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Abstract: This paper proposes a differential equation inventory model that incorporates 
partial backlogging and deterioration. Holding cost and demand rate are time dependent. 
Shortages are allowed and assumed to be partially backlogged. Two versions are 
presented, the first one with deterministic values of the parameters and the second one 
taking into the account the interval uncertainty of the parameters. In the crisp case, 
Taylor’s series expansion is used, and graphically shown that the cost function is convex. 
While, in the case of intervals, the interval arithmetic is used and then the problem is 
transformed into a multi-objective non-linear optimization problem and an interval 
objective function.  To solve this problem, the weighted-sum method is used. The 
proposed procedure is validated with the help of a numerical example. Sensitivity 
analysis on various parameters has also been carried out. 
 
Key words: inventory model, interval-valued number, weighted-sum method. 
 

Received: September 13, 2014; accepted: May 18, 2015; available online: October 31, 2015 
 

DOI: 10.17535/crorr.2015.0025 
 
 

1. Introduction 
 
In inventory control problems, we normally deal with real numbers, which are 
assumed to have a fixed value. However, the real life inventory problems cannot 
be properly formulated in this way due to uncertainty.  For example, inventory 
holding cost may vary in rainy seasons during the summer or winter seasons. 
The ordering cost, dependent on transportation facilities, may also vary from 
season to season. Changes in the prices of fuels, postal and telephone charges 
may also set the ordering cost as a variable. The unit purchase cost is highly 
dependent on the costs of raw materials and labor, and may fluctuate with time.  

Moreover, the customer’s demand also differs during various seasons. In 
literature surveyed, some authors considered that interval numbers deal with 

∗ Corresponding author. 

http://www.hdoi.hr/crorr-journal  ©2015 Croatian Operational Research Society 

                                                



322                                       Debashis Dutta and Pavan Kumar 

these types of uncertainties. An interval number is an extension of the concept 
of a real number and also a subset of a real line [16]. Moreover, the theα-cut of 
a fuzzy number is an interval number [26]. The nearest-interval approximation 
of a fuzzy number is proposed in [9]. Some algebraic properties and a distance 
measure for interval-valued fuzzy numbers are described in [10]. A (T, si)-policy 
inventory model for deteriorating items with time proportional demand is 
proposed in [6]. [11] introduces the interval objective function in multi-objective 
programming problems. A heuristic for replenishment of deteriorating items 
with a linear trend in time-dependent demand is proposed in [5].  

Backlogging occurs due to shortages. Sometimes, researchers assumed 
partial backlogging while others considered full backlogging. In reality, if all 
customers are prepared to wait until the arrival of the next order, then it is 
called completely backlogged else, all the customers leave the system. However, 
in certain situations, some customers will be able to wait for the next order in 
order to satisfy their demands during the stock out period, while others do not 
wish to or cannot wait, hence they meet their demands from other sources (the 
partial backlogging case). The length of waiting time for replenishment is the 
main factor for determining backlogging and it has been found the longer the 
waiting time, the lower the backlogging rate. Customers who experience stock-
out may not purchase the goods again from the respective suppliers, and they 
may turn to another store to purchase the goods. Consequently, a larger 
proportion of sales is lost, leading to a smaller profit. As a result, taking into 
account the partial backlogging factor is necessary. This can also be fuzzy in 
nature [21]. 
 The inventory models with shortages under a partial backlogging condition 
is proposed in [1, 2]. An EOQ model for deteriorating items with time varying 
demand and partial backlogging is discussed in [4]. [24] developed a fuzzy 
inventory model with backorder for fuzzy total demand based on interval-valued 
fuzzy set. [23] presented an inventory model for deteriorating items with 
exponential declining demand and partial backlogging. The rate of deterioration 
is assumed constant and the backlogging rate is inversely proportional to the 
waiting time for the next replenishment.  
 Two inventory models are usually used in [7,8]: one for determining optimal 
selling price and lot size with a varying rate of deterioration and exponential 
partial backlogging, and other for joint pricing and ordering of a deteriorating 
inventory with partial backlogging. A study of the comparison between two 
pricing and lot-sizing models with partial backlogging and deteriorated items is 
presented in [22]. A model for fuzzy programming based on interval-valued 
fuzzy numbers and ranking is developed in [18].  
 The time varying holding cost and deteriorating items with price dependent 
demand is discussed in [17]. Differential equations for inventory models with 
ramp-type demand rate, partial backlogging and the Weibull deterioration rate 
are given in [19]. An inventory model for waiting time partial backlogging and 
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deteriorating items is developed in [20]. [15] develops a deteriorating inventory 
model for time dependent demand and holding cost with partial backlogging. [3] 
proposes a purchasing inventory model with interval numbers. 
 In inventory problems, there are generally multiple objectives. [25] discusses 
the weighted-sum method to solve multi-objective problems. [14] proposes a 
production inventory model with shortages and interval value numbers, and 
finally a minimized the total inventory cost using the global criteria method. To 
minimize the interval cost function, the multi-objective optimization problem is 
normally formulated as the minimization of the center and right limit of the 
interval cost function [12, 13]. 

This paper proposes an inventory model. Some assumptions are considered 
in Section 2.2. The objective is to determine the optimum value of total average 
cost and optimum value of inventory-exhausting time. In case of interval 
uncertainty, we introduce the intervals to deduce the expression for average 
total cost. We formulated the multi-objective optimization problem as the 
minimization of left and right limit of the interval-valued cost function. 
Accordingly, the weighted-sum method is used to obtain a Pareto optimal 
solution [Sections 3, 4 & 5]. An example is illustrated in Section 6 using 
sensitivity analysis. Finally, a concluding remark is made in Section 7. 
 

