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Abstract. Basics of Markov decision processes will be introduced in order to obtain the
optimization goal function for minimizing the long-run expected cost. We focus on mini-
mization of such cost of the farmer’s policy consisting of different decisions in specific states
regarding both milk quality and quantity (lactation states) produced by a dairy cow. The
transition probability matrix of the Markov process, used here for modeling of transitions
of a dairy cow from one state to another, will be estimated from the data simulated from
the lactation model that is often used in practice. We want to choose optimal actions in
the states of this Markov process regarding the farmer’s costs. This problem can be solved
by exhaustive enumeration of all possible cases in order to obtain the optimal policy. How-
ever, this is feasible only for a small number of states. Generally, this problem can be
approached in the linear programming setting which yields an efficient solution. In order
to demonstrate and compare these two approaches, we present an example based on the
simulated data regarding milk quality and quantity.
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1. Introduction

The development of Markov decision processes started in the ′50s of the last century
with the evolution of operational research. Mathematicians wanted to define models
that will make the best decisions in some sense. At the beginning, these processes
were studied by Dick Bellman and Ron Howard [2, 9], who provided an entirely
new perspective on the theory of control. With further research and development,
decision models became more generalized. Today, Markov decision processes (see [1,
8]) are a mathematical framework for making decisions in situations where outcomes
are partly random and partly controlled by decision makers.
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In the last decade, the development of Markov decision processes became very
important. These processes are used not only in solving optimization problems, but
also in dynamic programming, and therefore respective problems are often referred
to as stochastic dynamic programs or stochastic control problems. They also find
application in many real situations and different fields such as economics, ecology,
biology, robotics and planning and operations management. The most famous ex-
amples of Markov decision processes are certainly games where an objective is to find
a strategy that will maximize some profit. These processes are also used for find-
ing optimal strategies in problems of optimal stopping, replacement problems and
repair problems, respectively. The main objective of the decision process is to find
strategies that provide optimal solutions considering the states, actions (decisions),
costs and transition probabilities.

Nowadays, optimal replacement problems are also investigated within the frame-
work of the dairy cow replacement, see, e.g., [3, 7], what is the main subject of this
paper. First, we will define the above stated terms and explain their basic prop-
erties. After the theoretical part in Section 2, we will define the problem in which
the number of states of the Markov process and respective decisions are based on
the simulated data regarding milk quality and quantity produced by the dairy cow
(Subsection 2.1). This is the basis for determining the optimal policy (strategy)
of decisions, i.e., the policy that has the minimal cost. This will be done by two
approaches: probabilistic properties of Markov decision processes (Subsection 2.2)
and linear programming techniques (Section 3). For numerical calculations we used
programming package Matlab. All numerical results are written in Matlab’s short
format (format with 4 digits after the decimal point).

2. Stochastic model for optimal policy

In order to apply Markov decision processes to the problem of finding the policy
that minimizes farmer’s long-run expected cost, we will introduce some basics of
both Markov processes and Markov decision processes.

2.1. Markov chain model

A particular stochastic process for which the future behavior of the process depends
only on its present state and not on its past behavior is called the Markov process.
The basic model used in this paper is the discrete time Markov chain, i.e., the
discrete time stochastic process X = (Xn, n ∈ N0)

‡ with the discrete state space S,
for which the previously described ”memoryless” property could be written in the
following form:

P (Xn = j|Xn−1 = i,Xn−2 = in−2, . . . , X0 = i0) = P (Xn = j|Xn−1 = i) . (1)

This property is called the Markov property. Furthermore, if probability (1) is
independent of time n, we say that the Markov chain is time homogeneous and
we denote the transition probabilities (1) simply by pij , i, j ∈ S. In addition to

‡Without loss of generality, we take the index set to be N0.
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the state space and the matrix of transition probabilities Π = [pij ]i,j∈S (i.e., a

one-step transition matrix), we also need to specify an initial distribution λ of the
homogeneous Markov chain, i.e., the distribution of a random variable X0. Then,
from the transition matrix Π and the initial distribution λ we can calculate arbitrary
finite-dimensional Markov chain distributions. For more details regarding Markov
chains we refer to [10].

