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A new fusion algorithm for fuzzy clustering
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Abstract. In this paper, we have considered the merging problem of two ellipsoidal clusters
in order to construct a new fusion algorithm for fuzzy clustering. We have proposed a
criterion for merging two ellipsoidal clusters π1, π2 with associated main Mahalanobis circles
Ej(cj , σj), where cj is the centroid and σ2

j is the Mahalanobis variance of cluster πj . Based
on the well-known Davies-Bouldin index, we have constructed a new fusion algorithm. The
criterion has been tested on several data sets, and the performance of the fusion algorithm
has been demonstrated on an illustrative example.
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1. Introduction

Given is a data points set A = {ai : i = 1, . . . ,m} ⊂ [α, β] ⊂ Rn, where α =
(α1, . . . , αn)

T , β = (β1, . . . , βn)
T ∈ Rn and [α, β] = {x ∈ Rn : αs ≤ xs ≤ βs}. A

partition of the set A into k disjoint subsets π1, . . . , πk, 1 ≤ k ≤ m, such that

k∪
j=1

πj = A, πr ∩ πs = ∅, r ̸= s, |πj | ≥ 1, j = 1, . . . , k, (1)

will be denoted by Π(A) = {π1, . . . , πk} and the set of all such partitions will be
denoted by P(A; k). The elements π1, . . . , πk of the partition Π are called clusters.
Clustering or grouping a data set into conceptually meaningful clusters is a well-
studied problem in recent literature, and it has practical importance in a wide variety
of applications (see e.g., [3, 9, 11]).

If d : Rn × Rn → R+, R+ = [0,+∞⟩ is some distance-like function (see e.g.,
[3, 8]), then to each cluster πj ∈ Π we can associate its center cj defined by

cj := argmin
x∈[α,β]

∑
a∈πj

d(x, a). (2)
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After that, by introducing the objective function F : P(A; k) → R+, the quality of
a partition can be defined, and searching for the globally optimal k-partition comes
down to solving the following optimization problem

argmin
Π∈P(A;k)

F(Π), F(Π) =
k∑

j=1

∑
a∈πj

d(cj , a), c = (c1, . . . , ck). (3)

Conversely, for a given set of centers c1, . . . , ck ∈ [α, β], by applying the minimal
distance principle, the partition Π = {π(c1), . . . , π(ck)} of the set A consisting of
clusters:

π(cj) = {a ∈ A : d(cj , a) ≤ d(cs, a), ∀s = 1, . . . , k}, j = 1, . . . , k,

can be defined. Therefore, the problem of finding an optimal partition of the set A
can be reduced to the following global optimization problem (see e.g., [12, 3, 13])

argmin
c∈[α,β]k

F (c), F (c) =

m∑
i=1

min
1≤j≤k

d(cj , a
i). (4)

The solutions of (3) and (4) coincide [11, 12].
Let U ∈ {0, 1}m×k be a matrix such that

uij =

{
1, if ai ∈ πj

0, if ai /∈ πj

, i = 1, . . .m, j = 1, . . . , k, (5)

k∑
j=1

uij = 1, i = 1, . . . ,m. (6)

Then (3) can be written as [3, 13]

argmin
c∈[α,β]k, U∈{0,1}m×k

F (c, U), F (c, U) =

m∑
i=1

k∑
j=1

uijd(cj , a
i). (7)

In order to ensure all conditions from (1), the following should be added to conditions
(5) and (6):

m∑
i=1

uij ≥ 1, j = 1, . . . , k. (8)

Assuming that elements ai ∈ A can partially belong to different clusters, then,
due to (6), it must be uij ∈ [0, 1] (see e.g., [10]). According to [3, 13], the membership
grade of ai in cluster πj is determined by uq

ij , where parameter q > 1 is called the
fuzzifier, and the objective function becomes

F (c, U) =

m∑
i=1

k∑
j=1

uq
ij(c) d(cj , a

i). (9)
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The definition of membership functions uij : A → [0, 1] can be found in [6]. In
applied research, the most common value is q ∈ [1.5, 2.5].

A partition with the most appropriate number of clusters can be estimated by
the following well-known validity indexes for fuzzy clustering (see e.g., [3, 7, 13, 14]):
Xie-Beni index, Fuzzy Davies – Bouldin index, Fuzzy Hypervolume index, etc. In
our paper, we specially use the fuzzy Davies – Bouldin index (DB) which is for the
optimal partition Π⋆(π⋆

1 , . . . , π
⋆
k) defined by

DB(k) =
1

k

k∑
j=1

max
s∈{1,...,k}

s̸=j

V (π⋆
j ) + V (π⋆

s )

d(c⋆j , c
⋆
s)

, (10)

where c⋆1, . . . , c
⋆
k are centers of clusters and

V (π⋆
j ) =

1
m∑

i=1

uq
ij(c)

m∑
i=1

uq
ij(c) d(cj , a

i).