2. Notations and assumptions 
 
The proposed model is developed under the following notations and 
assumptions: 
 
2.1.  Notations 
 

𝑇𝑇 Cycle time (decision variable) 𝑡𝑡1 
Time at which the shortage starts, 

(decision variable) 0 ≤𝑡𝑡1 ≤ 𝑇𝑇 
𝑐𝑐1 Holding cost per unit per time unit 𝑐𝑐2 Purchase cost per unit 
𝑐𝑐3 Ordering cost per order 𝑐𝑐4 Shortage cost per unit per time unit 
𝑐𝑐5 Cost of lost sales per unit θ Deterioration rate 
𝐶𝐶𝐻𝐻 Inventory holding cost per cycle 𝐶𝐶𝐷𝐷 Deterioration cost per cycle 
𝐶𝐶𝑆𝑆 Shortage cost per cycle 𝐶𝐶𝐿𝐿 Lost sales cost per cycle 

T-t1 Length of waiting time 𝑊𝑊 Maximum inventory level during T 
D Constant Demand in [t1 , T]  

Table 1: Notations for variables and constants 
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 𝐷𝐷𝐵𝐵 Max amount of demand backlogged during T 
𝑄𝑄 (= W + 𝐷𝐷𝐵𝐵) order quantity during T 
C Average total cost per time unit per cycle 
X* Optimal value of X, where X is any variable 
𝐼𝐼(𝑡𝑡) Inventory level at time, 0 ≤𝑡𝑡 ≤ 𝑇𝑇 
𝐼𝐼1(𝑡𝑡) Inventory level for the time-range 0 ≤ 𝑡𝑡 < 𝑡𝑡1 
𝐼𝐼2(𝑡𝑡) Inventory level for the time-range 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑇𝑇 

Table 2: Notations for parameters to be calculated in model 

 
2.2. Assumptions 

 
1. Demand rate, R(t) = �𝛼𝛼0 + 𝛽𝛽𝛽𝛽,   for  0 ≤ 𝑡𝑡 < 𝑡𝑡1

𝐷𝐷,   for 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑇𝑇 , where 𝛼𝛼0 > 0, 𝛽𝛽 > 0  𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷 > 0 
are arbitrary  constants.                                 

2. Inventory system involves only one item. 
3. Planning horizon is infinite. 
4. Lead time is zero, i.e., there is no time-lag in the delivery of an order. 
5. Rate of deterioration is constant, θ (0 < θ < 1), and it occurs as soon as 

items are received in inventory. There is no replacement or repair of 
deteriorated units. 

6. For the time-range t1 ≤ t ≤ T, a shortage is allowed which is partially 
backlogged with backorder rate:     B(t) =  1

1+ δ (T−t)
 

The backlogging parameter δ is a positive constant. For the special case 
with  
δ = 0, B(t) = 1,  that is, the fully backlogged case. In the proposed model, 
we assume δ < 1 for a 2nd order approximation of Taylor’s series (i.e., 2nd 
order of a Taylor Polynomial). 

7. Holding cost is a linear function of time: c1(t) = μt, where μ > 0 is the 
holding cost scale parameter. 

 

3. Formulation of inventory model  
 

The objective of the model is to determine the optimal order quantity in order 
to keep the total relevant cost as low as possible. The inventory is replenished 
at time t= 0, when the inventory level is at its maximum, W. Now, due to both 
demand for the item and its deterioration, the inventory level starts decreasing 
during the period [0, 𝑡𝑡1], and finally reaches zero, when t = 𝑡𝑡1. Further, during 
the period [𝑡𝑡1, T], shortages are allowed, and demand is assumed to be partially 
backlogged. The representation of the inventory system at any time is shown in 
Figure 1. 
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Figure 1: Graphical representation of the inventory system 

 
The governing differential equations during periods [0, 𝑡𝑡1] and [𝑡𝑡1,T], are 
respectively given by:  

𝑑𝑑𝐼𝐼1(𝑡𝑡)
𝑑𝑑𝑑𝑑

+θ. 𝐼𝐼1(𝑡𝑡)=−(𝛼𝛼0 + 𝛽𝛽𝛽𝛽), for 0 ≤ 𝑡𝑡 < 𝑡𝑡1,                         (1) 
and 𝑑𝑑𝐼𝐼2(𝑡𝑡)

𝑑𝑑𝑑𝑑
 = −𝐷𝐷

1+ δ (T−t)
 ,   for 𝑡𝑡1 ≤ t ≤ T                        (2) 

with boundary conditions: 𝐼𝐼1(𝑡𝑡1)  =  𝐼𝐼2(𝑡𝑡1)  =  0  
𝐼𝐼1(0)  =  𝑊𝑊 �                       (3) 

The objective of this inventory problem is to determine the order quantity and 
length of ordering cycle in order to keep the total relevant costs as low as 
possible. That is, to determine 𝑄𝑄∗ and 𝑇𝑇∗ so that the total cost is minimized. Let 
us consider two cases: 
 
Case I: 0≤ 𝒕𝒕 < 𝒕𝒕𝟏𝟏 
In this case, the inventory level decreases due to demand as well as 
deterioration, where the inventory level is governed by (1). Using the boundary 
conditions (3), the solution of (1) is given by 

𝐼𝐼1(𝑡𝑡)=−𝛼𝛼0
θ
− 𝛽𝛽

θ
𝑡𝑡 + 𝛽𝛽

θ2
+(𝛼𝛼0

θ
+ 𝛽𝛽

θ
𝑡𝑡1 −

𝛽𝛽
θ2

) 𝑒𝑒θ (𝑡𝑡1−𝑡𝑡) , 0 ≤ 𝑡𝑡 < 𝑡𝑡1                      (4) 

So the maximum inventory level for each cycle is 

W=𝐼𝐼1(0)=−𝛼𝛼0
θ

+ 𝛽𝛽
θ2

+ (𝛼𝛼0
θ

+ 𝛽𝛽
θ
𝑡𝑡1 −

𝛽𝛽
θ2

) 𝑒𝑒θ𝑡𝑡1                        (5) 
 
