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Abstract. We consider the bicriteria investment Boolean problem of finding the Pareto 
set based on efficiency and risk criteria. The quantitative stability characteristics of the 
problem are investigated, and lower and upper bounds for a stability radius are obtained 
for the case where portfolio and financial market state spaces are endowed with the 
Hölder metric. Calculation of these bounds provides investors with a deeper insight into 
the specific problem of facilitating financial decisions more reliably in uncertain 
environments. 
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1. Introduction 
 
Investors face risk challenges when investing in high-yield assets. The main 
objective in capital management is finding a trade-off between risk and expected 
return. Based on the Markowitz portfolio theory [12, 14], risk can be reduced 
through investment diversification in various assets and portfolio selection 
subject to required income level and acceptable risk. Applying the portfolio 
theory enables formulating the problem of selecting a set of Pareto optimal 
portfolios with maximum efficiency for a favorable situation or for a worst-case 
situation with the lowest risk. The initial data for this problem is obtained 
through statistical and expert evaluations of risk and efficiency [5]. The initial 
data can be specifically adjusted through post-optimal analysis in order to 
determine quantitative stability indicators of solutions [1, 11]. One such 
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characteristic is the stability radius of the problem, indicating the extent to 
which the initial data can change without the threat of a new Pareto optimal 
portfolio appearing. The concept of stability radius has been extensively 
presented and analyzed in recent literature, focusing on formulating analytical 
expressions and bounds (see e.g. [3, 6, 13, 17]). The stability radius depends on 
the selected metric in the parameter space of the problem. Different metrics 
take into account differently parameter perturbations of the problem. For 
example, in the case of the Chebyshev metric ∞l  we consider only the 
maximum absolute value of changes in the initial data, causing perturbations to 
be more independent. Alternatively, in the case of the Manhattan metric 1l , we 
monitor every change. The Hölder metric pl , ∞≤≤ p1 , includes the 
Chebyshev and the Manhattan metrics as extreme cases, and also the Euclidean 
metric. Thus, the Hölder metric enables us to vary control of perturbations in 
the initial data. 

This paper explains how we obtain the lower and upper bounds for the 
stability radius of a bicriteria investment portfolio problem based on conflicting 
criteria, such as the extreme optimism criterion for a yield and the extreme 
pessimism criterion for a risk of lost profit. For the stability analysis of the 
investment problem relating to perturbations in the initial data (evaluations of 
investment project efficiency and risk measure), we suppose that the arbitrary 
Hölder metric is given in the space of portfolios and the space of financial 
market states. 

Earlier in the literature, similar results were obtained in [7, 8, 9, 10] only 
for particular cases upon determining the Manhattan 1l  and Chebyshev ∞l  
metrics in a three-dimensional space of the problem parameters, 
 

2. Problem statement and basic definitions 
 
Based on the Markowitz investment theory, we consider a bicriteria variant of a 
Boolean investment management problem. Let 𝑛𝑛 be the number of alternative 
investment projects (assets), 𝑚𝑚 the number of predictive states (situations) of 
the financial market, i.e. the number of variant market scenarios. Then let 1=jx  
if the j -th project is chosen, },{1,2,= nNj n 2∈ , or 0=jx  otherwise. The Boolean 
vector T

nxxxx ),,,(= 21 2 is an investment portfolio, and nX E⊂ , {0,1}=E , is the 
set of all investment portfolios, i.e. those realizations not exceeding the budget. 
 For each market state mNi∈ , the investment portfolio Xx∈  is evaluated 
using an index of efficiency and risk (additive functions): 
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Here ije  is the expected evaluated efficiency of the project nNj∈  for the case 
when the market is in the state },{1,2,= mNi m 2∈ ; ijr  is the risk measure, which 
an investor may encounter if choosing the j -th project in the i -th market state. 