In this paper, we focus on a problem of finding the optimal policy that minimizes
farmer’s long-run expected cost per a dairy cow which naturally changes the states
defined regarding both milk quality and quantity. The discrete-time homogeneous
Markov chain seems to be an adequate probabilistic model for describing transitions
of a dairy cow from one state to another. For simplicity of this example, we de-
fine just eight states of such Markov chain, taking into account both quality and
quantity of milk produced by the respective cow. In a more general case, one could
consider a more general Markov chain model, e.g., including fat, lactose and other
characteristics of milk quality.

To define these eight states, we first define special categories of milk quality and
quantity in which the realized lactation yields will be classified. First, we define only
two quality categories based on the average of optimal milk fat, lactose and proteins
concentration: category 0 - milk of good quality (above average); category 1 - milk
of poor quality (below or equal to average).

The definition of quantity categories is not so simple since we want to put it in
a close relationship with the optimal lactation yield of the cow. For this purpose
we observe the optimal lactation curve resulting from the Wood model which is
often referred to as the best model for a description of lactation (see, e.g., [4]). The
optimal lactation curve from the Wood model is estimated from the real lactation
yields. In addition to the estimated model function, we observe weakly averages of
the simulated daily lactation yields for one particular cow for three lactation periods
(see Figure 1). §

Once we have the optimal lactation curve and the simulated lactation yields of
the observed cow (see Figure 1), we define four categories referring to milk quantity:

• category 1 - if the quantity of produced milk is above the optimal value (with
respect to the optimal value from the Wood model),

• category 2 - if the quantity of produced milk is at most 1% below the optimal
value,

• category 3 - if the quantity of produced milk is between 1% and 4% at most
below the optimal value,

• category 4 - if the quantity of produced milk is more than 4% below the optimal
value.

After defining quality and quantity categories, we define states of the Markov
chain. For example, if the milk is of good quality (category 0) and the lactation
yield is above the optimal level (category 1), we define this to be state 1 of the

§The simulated data and the estimated Wood model function are obtained from the Farmeron
company.
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Figure 1: The Wood model function and the simulated data on daily lactations

Markov chain. Clearly, state 1 corresponds to pair (0, 1) of the quality and quantity
categories. All states of this Markov chain are defined in Table 1.

XXXXXXXXXXQuality

Quantity
1 2 3 4

0 state 1 state 3 state 5 state 7
1 state 2 state 4 state 6 state 8

Table 1: States of the Markov chain regarding both quality and quantity categories of milk

Now we are dealing with the discrete-time homogeneous Markov chain with the
finite state space S = {1, 2, 3, 4, 5, 6, 7, 8} and an unknown transition matrix Π. In
this setting, the transition matrix must be estimated from the data describing both
the quality and the quantity of milk of a particular cow over time, i.e., from the
available simulated lactation data. The one-step transition probability from state
i to state j, i.e., the probability pij = P (Xn = j|Xn−1 = i) is estimated as the
following quotient of relative frequencies (see [5]):

p̂ij =

number of consecutive pairs (i,j) of states
number of all consecutive pairs of states

number of weeks in state i
number of all weeks

. (2)

This procedure results in the following estimate of the transition matrix Π:

Π̂ =



0.3889 0.0556 0 0 0.2778 0 0.2778 0
0 0.4545 0.0227 0.0909 0 0.3864 0 0.0455
0.25 0 0.25 0 0.5 0 0 0
0 0.5 0 0 0 0.25 0 0.25
0.4286 0.0714 0.0714 0 0.2857 0.0714 0.0714 0
0 0.56 0 0.16 0.04 0.16 0 0.08
0.375 0 0.125 0 0.25 0 0.25 0
0.1429 0.7143 0 0 0 0.1429 0 0


. (3)

Without loss of generality, we can assume that the observation starts when the
cow is in its best state, i.e., in state 1. It means that we assume that the initial
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distribution of this Markov chain is the distribution λ = (1, 0, 0, 0, 0, 0, 0, 0), i.e., the
distribution given by the rule P (X0 = 1) = 1. Now we have a uniquely specified

discrete-time homogeneous (λ, Π̂)-Markov chain that describes transitions of a dairy
cow from one to another lactation state from the state space S.