Case II: 𝒕𝒕𝟏𝟏 ≤ t ≤ T 
In this case, the inventory level depends on constant demand. However, a 
fraction of the demand is backlogged. The inventory level is governed by (2). 
Using the boundary conditions (3), the solution of (2) is given by 

𝐼𝐼2(𝑡𝑡)=𝐷𝐷
δ
[log{1+δ(T−t)}−log{1+δ(T−𝑡𝑡1)}], 𝑡𝑡1≤ t ≤ T                (6) 

Setting t=T in (6), we obtain the maximum amount of backlogged demand per 
cycle as follows: 
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𝐷𝐷𝐵𝐵  =  −𝐼𝐼2(𝑇𝑇)  =  𝐷𝐷
δ

 𝑙𝑙𝑙𝑙𝑙𝑙{1 +  δ(𝑇𝑇 −  𝑡𝑡1)}                          (7) 

So, the order quantity per cycle is given by 
                  𝑄𝑄 =  𝑊𝑊 + 𝐷𝐷𝐵𝐵 

= −𝛼𝛼0
θ

+ 𝛽𝛽
θ2

+ (𝛼𝛼0
θ

+ 𝛽𝛽
θ
𝑡𝑡1 −

𝛽𝛽
θ2

) 𝑒𝑒θ𝑡𝑡1 + 𝐷𝐷
δ

 𝑙𝑙𝑙𝑙𝑙𝑙{1 +  δ(𝑇𝑇 −  𝑡𝑡1)}                (8) 

For  θ<1 and δ<1, the Taylor’s series expansion yields the following 2nd degree 
approximations (i.e., 2nd degree Taylor polynomial):   

eθt1≈1 + θ t1 + θ2t12

2
   𝑎𝑎𝑎𝑎𝑎𝑎   𝑙𝑙𝑙𝑙𝑙𝑙{1+ δ(T− t1)}≈δ(T− t1) − δ2(T− t1)2

2
                    (9)     

         (8) & (9) ⇒𝑄𝑄 ≈ 𝛼𝛼0𝑡𝑡1 + (𝛼𝛼0θ  + 𝛽𝛽
2

)𝑡𝑡12 + 𝛽𝛽θ
2
𝑡𝑡13 + 𝐷𝐷[(𝑇𝑇 −  𝑡𝑡1) − δ(𝑇𝑇− 𝑡𝑡1)2

2
]          (10)              

The inventory holding cost per cycle is given by 𝐶𝐶𝐻𝐻  =  ∫ 𝑐𝑐1(𝑡𝑡) 𝑡𝑡1
0 𝐼𝐼1(𝑡𝑡)𝑑𝑑𝑑𝑑 

                  =  ∫ 𝜇𝜇𝜇𝜇[− 𝛼𝛼0
θ
− 𝛽𝛽

θ
𝑡𝑡 + 𝛽𝛽

θ2
+ �𝛼𝛼0

θ
+ 𝛽𝛽

θ
𝑡𝑡1 −

𝛽𝛽
θ2
� 𝑒𝑒θ(𝑡𝑡1−𝑡𝑡)]  𝑡𝑡1

0 𝑑𝑑𝑑𝑑 

           ≈  𝜇𝜇(−𝛼𝛼0
2θ
𝑡𝑡12 −

𝛽𝛽
3θ
𝑡𝑡13 + 𝛽𝛽

2θ2
𝑡𝑡12) +  𝜇𝜇 �𝛼𝛼0

θ
+ 𝛽𝛽

θ
𝑡𝑡1 −

𝛽𝛽
θ2
� �𝑡𝑡1

2

2
� , by a 2nd degree 

approximation of 𝑒𝑒θ𝑡𝑡1 

                  ≈  𝜇𝜇[−𝛼𝛼0
2θ
𝑡𝑡12 −

𝛽𝛽
3θ
𝑡𝑡13 + 𝛽𝛽

2θ2
𝑡𝑡12 + 𝛼𝛼0

2θ
𝑡𝑡12 + 𝛽𝛽

2θ
𝑡𝑡13 −

𝛽𝛽
2θ2

𝑡𝑡12] 

≈ 𝜇𝜇𝜇𝜇
6θ
𝑡𝑡13                                                                                (11) 

The deterioration cost per cycle is given by 

      𝐶𝐶𝐷𝐷  =  𝑐𝑐2[ 𝑊𝑊−  ∫ 𝑅𝑅(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡1
0  ] 

           =  𝑐𝑐2[−𝛼𝛼0
θ

+ 𝛽𝛽
θ2

+ (𝛼𝛼0
θ

+ 𝛽𝛽
θ
𝑡𝑡1 −

𝛽𝛽
θ2

)𝑒𝑒θ𝑡𝑡1 − ∫ (𝛼𝛼0 + 𝛽𝛽𝛽𝛽)𝑑𝑑𝑑𝑑𝑡𝑡1
0  ] ≈ 𝑐𝑐2θ

2
(𝛼𝛼0𝑡𝑡12 + 𝛽𝛽𝑡𝑡13)        (12) 

The shortage cost per cycle is given by 

            𝐶𝐶𝑆𝑆 =  𝑐𝑐4[−∫ 𝐼𝐼2
𝑇𝑇
𝑡𝑡1

(𝑡𝑡)𝑑𝑑𝑑𝑑 ] 

                                  = −𝑐𝑐4
𝐷𝐷
δ
� [𝑙𝑙𝑙𝑙𝑙𝑙{1 +  δ(𝑇𝑇 − 𝑡𝑡)}− 𝑙𝑙𝑙𝑙𝑙𝑙{1 + δ(𝑇𝑇 −  𝑡𝑡1)}]
𝑇𝑇

𝑡𝑡1
 𝑑𝑑𝑑𝑑 

                            = 𝑐𝑐4𝐷𝐷[𝑇𝑇−𝑡𝑡1
δ
− 1

δ2
𝑙𝑙𝑙𝑙𝑙𝑙{1 + δ(𝑇𝑇 −  𝑡𝑡1)}]                                                             (13) 