Note that there are several approaches to evaluating the efficiency  
of investment projects (see e.g. [2, 4, 15, 18]). The initial data are given  
by two matrices – the efficiency matrix ∈][= ijeE ℝ nm×  and the risk matrix  

∈][= ijrR ℝ nm× . The investor wants to select the most profitable portfolio, which 
always conflicts with desiring the lowest investment risk level. These 
circumstances, together with market uncertainty and lack of information on 
selection conditions for projects, require the use of two well- known extreme 
optimism and extreme pessimism criteria. 
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where ),,,(= 21 iniii eeee 2 , ),,,(= 21 iniii rrrr 2  are the i -th rows of matrices 𝐸𝐸 and 𝑅𝑅 
respectively. Using the first (MAXMAX) criterion, a venturesome investor 
optimizes the portfolio efficiency xei  when judging that the market is in its 
most favorable state, i.e. maximal portfolio efficiency. It is worth noting that 
these situations requiring certain behavior are quite common in economics. Such 
attitudes are inherent not only in optimistic investors but also in those who are 
cornered in particular situations. The other bottleneck (MINMAX) criterion is 
usually called the Savage criterion [16]. 
 The bicriteria Boolean problem relating to project selection ),( REZ  
requires searching the Pareto set (or the set of Pareto optimal portfolios) 

},=),,(:{=),( ∅∈ RExPXxREP  
where 

)}.,,(),,(&),(),(&),(),(:{=),,( RExfRExfRxrRxrExeExeXxRExP ′≠′≥′≤∈′

 
Here )),(),,((=),,( RxrExeRExf . 
 The Pareto set comprises portfolios, for which it is impossible to make any 
criterion can be improved without worsening the other criterion of the selected 
portfolio. In our case, a portfolio is Pareto optimal when expressing optimal 
trade-off between risk and effectiveness. 
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 In the portfolio space ℝ n  and the financial market state space ℝ m , we 
introduce the Hölder metric pl , ∞≤≤ p1 , i.e. for any matrix ∈][= ijdD ℝ nm×  

with rows ∈id  ℝ n , mNi∈ , we attain equality 

,),,,(= 21
ppmppp

dddD 2  

where 
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It is easy to see that 
  ].[1,,, ∞∈∈≤ pNiDd mppi

 

 Besides the number p , we also use the dual number q , as defined by the 
equality expression 

1,=11
qp

+  

where 1=q  if ∞=p , and ∞=q  if 1=p . Thus, later, we assume that the 
variation domain of p  and q  is the interval ][1,∞ , with qp,  fulfilling the above 
conditions, and we assume 0=1/p  for ∞=p . 

Using the well-known Hölder’s inequality 

,
qp

baab ≤
 

where ∈),,,(= 21 naaaa 2 ℝ n , ∈T
nbbbb ),,,(= 21 2 ℝ n , it is easy to see that for 

Xxx ∈′,  and mNii ∈′,  the following inequalities 

qqqpii xxDxdxd ),( ′−≥′− ′
   (1) 

hold for any matrix ∈D ℝ nm× . Indeed, if ii ′= , then 
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If ii ′≠ , then 
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 Similar to [7, 9, 10], the stability radius of the investment problem 
),( REZ  is defined as: 
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where 
))},,(),(()(),(:0>{= REPRREEPRE ⊆′+′+Ω∈′′∀Ξ εε  

∈′′Ω ),{(=)( REε ℝ nm×
×ℝ nm×

}<},{max: ε
pp

RE ′′  is the set of perturbing 

matrices, ),( RREEP ′+′+  is the Pareto set of the perturbed problem
),( RREEZ ′+′+ . 

 Obviously, if the equality XREP =),(  holds, the stability radius of the 
problem ),( REZ  is equal to infinity. Therefore, this case will be excluded from 
our consideration. The problem ),( REZ , for which the set ),(\ REPX  is 
nonempty, is called a nontrivial one. 
 