2.2. Markov decision model and optimal policy

We introduce the possibility of taking some predefined action, i.e., making a specified
decision from the set of K possible decisions in each state from S. By adding the
set of K possible decisions to the discrete-time homogeneous (λ,Π)-Markov chain,
we actually built a new stochastic model - a Markov decision process.

The decisions made in states of the observed Markov chain affect its transition
probabilities, so at first glance it could seem that we lost the homogeneity of our
Markov model. However, this is not the case, since making decisions affects the
transition matrix on the following way:

• the state i ∈ S = {1, . . . ,M} of the (λ,Π)-Markov chain is observed after each
transition,

• after each observation, a decision (action) k is chosen from a set of K possible
decisions (some of the K decisions may not be relevant for some of the states),

• if the decision di is made in state i ∈ S, an immediate cost Cik is incurred,
k ∈ {1, . . . ,K},

• the decision di = k, k ∈ {1, . . . ,K}, in state i determines what the transition
probabilities will be for the next transition from state i to another state j ∈ S
- denote these transition probabilities by pij(k),

• a specification of the decisions R = (di, i ∈ S) in the respective states pre-
scribes a policy for the Markov decision process with a new transition matrix
Π(R).

Therefore, for each policy R = (di, i ∈ S) we have a new homogeneous (λ,Π(R))-
Markov chain. The objective is to find an optimal policy according to some cost
criterion - one common criterion is to minimize the long-run expected cost.

In our example, dealing with lactation yields of the dairy cow, the purpose of
making decisions is to improve either the quality or the quantity of milk. To be more
precise, we introduce the following four decisions (i.e., K = 4): N - do nothing; L -
improve lactation yield (i.e., the quantity of milk); Q - improve the quality of milk;
Z - replace the dairy cow with a new one (i.e., switch to state 1).

However, not every decision could be made in each of the states from S =
{1, . . . , 8} (i.e., M = 8):

• decision N could be taken in every state, except state 8,

• decision L improves the lactation yield and, when taken, puts a cow in the
closest state in which the lactation yield is better, but the quality remains the
same - it could be taken in states 3, 4, 5, 6, 7 and 8,
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• decision Q improves the quality of milk and it could be taken only if the quality
of milk is poor, i.e., in states 2, 4, 6 and 8,

• decision Z could be taken only in state 8.

For example, (N,N,N,N,N,N,N,Z) is the policy in which no action is taken
in states 1− 7, but when a cow is in state 8 (poor lactation yield and poor quality
of milk), it is replaced. In the same manner, by taking exactly one of the possible
decisions in each state from S, we can observe 24 · 33 = 432 different policies.

Furthermore, every decision in a particular state generates some cost. The costs
in HRK for all possible decisions, except the replacement decision Z that could be
taken only in state 8 and that generates the cost of 5, 000 HRK, are shown in Figure
2.

Figure 2: The scheme of decision costs

Our objective is to determine the policy the with minimal long-run expected cost
- it means that we are interested in the long-run distribution of costs for each and
every of 432 policies. Namely, this distribution is nothing but a transformation of
the distribution that describes the long-run behavior of the (λ,Π(R))-Markov chain,
i.e., its limiting distribution(

lim
n→∞

p
(n)
ij (k), j ∈ S

)
=

(
lim

n→∞
P (k) (Xn = j|X0 = i) , j ∈ S

)
(4)

for some i ∈ S, where p
(n)
ij (k) are elements of the n-th power of the transition matrix

Π(R) = [pij(k)]i,j∈S .