The lost sale cost per cycle is given by 

𝐶𝐶𝐿𝐿 = 𝑐𝑐5 ∫ [1−  1
1+ δ(T−t)

]𝑇𝑇
𝑡𝑡1

 D 𝑑𝑑𝑑𝑑 = 𝑐𝑐5D [(T−𝑡𝑡1) −1
δ
𝑙𝑙𝑙𝑙𝑙𝑙{1 + δ(T−  𝑡𝑡1)]              (14) 

Hence, the average total cost per unit time per cycle is given by 

       𝐶𝐶 =   1
𝑇𝑇

 {𝐶𝐶𝐻𝐻 +  𝐶𝐶𝐷𝐷 + 𝑐𝑐3 +  𝐶𝐶𝑆𝑆 + 𝐶𝐶𝐿𝐿}    

⇒𝐶𝐶 =
1
𝑇𝑇

[
𝜇𝜇𝜇𝜇
6θ

𝑡𝑡13 +
𝑐𝑐2θ
2

(𝛼𝛼0𝑡𝑡12 + 𝛽𝛽𝑡𝑡13) + 𝑐𝑐3 +  𝐷𝐷(
𝑐𝑐4 + δ𝑐𝑐5

δ
){𝑇𝑇 − 𝑡𝑡1 −

𝑙𝑙𝑙𝑙𝑙𝑙 (1 + δ(𝑇𝑇 −  𝑡𝑡1))
δ

}] 

         ≈ 1
𝑇𝑇

[𝜇𝜇𝜇𝜇
6θ
𝑡𝑡13 + 𝑐𝑐2θ

2
(𝛼𝛼0𝑡𝑡12 + 𝛽𝛽𝑡𝑡13) + 𝑐𝑐3 +  𝐷𝐷(𝑐𝑐4+δ𝑐𝑐5

δ
) δ
2

(𝑇𝑇 − 𝑡𝑡1)2] , 

≈ 1
𝑇𝑇

[𝜇𝜇𝜇𝜇
6θ
𝑡𝑡13 + 𝑐𝑐2θ

2
(𝛼𝛼0𝑡𝑡12 + 𝛽𝛽𝑡𝑡13) + 𝑐𝑐3 + 𝐷𝐷

2
(𝑐𝑐4 + δ𝑐𝑐5)(𝑇𝑇 − 𝑡𝑡1)2]                        (15)               
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4. The crisp (or deterministic) model 

 
Hence, the proposed model can be written as  

Minimize   𝐶𝐶 =  1
𝑇𝑇

[𝜇𝜇𝜇𝜇
6θ
𝑡𝑡13 + 𝑐𝑐2θ

2
(𝛼𝛼0𝑡𝑡12 + 𝛽𝛽𝑡𝑡13) + 𝑐𝑐3 + 𝐷𝐷

2
(𝑐𝑐4 + δ𝑐𝑐5)(𝑇𝑇 − 𝑡𝑡1)2] 

Subject to   𝑇𝑇 − 𝑡𝑡1 ≥ 0,𝑡𝑡1 ≥ 0, T ≥ 0                                            (16)                          

This is a single-objective crisp non-linear optimization problem. To achieve 
optimal 𝑡𝑡1 and T , the partial derivatives C with respect to 𝑡𝑡1 and T are 
equated to zero. The resulting equations can be solved simultaneously to obtain 
the optimal values of  𝑡𝑡1 and T. 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡1

= 1
T

[𝜇𝜇𝜇𝜇
2θ
𝑡𝑡12 + 𝑐𝑐2θ

2
(2𝛼𝛼0𝑡𝑡1 + 3𝛽𝛽𝑡𝑡12)−𝐷𝐷 (c4 + δc5)(𝑇𝑇 − 𝑡𝑡1)]               (17a) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 1
T

[𝐷𝐷 (c4 + δc5)(𝑇𝑇 − 𝑡𝑡1)]− 1
𝑇𝑇2

[𝜇𝜇𝜇𝜇
6θ
𝑡𝑡13 + 𝑐𝑐2θ

2
(𝛼𝛼0𝑡𝑡12 + 𝛽𝛽𝑡𝑡13) + c3+

𝐷𝐷
2
(c4 + δc5)(𝑇𝑇 − 𝑡𝑡1)2](17b) 

Additionally, it may be observed that   
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑡𝑡1

2×
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑇𝑇2

− ( 𝜕𝜕2𝐶𝐶
𝜕𝜕𝜕𝜕𝜕𝜕𝑡𝑡1

)2 > 0 and 𝜕𝜕
2𝐶𝐶

 𝜕𝜕𝑡𝑡1
2 > 0, and 𝜕𝜕

2𝐶𝐶
𝜕𝜕𝑇𝑇2

> 0                (18) 

Hence, the solution of (16) is a global minimum of C. 
 
 
5. Interval-valued model 

 
In many real-life applications, the uncertainties of parameter-values are 
expressed in terms of intervals. First, let us assume that inventory-exhausting 
time 𝑡𝑡1 is uncertain, and let it be described by 𝑡𝑡1= [𝑡𝑡1𝐿𝐿 , 𝑡𝑡1𝑅𝑅]. Also let the cycle 
time T be replaced by the interval number [𝑇𝑇𝐿𝐿 , 𝑇𝑇𝑅𝑅 ] = [𝑇𝑇 − 𝜀𝜀,𝑇𝑇 + 𝜀𝜀], where T is 
the deterministic value of cycle time and ε ≥ 0 is any real number. The basic 
arithmetic operations on interval numbers are given in [19]. 
Then, holding cost per cycle is given by  𝐶𝐶𝐻𝐻 = [𝐶𝐶𝐻𝐻𝐻𝐻 , 𝐶𝐶𝐻𝐻𝐻𝐻],  

       where 𝐶𝐶𝐻𝐻𝐻𝐻= 𝜇𝜇𝜇𝜇
6θ
𝑡𝑡1𝐿𝐿3                                        (19) 