3. Stability radius bounds 
 
For Xxx ∈′,  we have the following 
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It is clear that ϕ  and ψ  are nonnegative numbers. 
Theorem 1. For ∈m ℕ and ][1,∞∈p , the stability radius ),( REm

pρ  has the 
following lower and upper bounds 

).,()(),(),( 1/ REmnRERE mpm
p

m
p ψρϕ ≤≤                          (2) 

Proof. First, we prove that ≥ρ  ϕ . It is evident that 0=ϕ . Let 0>ϕ . 
According to the definition of ϕ , for any portfolio ),( REPx∈/  there exists a 
portfolio ),,(0 RExPx ∈  such that 
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hold. 
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 Hence, using (1), for any pair of matrices )(),( ϕΩ∈′′ RE  with the rows 
∈′ie ℝ n  and ∈′ir ℝ n , mNi∈ , we have 
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i.e. the portfolio 𝑥𝑥 is not Pareto optimal in the perturbed problem 
),( RREEZ ′+′+ . In summarizing and considering ),( REPx∈/ , we conclude 

that 
)).,(),(()(),( REPRREEPRE ⊆′+′+Ω∈′′∀ ϕ  

Therefore, the inequality ϕρ ≥  is true. 
 Next, we prove the inequality ψρ pmn 1/)(≤ . According to the definition of ψ , 
there exists a portfolio ),(* REPx ∈/  such that for any portfolio ),,( * RExPx∈  one 
of the following inequalities is true: 

,),(),(
1

** xxExeExe −≤− ψ  (3) 
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1

** xxRxrRxr −≤− ψ  (4) 

 We consider the first variant. Let inequality (2) hold. Setting ψε pmn 1/)(> , 
we define the elements of the matrices ∈][= 00

ijeE ℝ nm×  and ∈][= 00
ijrR ℝ nm×  with 

rows 0
ie  and 0

ir , mNi∈  as follows: 
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 Therefore, )(),( 00 εΩ∈RE . In addition, all the rows 0

ie , mNi∈ , of the 
matrix 0E  are the same and consist of the components δ  and δ− . Denoting

0= ieA , mNi∈ , we get δp
p

nA 1/= , 

0.<=)(
1

** xxxxA −−− δ  (5) 

 Hence, taking into account (3), we deduce that for any portfolio ),,( * RExPx∈  
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As a result, we obtain 
)).,,((),,( 00** RREExPxRExPx ++∈/∈∀  (6) 

 Now, let the portfolio be ),,( * RExPx∈/ . Then the following three cases are 
possible. 

Case 1. ),,(=),,( * RExfRExf , i.e. 
),,(=),( * ExeExe  
).,(=),( * RxrRxr  

Then, using (5), we have 
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Case 2. ),(<),( * ExeExe . Then, using (5) again, we deduce that 

=),(),( 0*0 EExeEExe +−+ 0.<)(),(),( ** xxAExeExe −+−  

Case 3. ),(>),( * RxrRxr . Then, considering the structure of the matrix 0R
, we get 

).,(>),( 0*0 RRxrRRxr ++  

 Thereby, ),,( 00* RREExPx ++∈/ , if ),,( * RExPx∈/ . Combining with (6), we 
obtain ∅++ =),,( 00* RREExP , i.e. ),( 00* RREEPx ++∈ . Hence, in connection 
with ),(* REPx ∈/ , we conclude that for (3) the following formula is true: 

)).,(),((:)(),()(> 00001/ REPRREEPREmn p ⊆/++Ω∈∃∀ εψε  
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 The same formula has been obtained, providing similar proof in the second 
variant, that is, for (4). Hence, ψρ pmn 1/)(≤ . Theorem 1 has been proven. 

□ 

4. Corollaries and examples 
 
Theorem 1 implies several corollaries. 

Corollary 1. For ∈m ℕ, the stability radius ),( REm
∞ρ  has the following lower 

and upper bounds 
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 This implies the following statement that indicates the attainability of the 
bounds (2) in the case ∞=p . 