The (λ,Π(R))-Markov chain has a finite number of states and it could be shown
that its limiting distribution exists. According to [10, Theorem 1.7.2, p. 33], its
limiting distribution coincides with its stationary distribution, which is significantly

easier to determine. Namely, the stationary distribution π(R) = (π
(R)
i , i ∈ S) is a

distribution with the characteristics that, if it is taken to be the initial distribution
of the Markov chain, its one-dimensional distributions do not change over time. The
stationary distribution is a solution of a system of linear equations

π(R) ·Π(R) = π(R),
∑
i∈S

π
(R)
i = 1. (5)
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In the specific problem considered here, the transition matrix Π(R) could be
obtained from the estimated transition matrix (3) of the original (λ, Π̂)-Markov
chain. For example, for the strategy R = (N,Q,N,L,N,N,N,Q) the transition

matrix Π(R) is obtained from the transition matrix Π̂ by the following rules:

• rows 1, 3, 5, 6 and 7 remain unchanged,

• according to this strategy, in state 4 we make the decision L, which means that
when a cow is in state 4, its lactation yield is improved by some treatments
and it moves to the 2 with probability 1, i.e., p̂42(L) = 1 and p̂4j(L) = 0 for
all j ∈ S \ {2},

• analogously, in states 2 and 8 we make the decision Q, which means that
when a cow is in one of these states, its lactation yield is improved by some
treatments and it moves to states 1 and 7 with probability 1, respectively.
This means that p̂21(Q) = 1, p̂2j(Q) = 0 for all j ∈ S \ {1} and p̂87(Q) = 1,
p̂8j(Q) = 0 for all j ∈ S \ {7}.

Now we are dealing with the new (λ,Π(R))-Markov chain that satisfies all con-
ditions from [10, Theorem 1.8.3, p. 41], so its stationary distribution exists and
it coincides with its limiting distribution. By solving the system of equations (5)
it follows that the stationary distribution of this Markov chain, i.e., its long-run
distribution, is the distribution π(R) given by the table(

1 2 3 4 5 6 7 8
0.4138 0.0580 0.0553 0.0036 0.2642 0.0225 0.1808 0.0018

)
. (6)

The distribution of the long-run cost of the particular policy is just a transforma-
tion of the long-run distribution (6), e.g., for the policy R = (N,Q,N,L,N,N,N,Q)
the long-run distribution of the policy cost is given by the following table:

C(R) =

(
0 80 40 100 80 100 120 140

0.4138 0.0580 0.0553 0.0036 0.2642 0.0225 0.1808 0.0018

)
.

Therefore, the expected long-run cost of the policy R = (N,Q,N,L,N,N,N,Q) is

E(C(R)) =
8∑

i=1

Ci · π(R)
i = 52.5449. (7)

In the same way, we can calculate the expected long-run cost for each of 432
possible policies. The optimal policy will be the one with the minimal expected long-
run cost. In this example, this is the observed policy R = (N,Q,N,L,N,N,N,Q).

3. Linear programming and optimal policies

The approach introduced in the previous section is a direct approach that enumerates
and examines all decisions that are relevant to our problem setting. This approach
is feasible only for a small number of states, but for examples with a large number
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of states we would like to consider an approach that calculates an optimal solution
efficiently.

One approach that improves the previous direct approach is based on linear
programming which will be introduced in this section.

In order to write decisions in matrix form we will describe decision policy R such
that we prescribe decisions for each state i ∈ S = {1, . . . ,M}. This can be written
in matrix form by prescribing the values of matrix elements of matrix D ∈ RM×K ,
where all elements of matrix D are zeros, except Dij = 1 if decision j ∈ {1, . . . ,K}
is made in state i ∈ S.