Total deterioration cost per cycle is given by 𝐶𝐶𝐷𝐷 = [𝐶𝐶𝐷𝐷𝐷𝐷, 𝐶𝐶𝐷𝐷𝐷𝐷],  

              where  𝐶𝐶𝐷𝐷𝐷𝐷= 𝑐𝑐2θ
2

(𝛼𝛼0𝑡𝑡1𝐿𝐿2 + 𝛽𝛽𝑡𝑡1𝐿𝐿3 )                             (20) 

Total shortages cost per cycle is given by 𝐶𝐶𝑆𝑆= [𝐶𝐶𝑆𝑆𝑆𝑆, 𝐶𝐶𝑆𝑆𝑆𝑆],  

 where  𝐶𝐶𝑆𝑆𝑆𝑆 = 𝑐𝑐4D[𝑇𝑇𝐿𝐿−𝑡𝑡1𝐿𝐿
δ

− 1
δ2
𝑙𝑙𝑙𝑙𝑙𝑙{1 + δ(𝑇𝑇𝐿𝐿 −  𝑡𝑡1𝐿𝐿)}]               (21) 
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Total lost sale cost per cycle is given by  

                                𝐶𝐶𝐿𝐿= [𝐶𝐶𝐿𝐿𝐿𝐿 , 𝐶𝐶𝐿𝐿𝐿𝐿], 

where  𝐶𝐶𝐿𝐿𝐿𝐿 = 𝑐𝑐5D [(𝑇𝑇𝐿𝐿 − 𝑡𝑡1𝐿𝐿)−
1
δ
𝑙𝑙𝑙𝑙𝑙𝑙{1 + δ(𝑇𝑇𝐿𝐿 − 𝑡𝑡1𝐿𝐿)}]              (22) 

The expressions for 𝐶𝐶𝐻𝐻𝐻𝐻, 𝐶𝐶𝐷𝐷𝐷𝐷, 𝐶𝐶𝑆𝑆𝑆𝑆   𝑎𝑎𝑎𝑎𝑎𝑎  𝐶𝐶𝐿𝐿𝐿𝐿 may be obtained from the 
expressions 𝐶𝐶𝐻𝐻𝐻𝐻, 𝐶𝐶𝐷𝐷𝐷𝐷, 𝐶𝐶𝑆𝑆𝑆𝑆  𝑎𝑎𝑎𝑎𝑎𝑎  𝐶𝐶𝐿𝐿𝐿𝐿 on replacing the suffices L by R and R by L 
respectively. Therefore, the average total cost per unit time per cycle is given by  

C =  1
T
{CH+ CD+ c3+ CS+ CL} 

                                  = [𝐶𝐶𝐻𝐻𝐻𝐻,   𝐶𝐶𝐻𝐻𝐻𝐻]+[𝐶𝐶𝐷𝐷𝐷𝐷,   𝐶𝐶𝐷𝐷𝐷𝐷]+[𝑐𝑐3𝐿𝐿,   𝑐𝑐3𝑅𝑅]+[𝐶𝐶𝑆𝑆𝑆𝑆,   𝐶𝐶𝑆𝑆𝑆𝑆]+[𝐶𝐶𝐿𝐿𝐿𝐿,   𝐶𝐶𝐿𝐿𝐿𝐿]
[𝑇𝑇𝐿𝐿,   𝑇𝑇𝑅𝑅] 

 

                                   = [𝐶𝐶𝐻𝐻𝐻𝐻+𝐶𝐶𝐷𝐷𝐷𝐷+ 𝑐𝑐3𝐿𝐿+ 𝐶𝐶𝑆𝑆𝑆𝑆+ 𝐶𝐶𝐿𝐿𝐿𝐿,   𝐶𝐶𝐻𝐻𝐻𝐻+𝐶𝐶𝐷𝐷𝐷𝐷+ 𝑐𝑐3𝑅𝑅+ 𝐶𝐶𝑆𝑆𝑆𝑆+ 𝐶𝐶𝐿𝐿𝐿𝐿]
[𝑇𝑇𝐿𝐿,   𝑇𝑇𝑅𝑅] 

 

                                   = [(𝐶𝐶𝐻𝐻𝐻𝐻+𝐶𝐶𝐷𝐷𝐷𝐷+ 𝑐𝑐3𝐿𝐿+ 𝐶𝐶𝑆𝑆𝑆𝑆+ 𝐶𝐶𝐿𝐿𝐿𝐿)
𝑇𝑇𝑅𝑅

, (𝐶𝐶𝐻𝐻𝐻𝐻+𝐶𝐶𝐷𝐷𝐷𝐷+ 𝑐𝑐3𝑅𝑅+ 𝐶𝐶𝑆𝑆𝑆𝑆+ 𝐶𝐶𝐿𝐿𝐿𝐿)
𝑇𝑇𝐿𝐿

] 

                                = [𝑋𝑋𝐿𝐿 ,  𝑋𝑋𝑅𝑅 ],                                                  (23) 

  where   𝑋𝑋𝐿𝐿 = (𝐶𝐶𝐻𝐻𝐻𝐻+𝐶𝐶𝐷𝐷𝐷𝐷+ 𝑐𝑐3𝐿𝐿+ 𝐶𝐶𝑆𝑆𝑆𝑆+ 𝐶𝐶𝐿𝐿𝐿𝐿)
𝑇𝑇𝑅𝑅

 

