

end
end.

4. Analysis of the algorithm

Here, we will prove that Algorithm 1 is well defined. The main goal of our analysis is to
find some values for the parameters τ and θ such that x+ > 0 and s+ > 0, and we have
δ(x+, s+;µ

+) ≤ τ. In the following section, after an iteration of the algorithm we obtain an
upper bound for the proximity measure.

4.1. Upper bound for δ(v+)

In the next lemma, we give a condition on the proximity measure that guarantees the feasibility
of a full-Newton step. In what follows, we use the notation ω = 1

2

(
∥dx∥2 + ∥ds∥2

)
.

Lemma 2. The iterate (x+, y+, s+) with v >
1√
2
e is strictly feasible if 2δ(v)2 + ω < 1.

Proof. Let 0 ≤ α ≤ 1. We define x(α) := x+ α∆x and s(α) := s+ α∆s. Using (9), the third
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equation of (10) and (14) one can finds

x(α)s(α)

µ
=
xs

v2
(v + αdx)(v + αds) = v2 + αv(dx + ds) + α2dxds

= (1− α)v2 + α(v2 + vpv) + α2
(p2v − q2v

4

)
(16)

≥ (1− α)v2 + α2e+ α2 p
2
v

4
− α2 q

2
v

4
,

where the inequality is due to α ≥ α2 and the following inequality:

v2 + vpv − e = v2 +
v2 − v4

2v2 − e
− e =

v4

2v2 − e
− e =

(v2 − e)2

2v2 − e
≥ 0. (17)

The inequality x(α)s(α) > 0 holds if∥∥∥− p2v
4

+
q2v
4

∥∥∥
∞

≤
∥∥∥p2v
4

∥∥∥
∞

+
∥∥∥q2v
4

∥∥∥
∞

≤ ∥pv∥2

4
+

∥qv∥2

4

= 2δ(v)2 − dTx ds ≤ 2δ(v)2 + ∥dx∥∥ds∥ ≤ 2δ(v)2 + ω < 1,

where the equality is due to (15), the third inequality uses from the Cauchy-Schwarz inequality
and the last inequality holds due to the assumption of the lemma. Thus x(α)s(α) > 0, for
0 ≤ α ≤ 1; x(α) and s(α) do not change sign on the interval [0, 1]. Consequently, x(0) = x > 0
and s(0) = s > 0 yields x(1) = x+ > 0 and s(1) = s+ > 0. Thus the proof is completed.

In correspondence to the definition (13), we have

δ(v+) = δ(x+, s+;µ
+) =

1

2

∥∥∥v+ − v3+
2v2+ − e

∥∥∥, where v+ =

√
x+s+
µ+

.

Lemma 3. Let δ(v)2 + ω < 1
2 (1 + θ) and v > 1√

2
e. Then, v+ > 1√

2
e and

δ(v+) ≤
√
1− δ(v)2 − ω

(
θ
√
n+ 10δ(v)2 + ω

)
2
√
1− θ(2(1− δ(v)2 − ω)− (1− θ))

.

Proof. Let α = 1. Then from (16) it follows that

v2+ =
x+s+
µ+

=
v2 + vpv +

p2
v

4 − q2v
4

1− θ
=
e+ (v2−e)2

2v2−e +
p2
v

4 − q2v
4

1− θ

=
e+

(
9v2−4e

v2

)p2
v

4 − q2v
4

1− θ
≥
e− q2v

4

1− θ
,

where the second equality is due to (17) and the inequality follows from the fact that 9v2−4e ≥
0.5e > 0. Consequently, we have

min(v+) ≥

√
1− 1

4∥qv∥2∞
1− θ

≥

√
1− 1

4∥qv∥2

1− θ
≥

√
1− δ(v)2 − ω

1− θ
, (18)

where the last inequality follows from (15) and the Cauchy-Schwarz inequality.
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From δ(v)2 + ω < 1
2 (1 + θ) it follows that min(v+) >