For example, if the i-th row of matrix D is equal to
[
0 0 1 0

]
, this means that

we will make the third decision in state i ∈ S.
In what follows we would like to introduce randomized policies that provide a

linear programming setting of the considered problem. For that purpose we will
consider a randomized version of the considered policy. We consider matrix form of
prescribing the strategy R, where we consider probability distributions for a decision
that has to be made in state i. More precisely, this means that Dik is the probability
of choosing the decision k if the system is in state i ∈ S or

Dik = P{decision = k | state = i}. (8)

In that case, the i-th row of the matrix D is the probability distribution for the
decision to be made in state i, which is called the randomized policy. Directly from
its definition, it yields that elements of the matrix D satisfy

∑K
k=1 Dik = 1 and

0 ≤ Dij ≤ 1, ∀i, j ∈ S.
For example, if the i-th row of the matrix D is equal to

[
1
3 0 1

3
1
3

]
, this means

that with equal probability 1
3 we will make the first, the third or the fourth decision

in state i ∈ S.
A random strategy can be performed in real life problems, but it is more impor-

tant that making Dij , ∀i, j allow us to formulate a linear programming setting.
First, we introduce probabilities that the system is in state i and decision j is

made, and denote them by yik, that is

yik = P{decision = k, state = i}. (9)

Variables yij will correspond to variables of linear programming formulation that
will be introduced in the sequel. In particular, from the decision problem setting
described in Figure 2 we can observe that we can not consider all decisions in all
states. In our formulation, we will assume that all yij not relevant for the considered
situation are equal to zero.

From the definition of yij from (9) and long-run probabilities π
(R)
i solving system

(5), by using standard results from probability theory, it can be shown that

Dij =
yij

π
(R)
i

=
yij∑K
k=1 yik

, (10)

M∑
i=1

K∑
k=1

yik = 1. (11)
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Moreover, by using the stationarity relation π
(R)
i =

∑M
k=1 π

(R)
i pij , it can be

shown that
K∑

k=1

yjk =
M∑
i=1

K∑
k=1

yikpij(k), j = 1, . . . ,M.

The long-run expected cost is given by

E(C(R)) =

M∑
i=1

K∑
k=1

π
(R)
i C

(R)
ik Dik =

M∑
i=1

K∑
k=1

C
(R)
ik yik. (12)

Now, putting all needed equations together, linear programming formulation with
variables yij is to minimize the expected cost from (12) subject to constraints

M∑
i=1

K∑
k=1

yik = 1, yik ≥ 0, i = 1, . . . ,M, k = 1, . . . ,K. (13)

K∑
k=1

yjk =
M∑
i=1

K∑
k=1

yikpij(k), j = 1, . . . ,M (14)

As long as the model is not too large, it can be solved by a simplex method.
In our example, we use Matlab’s implementation for solving linear programming
problems implemented in function linprog and more details can be found in [6, 11].

By summing equations (14) for all j and using a standard result from probability
theory, it can be shown that one equation is redundant, so one of these M equations
can be deleted from linear programming formulation. Thus, the linear problem
contains M constraints and M ·K variables with M basic variables.

Moreover, it can be shown that for each index i ∈ {1, 2, . . . ,M} there exists at
least one index j ∈ {1, 2, . . . ,K} such that yij > 0. Since the linear problem has M
basic variables, it yields that for each index i ∈ {1, 2, . . . ,M} there exists exactly
one index j ∈ {1, 2, . . . ,K} such that yij > 0. Then directly from (10) we have that
Dij is equal to 0 or 1. Note that we have considered a randomized version of the
considered problem by allowing that Dij is a continuous variable, but we have just
shown that this problem results in a solution that gives a deterministic solution.

We will illustrate performance of linear programming approach on the example
introduced in Section 2.2. First, we should write relevant variables that should be
considered in a linear problem setting. In Section 2.2, we have emphasized that we
do not allow every decision in each of the considered states. Thus, from the notation
introduced in (9) and Section 2.2, it is easy to see that we have 18 relevant variables.
Variables y11, y21, y31, y41, y51, y61, y71, y32, y42, y52, y62, y72, y82, y23, y43, y63, y83,
y84 are particularly relevant for our example and in this order we will sort variables
in linear programming formulation.