=
𝜇𝜇𝜇𝜇
6θ 𝑡𝑡1𝐿𝐿

3 +𝑐𝑐2θ2 (𝛼𝛼0𝑡𝑡1𝐿𝐿
2 +𝛽𝛽𝑡𝑡1𝐿𝐿

3 )+ 𝑐𝑐3𝐿𝐿+ 𝑐𝑐4D [𝑇𝑇𝐿𝐿−𝑡𝑡1𝐿𝐿δ − 1
δ2
𝑙𝑙𝑙𝑙𝑙𝑙{1+δ(𝑇𝑇𝐿𝐿− 𝑡𝑡1𝐿𝐿)}]+ 𝑐𝑐5D [(𝑇𝑇𝐿𝐿−𝑡𝑡1𝐿𝐿) −1δ𝑙𝑙𝑙𝑙𝑙𝑙{1+δ(𝑇𝑇𝐿𝐿− 𝑡𝑡1𝐿𝐿)}]

𝑇𝑇𝑅𝑅
   (24) 

and    
                                              𝑋𝑋𝑅𝑅 = (𝐶𝐶𝐻𝐻𝐻𝐻+𝐶𝐶𝐷𝐷𝐷𝐷+ 𝑐𝑐3𝑅𝑅+ 𝐶𝐶𝑆𝑆𝑆𝑆+ 𝐶𝐶𝐿𝐿𝐿𝐿)

𝑇𝑇𝐿𝐿
=

𝜇𝜇𝜇𝜇
6θ 𝑡𝑡1𝑅𝑅

3 +𝑐𝑐2θ2 (𝛼𝛼0𝑡𝑡1𝑅𝑅
2 +𝛽𝛽𝑡𝑡1𝑅𝑅

3 )+ 𝑐𝑐3𝑅𝑅+ 𝑐𝑐4D [𝑇𝑇𝑅𝑅−𝑡𝑡1𝑅𝑅δ − 1
δ2
𝑙𝑙𝑙𝑙𝑙𝑙{1+δ(𝑇𝑇𝑅𝑅− 𝑡𝑡1𝑅𝑅)}]+ 𝑐𝑐5D [(𝑇𝑇𝑅𝑅−𝑡𝑡1𝑅𝑅) −1δ𝑙𝑙𝑙𝑙𝑙𝑙{1+δ(𝑇𝑇𝑅𝑅− 𝑡𝑡1𝑅𝑅)}

𝑇𝑇𝐿𝐿
 

(25) 

The multi-objective optimization problem is formulated as follows:   

Minimize  [𝑋𝑋𝐿𝐿,  𝑋𝑋𝑅𝑅]                                                  (26)                         

where  𝑋𝑋𝐿𝐿 = (𝐶𝐶𝐻𝐻𝐻𝐻+𝐶𝐶𝐷𝐷𝐷𝐷+ 𝑐𝑐3𝐿𝐿+ 𝐶𝐶𝑆𝑆𝑆𝑆+ 𝐶𝐶𝐿𝐿𝐿𝐿)
𝑇𝑇𝑅𝑅

, 

                                 𝑋𝑋𝑅𝑅 = (𝐶𝐶𝐻𝐻𝐻𝐻+𝐶𝐶𝐷𝐷𝐷𝐷+ 𝑐𝑐3𝑅𝑅+ 𝐶𝐶𝑆𝑆𝑆𝑆+ 𝐶𝐶𝐿𝐿𝐿𝐿)
𝑇𝑇𝐿𝐿

,0 ≤ 𝑡𝑡1𝐿𝐿 ≤ 𝑡𝑡1𝑅𝑅< T 

Several methods have been proposed for solving multi-criteria decision-
making problems. The weighted sum method (WSM) is the best known and 
simplest multi-criteria decision making method for evaluating a number of 
alternatives in terms of a number of decision criteria. Therefore, WSM is 
considered to solve problem (26) and can be written as   

            Minimize  (𝑤𝑤1𝑋𝑋𝐿𝐿 +𝑤𝑤2𝑋𝑋𝑅𝑅)                                           (27) 

         Subject to   𝑤𝑤1+ 𝑤𝑤2 = 1,   0 ≤ 𝑤𝑤1 ≤ 1,    0 ≤ 𝑤𝑤2 ≤ 1 

Here 𝑤𝑤1 and 𝑤𝑤2 are the weights corresponding to the objectives functions 𝑋𝑋𝐿𝐿 and 
𝑋𝑋𝑅𝑅. If all of the weights are positive, the minimum of (27) is the Pareto optimal. 



A partial backlogging inventory model for deteriorating items with time-varying          329 
demand and holding cost: An interval number approach 

 
Now, in the next section, we will solve a numerical example to illustrate the 
method.  
 
6. Numerical example 

 
To illustrate the proposed model, the following input data is considered: 

Let the demand rate, R(t) = �𝛼𝛼0 + 𝛽𝛽𝛽𝛽,   for  0 ≤ 𝑡𝑡 < 𝑡𝑡1
𝐷𝐷,   for 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑇𝑇 ,  

where 𝛼𝛼0 = 15, 𝛽𝛽 = 12, 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷 = 10. Also let μ = 1,  θ = 0.04, δ = 0.5,  𝑐𝑐2 = 
1.5, 𝑐𝑐3 = 50, 𝑐𝑐4= 5, 𝑐𝑐5 = 10.  
 

6.1. Example of the crisp (or deterministic) model  
 

Minimize   C = 1
T

{50𝑡𝑡13 + 0.03(15𝑡𝑡12 + 12𝑡𝑡13) + 50(𝑇𝑇 − 𝑡𝑡1)2 + 50}       (28) 
     Subject to   𝑇𝑇 − 𝑡𝑡1 ≥ 0, 𝑡𝑡1 ≥ 0, and T >0. 

 
In solving the above problem, we obtain 𝐶𝐶∗ = 65.4931, 𝑡𝑡1∗ = 0.6554,  𝑇𝑇∗ = 1.3103. 
Now, at 𝑡𝑡1 = 𝑡𝑡1∗ = 0.6554,  and T = 𝑇𝑇∗ = 1.3103, the condition (18) is also 
satisfied. This proves that the solution 𝐶𝐶∗ = 65.4931 is a global minimum. The 
cost function C is also demonstrated graphically (see Figure 2). C is observed to 
be convex. 
 