Corollary 2. If for any pair of portfolios ),( REPx∈/  and ),,( RExPx ∈′  the 
equality 

11
= xxxx ′−′+  holds, then the following formula is true: 

).,(=),(=),( RERERE mmm ψϕρ ∞∞  

Corollary 3. For ∈m ℕ, the stability radius ),(1 REmρ  has the following lower 
and upper bounds 
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 Now let us consider a numerical example that illustrates the attainability of 
the lower bound in Corollary 3. 

Example 1. Let 2=m , 3=n , },{= *0 xxX , Tx (0,1,1)=0 , Tx (1,1,0)=* , the pair of 
matrices ∈),( RE ℝ 32× ×ℝ 32× : 
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Then 6=),( 0 Exe , 4=),( * Exe , 7=),( 0 Rxr , 8=),( * Rxr . Hence ),(* REPx ∈/ , 
),,(=}{ *0 RExPx . Therefore, 1={2,1}min=),( 0* xxγ , 1=),(= 2

1 REϕϕ . Next, we show 
that the stability radius 1=),(2

1 ϕρ ≤RE . 
We define the pair of perturbing matrices ),( 00 RE  as follows 
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where 1=>ϕδ . Then, taking into account 1=l , it is easy to see that 

,2=),(),( 0*00 δ−+−+ EExeEExe  
.1=),(),( 000* δ−+−+ RRxrRRxr  
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 Therefore, ),( 00* RREEPx ++∈ . From this and from the relations

1>=
1

0 δE , 1>=
1

0 δR  and ),(* REPx ∈/ , it follows that 1),(2
1 ≤REρ . 

Hence, according to Theorem 1, we conclude 1=),(=),( 2
1

2
1 RERE ϕρ . 

 Now let us show, that the upper bound ),( REmn mψ  (see Corollary 3) is 
attainable for 1=m  in the scalar case, i.e. when we choose a portfolio using 
only one linear criterion, for example, using only the criterion of the portfolio 
efficiency: 
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where ∈),,,(= 21 neeee 2 ℝ n . This problem requires finding the set of optimal 
portfolios )(eP . We thus consider an example with a particular class of the 
problems (7) where 
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Here 
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Example 2. Let 1=p , nnxxxxX E⊂},,,,{= 21* 2 , 2≥n , where ∈Tx ,0)(0,0,=*  ℝ n , 
jx  is the j -th column of the n identity matrix of size nn× . Let 

∈),,,(= aaae  ℝ n , where 0>a . Therefore, we have 0=*ex , aex j = , 

nNj∈ , i.e. )(* ePx ∈/ , ),(=)( * exPePx j ∈ , nNj∈ . Hence, according to the 
definition of )(1 eψ , equality ae =)(= 1ψψ  holds. 

Now let ),,,(= 21 neeee ′′′′ 2  be a perturbing row vector from the row set 

)(naΩ , i.e. naee j

nNj
|<|=

1
′′

∈
∑ . It is easy to prove by contradiction that there 

exists an index p , such that aep |<| ′ . Therefore, we derive 
0.>=))(( *

p
p eaxxee ′+−′+  

Hence, we conclude that for any perturbing row )( ϕne Ω∈′  the portfolio
)(* eePx ′+∈/ . Therefore, since )(* ePx ∈/  we get )()( 11

1 ene ψρ ≥ . Thus, according to 
Corollary 3, equality (8) is true. 
 Obviously, an example of a similar scalar problem involving portfolio risk 
minimization can be given when the stability radius is equal to the upper 
bound, as specified in Corollary 3. 
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5. Conclusion 
 
The obtained bounds for the stability radii of the problem at hand provide 
information on limit levels of changes in the initial data when all Pareto optimal 
solutions retain their required optimality properties. This information allows 
investors to make decisions and investments that are more financially robust, 
while incorporating possible uncertainties in risk and efficiency calculations. 
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