1√
2
, hence v+ > 1√

2
e. Now, we have

δ(v+) =
1

2

∥∥∥v+ − v3+
2v2+ − e

∥∥∥ =
1

2

∥∥∥ v+
2v2+ − e

(
e− v2+

)∥∥∥
≤ min(v+)

2(2min(v+)2 − 1)

∥∥e− v2+
∥∥

≤
√
(1− θ)(1− δ(v)2 − ω)

2(2(1− δ(v)2 − ω)− (1− θ))

∥∥e− v2+
∥∥. (19)

On the other hand, one has

∥∥e− v2+
∥∥ =

∥∥∥e+ (
9v2−4e

v2

)p2
v

4 − q2v
4

1− θ
− e

∥∥∥
≤ 1

1− θ

(
∥θe∥+

∥∥∥(9v2 − 4e

v2

)p2v
4

− q2v
4

∥∥∥)
≤ 1

1− θ

(
θ
√
n+ 9

∥pv∥2

4
+

∥qv∥2

4

)
=

1

1− θ

(
θ
√
n+ 10δ(v)2 + ω

)
.

Substituting this bound into (19) gives us exactly the desired result. Thus the proof is com-
pleted.

4.2. Upper bound for ω

Following [23], let N := {ζ : Āζ = 0} denote the null space of the matrix Ā. Then, the affine
space {ζ : Āζ = θνr0b} is equal toN+dx. Since the row space of Ā is the orthogonal complement
N⊥ of N , thus ds ∈ θνvs−1r0c +N⊥. Also note that N ∩N⊥ = {0}, and as a consequence the
affine spaces N + dx and N⊥ + ds meet in a unique point q. Applying a similar argument to
Lemma 3.4 in [23], we can conclude

2ω ≤ ∥q∥2 +
(
∥q∥+

∥∥∥ v − v3

2v2 − e

∥∥∥)2

= ∥q∥2 +
(
∥q∥+ 2δ(v)

)2
. (20)

Again from [23], we have

∥q∥ ≤
θ
(
n+ ∥v∥2

)
min(v)

. (21)

By definition (13) , we have

2δ(v) =
∥∥∥ v − v3

2v2 − e

∥∥∥ =
∥∥∥ v2 + v

2v2 − e
(e− v)

∥∥∥ ≥ 1

2

∥∥e− v
∥∥ ≥ 1

2

(
∥v∥ − ∥e∥

)
,

which implies
∥v∥ ≤ ∥e∥+ 4δ(v) =

√
n+ 4δ(v).

Furthermore, we have
4δ(v) ≥ ∥e− v∥ ≥ |1− vi|, i = 1, . . . , n.

This gives min(v) ≥ 1− 4δ(v). Combining these two inequalities with (21), we will get

∥q∥ ≤
θ
(
n+

(√
n+ 4δ(v)

)2)
1− 4δ(v)

. (22)
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4.3. Values for θ and τ

In this section, we require to find values θ and τ such that if δ(v) ≤ τ holds, then δ(v+) ≤ τ .
From Lemma 3, it suffices to have√

1− δ(v)2 − ω
(
θ
√
n+ 10δ(v)2 + ω

)
2
√
1− θ(2(1− δ(v)2 − ω)− (1− θ))

≤ τ, (23)

provided that δ(v)2 + ω < 1
2 (1 + θ). One can easily see the right-hand-side of (22) is monoton-

ically increasing with respect to δ(v) < 1. Therefore, invoking δ(v) ≤ τ , we have

∥q∥ ≤
θ
(
n+

(√
n+ 4τ

)2)
1− 4τ

.