6.2. Example of the interval-valued model 

 
In this model, let [𝑇𝑇𝐿𝐿 , 𝑇𝑇𝑅𝑅] = [1.1, 1.5] and [𝑐𝑐3𝐿𝐿 , 𝑐𝑐3𝑅𝑅] = [48, 52]. Then, 𝑋𝑋𝐿𝐿 and 𝑋𝑋𝑅𝑅 
are determined as follows: 

𝑋𝑋𝐿𝐿 = (𝐶𝐶𝐻𝐻𝐻𝐻+𝐶𝐶𝐷𝐷𝐷𝐷+ 𝑐𝑐3𝐿𝐿+ 𝐶𝐶𝑆𝑆𝑆𝑆+ 𝐶𝐶𝐿𝐿𝐿𝐿)
1.5

,                              (29a) 

𝑋𝑋𝑅𝑅 = (𝐶𝐶𝐻𝐻𝐻𝐻+𝐶𝐶𝐷𝐷𝐷𝐷+ 𝑐𝑐3𝑅𝑅+ 𝐶𝐶𝑆𝑆𝑆𝑆+ 𝐶𝐶𝐿𝐿𝐿𝐿)
1.1

                                            (29b) 

 

 
Figure 2: Function C of (28).      
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             where  𝐶𝐶𝐻𝐻𝐻𝐻= 50𝑡𝑡1𝐿𝐿3  
               𝐶𝐶𝐷𝐷𝐷𝐷 = 4.5𝑡𝑡1𝐿𝐿2 + 3.6𝑡𝑡1𝐿𝐿3  

 𝐶𝐶𝑆𝑆𝑆𝑆 = 100(1.1− 𝑡𝑡1𝐿𝐿)− 200 𝑙𝑙𝑙𝑙𝑙𝑙{1 + 0.5(1.1−  𝑡𝑡1𝐿𝐿)} 

 𝐶𝐶𝐿𝐿𝐿𝐿 = 100(1.1− 𝑡𝑡1𝐿𝐿)− 200 𝑙𝑙𝑙𝑙𝑙𝑙{1 + 0.5(1.1−  𝑡𝑡1𝐿𝐿)} 

   𝐶𝐶𝐻𝐻𝐻𝐻 = 50𝑡𝑡1𝑅𝑅3  
                       𝐶𝐶𝐷𝐷𝐷𝐷 = 4.5𝑡𝑡1𝑅𝑅2 + 3.6𝑡𝑡1𝑅𝑅3  

  𝐶𝐶𝑆𝑆𝑆𝑆 = 100(1.5− 𝑡𝑡1𝑅𝑅)− 200 𝑙𝑙𝑙𝑙𝑙𝑙{1 + 0.5(1.5−  𝑡𝑡1𝑅𝑅)} 

 𝐶𝐶𝐿𝐿𝐿𝐿 = 100(1.5− 𝑡𝑡1𝑅𝑅)−200 𝑙𝑙𝑙𝑙𝑙𝑙{1 + 0.5(1.5−  𝑡𝑡1𝑅𝑅)} 

Hence   𝑋𝑋𝐿𝐿  = 53.6𝑡𝑡1𝐿𝐿
3 +4.5𝑡𝑡1𝐿𝐿

2 +48+200(1.1−𝑡𝑡1𝐿𝐿)−400log{1+0.5(1.1− 𝑡𝑡1𝐿𝐿)}
1.5

,             (30) 

𝑋𝑋𝑅𝑅 = 53.6𝑡𝑡1𝑅𝑅
3 +4.5𝑡𝑡1𝑅𝑅

2 +52+200(1.5−𝑡𝑡1𝑅𝑅)−400log{1+0.5(1.5− 𝑡𝑡1𝑅𝑅)}
1.1

          (31) 

Therefore, the Multi-Objective Non-Linear Programming (MONLP) problem is 
as follows: 

       Minimize   [𝑋𝑋𝐿𝐿,  𝑋𝑋𝑅𝑅] , with 0 ≤ 𝑡𝑡1𝐿𝐿 ≤ 𝑡𝑡1𝑅𝑅< 1.3103.                 (32) 
 

By using weighted-sum method, the multi-objective problem is formulated 
as Minimize    𝑤𝑤1𝑋𝑋𝐿𝐿 +𝑤𝑤2𝑋𝑋𝑅𝑅  , Subject to  𝑤𝑤1 + 𝑤𝑤2  =  1, 0 ≤  𝑤𝑤1 ≤ 1,   0 ≤  𝑤𝑤2 ≤ 1 
For equal weights, we obtain: optimal cost = 65.9711,   interval-valued optimal 
cost [𝑋𝑋𝐿𝐿∗,𝑋𝑋𝑅𝑅∗]  = [46.2104, 85.7318]. Interval-valued inventory exhausting time 
[𝑡𝑡1𝐿𝐿∗ , 𝑡𝑡1𝑅𝑅∗ ] =  [0.5364, 0.6304]. The value of objective functions: 𝑋𝑋𝐶𝐶∗ (= 𝑋𝑋𝐿𝐿

∗+𝑋𝑋𝑅𝑅
∗

2
)  and 

𝑋𝑋𝑅𝑅∗  can be considered as the minimization of average case and worst case. 
Therefore, the solution set includes the optimal solution against both the 
average case and the worst case. The results of the weighted-sum method are 
summarized in the following Table 3. 
 