Now, equations of linear problem formulation can be written in matrix form.
Equations from (13) can be directly written, while with direct calculation it can
be shown that equation (14) is in matrix form equal to Ay = 0, where y contains
relevant variables yij in the above mentioned order and matrix A is equal to:
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

0.6111 0 −0.25 0 −0.4286 0 −0.375 −1 0 0 0 0 0 −1 0 0 0 −1
−0.0556 0.5455 0 −0.5 −0.0714 −0.56 0 0 −1 0 0 0 0 1 0 0 0 0

0 −0.0227 0.75 0 −0.0714 0 −0.125 1 0 −1 0 0 0 0 −1 0 0 0
0 −0.0909 0 1 0 −0.16 0 0 1 0 −1 0 0 0 1 0 0 0

−0.2778 0 −0.5 0 0.7143 −0.04 −0.25 0 0 1 0 −1 0 0 0 −1 0 0
0 −0.3864 0 −0.25 −0.0714 0.84 0 0 0 0 1 0 −1 0 0 1 0 0

−0.2778 0 0 0 −0.0714 0 0.75 0 0 0 0 1 0 0 0 0 −1 0
0 −0.0455 0 −0.25 0 −0.08 0 0 0 0 0 0 1 0 0 0 1 1


.

In this example, using costs introduced in Figure 2 we have that the long-run
expected cost from (12) is given by E(C(R)) equal to

20y21 + 40y31 + 60y41 + 80y51 + 100y61 + 120y71 + 100y32 + 100y42 + 130y52

+ 130y62 + 160y72 + 160y82 + 80y23 + 100y43 + 120y63 + 140y83 + 5000y84,

for an arbitrary policy R determined by relevant variables.
Using Matlab’s function linprog we have calculated optimal solution y which is

equal to

y =
[
0.4138 0 0.0553 0 0.2642 0.0225 0.1808 0 0.0036 0 0 0 0 0.058 0 0 0.0018 0

]T
.

That is, it holds that non zero elements of vector y correspond to the following
relevant variables y11 = 0.4138, y31 = 0.0553, y51 = 0.2642, y61 = 0.0225, y71 =
0.1808, y42 = 0.0036, y23 = 0.058, y83 = 0.0018.

Finally, by using (10) we can conclude that matrix D introduced in the beginning
of this section is determined by

DT =


1 0 1 0 1 1 1 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0

 .

Thus, the optimal strategy obtained by using linear programming formulation
is equal to R = (N,Q,N,L,N,N,N,Q), which is the same as the one obtained as
optimal in the approach where we have enumerated all relevant policies.

Remark 3.1. Note that null elements in the long-run distribution π(R) indicate that
it is possible that the problem setting has more optimal solutions. This means that
if we have the optimal strategy R that is not unique (regarding the expected long-run

cost), there exists state i ∈ S such that π
(R)
i = 0. Similarly, in linear programming

formulation we will obtain that for that fixed i yij = 0 for any j. This means that
in both cases we obtain that in state i we can make any feasible decision.

4. Discussion and conclusion

We have considered the problem of minimizing the expected cost of the farmer’s
policy consisting of different decisions in specific states of a dairy cow, which are
defined according to milk quality and quantity. In problem formulation, for modeling
transitions of a dairy cow from one state to another regarding the specific decisions,
we used the decision Markov chain model. For minimization of the expected cost of



Markov decision processes in minimization of expected costs 257

the policy we presented an approach based on exhaustive enumeration of all possible
policies and a more efficient approach based on linear programming techniques.
In a numerical example based on the simulated data, we have demonstrated both
approaches. This example illustrates that a linear programming setting is more
efficient, which makes it more appropriate for real life applications characterized by
a large number of states and decisions. One benefit of these results is the potential
application in dairy cow herd management, which opens up a possibility for the
future cooperation with the real sector.
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