By substituting the above result into (20) and using again δ(v) ≤ τ , we obtain

ω ≤ 1

2

[(
θ
(
n+

(√
n+ 4τ

)2)
1− 4τ

)2

+

(
θ
(
n+

(√
n+ 4τ

)2)
1− 4τ

+ 2τ

)2]
=: f(τ)

We claim that

χ(t) :=

√
1− t

2(1− t)− (1− θ)
, 0 ≤ t ≤ 1

2
(1 + θ), (24)

is increasing. Hence, 0 ≤ δ(v)2+ω ≤ τ2+f(τ) implies χ(δ(v)2+ω) ≤ χ(τ2+f(τ)). Therefore,
δ(v)2 + ω ≤ 1

2 (1 + θ) and (23) will certainly hold if

τ2 + f(τ) ≤ 1

2
(1 + θ), y(τ) :=

χ(τ2 + f(τ))(θ
√
n+ 10τ2 + f(τ))

2
√
1− θ

≤ τ.

If we take τ = 1
16 and θ = 1

20n , n ≥ 4, then τ2 + f(τ) ≤ 0.0534 < 0.5000 ≤ 1
2 (1 + θ) and

y(τ) ≤ 0.0614 < 0.0625 = 1
16 . Hence, we may state the following result.

Lemma 4. If τ = 1
16 and θ = 1

20n , n ≥ 4, then δ(v) ≤ τ implies δ(v+) ≤ τ.

4.4. Complexity analysis

Lemma 4 shows that Algorithm 1 is well-defined, in the sense that the property δ(x, s;µ) :=
δ(v) ≤ τ is preserved in all iterations.

In each main iteration, both the barrier parameter µ and the norms of the residual vectors
are reduced by a factor of 1− θ. Hence, the total number of main iterations is bounded above
by

1

θ
log

max{nξ2, ∥r0b∥, ∥r0c∥}
ε

.

Now, we state our main result.

Theorem 1. If (P) and (D) are feasible and ξ > 0 such that ∥(x∗; s∗)∥∞ ≤ ξ for some optimal
solutions x∗ of (P) and (y∗, s∗) of (D), then after at most

20n log
max{nξ2, ∥r0b∥, ∥r0c∥}

ϵ

iterations, the algorithm finds an ϵ-optimal solution of (P) and (D).
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5. Concluding remarks

The method presented in this paper is a full-Newton step IIPM for LO based on the AET
introduced in [5]. The method uses only one feasibility step in each iteration. The analysis of
our method differs from existing IIPMs based on AET because it uses a different AET. The
obtained complexity bound corresponds to the currently best-known theoretical iteration bound
for IIPMs. In Table 1 we compare the obtained complexity results with the complexity bounds
for IIPMs in [23, 16, 11, 12, 13, 14].

(τ, θ) iterations

Algorithm 1 ( 1
16 ,

1
20n )(n ≥ 4) 20n log

max{nξ2,∥r0b∥,∥r
0
c∥}

ϵ

Algorithm in [23] ( 15 ,
1
8n )(n ≥ 2) 8n log

max{nξ2,∥r0b∥,∥r
0
c∥}

ϵ

Algorithm in [16] ( 1
16 ,

1
22n )(n ≥ 2) 22n log

max{nξ2,∥r0b∥,∥r
0
c∥}

ϵ

Algorithm in [11] ( 1
6(1+2κ) ,

1
27n(1+2κ)2 ) 27n(1 + 2κ)2 log

max{(x0)T s0,∥rq∥∥}
ϵ

Algorithm in [12] ( 1
8(1+2κ) ,

1
44r(1+2κ)(1+4κ) ) 44r(1 + 2κ)(1 + 4κ) log

max{tr(x0◦s0),∥r0q∥F ∥}
ϵ

Algorithm in [13] ( 17 ,
1

11r )(r ≥ 2) 11r log
max{rξ2,∥r0b∥F ,∥r0c∥F }

ϵ

Algorithm in [14] ( 1
16 ,

1
53r ) 53r log

max{tr(x0◦s0),∥r0p∥F ∥,∥r0d∥F }
ϵ

Table 1. Comparison of obtained complexity results.
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