 

 

Table 3: Results of weighted-sum method 

 
  

Weights Inventory 
exhausted time Cost 

𝑤𝑤1 𝑤𝑤2 [𝑡𝑡1𝐿𝐿∗ ,  𝑡𝑡1𝑅𝑅∗ ] [𝑋𝑋𝐿𝐿∗,  𝑋𝑋𝑅𝑅∗] 
1.0 0.0 [0.5364, 0.5378] [46.2105, 86.6253] 

0.90 – 0.10 0.10 – 0.90 [0.5364, 0.6304] [46.2104, 85.7318] 
0.0 1.0 [0.1435, 0.6304] [55.4074, 85.7318] 
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6.3. Sensitivity analysis  
 
The sensitivity analysis of various system parameters is required to observe 
whether the current solutions remain unchanged, or the current solutions 
become infeasible. One can analyze the effect of changes in various inventory 
system parameters on the cost function C = [XL, XR]. The sensitivity analysis is 
carried out by changing the value of each of the parameters by –20%, –10%, 
10% and 20%, taking one parameter at a time and keeping the remaining 
parameters unchanged. The results are displayed in the following Table 4. 

Parameter Value 𝑡𝑡1∗ = [𝑡𝑡1𝐿𝐿∗ , 𝑡𝑡1𝑅𝑅∗ ] 𝐶𝐶∗ = [𝑋𝑋𝐿𝐿∗,𝑋𝑋𝑅𝑅∗] 

 
 
𝜇𝜇 

0.8 [0.5800, 0.6871] [45.0542, 83.1428] 
0.9 [0.5569, 0.6568] [45.6661, 84.5208] 
1.1 [0.5182, 0.6069] [46.6989, 86.8075] 
1.2 [0.5017, 0.5860] [47.1409, 87.7717] 

 
 
𝑐𝑐2 
 

1.20 [0.5371, 0.6312] [46.1857, 85.6828] 
1.35 [0.5368, 0.6308] [46.1981, 85.7073] 
1.65 [0.5361, 0.6299] [46.2227, 85.7562] 
1.80 [0.5357, 0.6295] [46.2351, 85.7807] 

 
𝑐𝑐4 

4.0 [0.5159, 0.6041] [45.2865, 82.9772] 
4.5 [0.5264, 0.6175] [45.7562, 84.3728] 
5.5 [0.5460, 0.6427] [46.6504, 87.0560] 
6.0 [0.5553, 0.6547] [47.0767, 88.3470] 

 
𝑐𝑐5 

8 [0.5159, 0.6041] [45.2865, 82.7992] 
9 [0.5264, 0.6175] [45.7562, 84.3728] 
11 [0.5460, 0.6427] [46.6504, 87.0560] 
12 [0.5553, 0.6547] [47.0767, 88.3470] 

 
𝛼𝛼0 

12 [0.5369, 0.6308] [46.1931, 85.6992] 
13.5 [0.5366, 0.6306] [46.2018, 85.7155] 
16.5 [0.5362, 0.6301] [46.2191, 85.7480] 
18 [0.5360, 0.6299] [46.2277, 85.7643] 

 
 
β 

9.6 [0.5804, 0.6876] [45.0449, 83.1215] 
10.8 [0.5570, 0.6570] [45.6620, 84.5116] 
13.2 [0.5180, 0.6068] [46.7023, 86.8148] 
14.4 [0.5015, 0.5858] [47.1470, 87.7850] 

 
 

D 

8 [0.4934, 0.5756] [44.2978, 80.0686] 
9 [0.5159, 0.6041] [45.2865, 82.9772] 
11 [0.5553, 0.6547] [47.0767, 88.3470] 
12 [0.5727, 0.6774] [47.8914, 90.8354] 

 
 
θ 

0.032 [0.4947, 0.5771] [47.3263, 88.1783] 
0.036 [0.5166, 0.6049] [46.7390, 86.8976] 
0.044 [0.5545, 0.6538] [45.7316, 84.6640] 
0.048 [0.5711, 0.6756] [45.2952, 83.6808] 

 
 
δ 

0.40 [0.5248, 0.6197] [45.5605, 84.1215] 
0.45 [0.5308, 0.6252] [45.8930, 84.9462] 
0.55 [0.5418, 0.6352] [46.5145, 86.4817] 
0.60 [0.5469, 0.6397] [46.8060, 87.1986] 

Table 4: Sensitivity Analysis 
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 The observations from sensitivity analysis show that the optimal values of 
interval bounds 𝑋𝑋𝐿𝐿∗ and 𝑋𝑋𝑅𝑅∗  (i) are more sensitive to changes in demand 
parameter 𝐷𝐷 than others, (ii)  are relatively less sensitive to initial demand 𝛼𝛼0 
and purchasing cost 𝑐𝑐2 than others, (iii) slightly decrease with an increase in 
deterioration θ,  and their values increase with the increase of other inventory 
parameters. 

If we increase the backlogging parameter δ, then 𝑋𝑋𝐿𝐿∗ and 𝑋𝑋𝑅𝑅∗  also increase. 
Furthermore, when δ  decreases, 𝑋𝑋𝐿𝐿∗ and 𝑋𝑋𝑅𝑅∗ also decrease. Hence, for a minimum 
value of average total cost, δ  should be minimum, i.e., the backorder rate B(t) 
should be as high as possible. With the existing data, infeasibility is not 
obtained during sensitivity analysis. 
 

7. Concluding remarks  
 

In this paper, we proposed a deteriorating inventory model with time-dependent 
demand rate and varying holding cost at partial backlogging. Shortages and 
partial backlogging were allowed. Due to interval-uncertainty, the inventory 
model was transformed into a form of interval numbers. To solve the obtained 
multi-objective nonlinear programming problem, the weighted-sum method was 
applied. Sensitivity analysis revealed that the demand parameter is the most 
sensitive one. When we move from the optimum in the crisp case to the 
optimum in the interval case, the total cost slightly increases. On the market, 
there are certain items (like winter garments, etc.) where during the seasonal 
period, demand increases with time, and when the season is over, demand 
decreases sharply and becomes constant. Therefore, the proposed model can be 
used in inventory control of seasonal items. The investigation on the use of 
other types of demand functions, interval lead time and the like, can be treated 
in future papers. 
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