The term Dj := max
s∈{1,...,k}, s ̸=j

V (π⋆
j )+V (π⋆

s )

d(c⋆j ,c
⋆
s)

represents the worst case within–to–

between cluster spread involving the cluster π⋆
j . MinimizingDj for all clusters clearly

minimizes the DB index. Therefore, more compact and better separated clusters in
an optimal partition will result in a lower value of DB index (see [13, 14]).

It is well-known that by using the Least Squares (LS) distance-like function
[3, 8] spherical clusters are obtained, and by using adaptive Mahalanobis clustering
[5, 12, 13] ellipsoidal clusters are obtained. However, if different banana-form clusters
should be recognized, then some fusion method can be applied [3, 4, 7, 15]. The
idea is in the following: First, determine an optimal partition with relatively many
clusters using a certain method and then keep merging close clusters for as long as the
DB index value is decreasing. Such cluster-forms appear in different geographical,
geological and medical research.

The paper is organized as follows. In the next section the merging problem of
two spherical data sets is discussed. In Section 3, the problem is generalized for
two ellipsoidal data sets and a corresponding merging algorithm is proposed. A new
fusion algorithm is proposed in Section 4, and in Section 5 a numerical example is
shown.

2. Motivation: Merging of two spherical data sets

Because of simplicity, we consider the merging problem of two spherical data sets in
the plane. The problem in Rn is analogous.

Let d be the LS distance-like function, c ∈ R2 the point in the plane in the neigh-
borhood of which m random points were generated by using Gaussian distributions
with variance σ2, then the circle K(c, σ) contains about 68% data points [2]. The
set of all data points constitutes the set A. The circle K(c, σ) is called the main
circle of the set A, and data points outside the circle K(c, σ) are called peripheral
elements of the set A.
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Let us suppose that two spherical data sets π1, π2 with their main circlesKj(cj , σj),
j = 1, 2 are given, where

cj =
1

|πj |

∑
a∈πj

a, σ2
j = 1

|πj |

∑
a∈πj

(cj − a)2. (11)

(a) ∥c1 − c2∥ > σ1 + σ2 (b) ∥c1 − c2∥ = σ1 + σ2

(c) ∥c1 − c2∥ < σ1 + σ2 < 2∥c1 − c2∥ (d) σ1 + σ2 > 2∥c1 − c2∥

Figure 1: Mutually different relationships between two spherical data sets

Mutually different relationships between two spherical data sets with regard to
the relation between their main circles are shown in Figure 1. As can be seen in
Figure 1, merging of the sets can be thought of if the main circles K1,K2 intersect,
i.e., if

∥c1 − c2∥ ≤ σ1 + σ2, (12)

what is also in accordance with the result from [1]: “a mixture of two normal distri-
butions N (c1, σ

2
1), N (c2, σ

2
2) is unimodal if ∥c1 − c2∥ ≤ 2min{σ1, σ2}”, since there

holds: 2min{σ1, σ2} ≤ σ1 + σ2. Therefore, the following coefficient can be used as
an indicator of sets connectivity (see also [15])

τ = σ1+σ2

∥c1−c2∥ . (13)

Lemma 1. Let Kj(cj , σj), j = 1, 2 be the main circles of sets π1, π2 and K(c, σ) the
minimal circle that includes both circles K1,K2. Then σ = 1

2 (∥c1 − c2∥+ σ1 + σ2),
and K1 ∩K2 ̸= ∅ if and only if

(i) ∥c1 − c2∥ ≤ σ1 + σ2, or (14)

(ii) τ = σ1+σ2

∥c1−c2∥ ≥ 1, or (15)

(iii) ∂K ≤ ∂K1 + ∂K2, or (16)

(iv) σ ≤ σ1 + σ2. (17)

The proof of the lemma is trivial: (i) is obvious, (ii) immediately follows from
(i), and (iii) and (iv) follow from (i) and

∂K = 2σπ = (∥c1 − c2∥+ σ1 + σ2)π ≤ 2σ1π + 2σ2π = ∂K1 + ∂K2.



A new fusion algorithm for fuzzy clustering 153

Remark 1. Note that condition (ii) is in direct relationship with the DB index.
Note also that merging of several sets inevitably leads to the merging problem of
ellipsoidal sets. Namely, merging of two spherical sets forms an ellipsoidal set.

3. Merging of two ellipsoidal data sets

Because of simplicity, we consider the merging problem of two ellipsoidal data sets
in the plane. The problem in Rn is analogous.

Let c ∈ R2 be the point in the plane in the neighborhood of which the set
A = {ai = (xi, yi) ∈ R2 : i = 1, . . . ,m} of m random points was generated by using
Gaussian distributions with covariance matrix S, and let dM : R2×R2 → R+ be the
Mahalanobis distance-like function [3, 12, 13]

dM (u, v;S) =
√
detS(u− v)TS−1(u− v). (18)

Note that then the ellipse

E(c, σ) =
{
(x, y) ∈ R2 : dM (c, (x, y);S) ≤ σ2

}
, σ2 = 1

m

m∑
i=1

dM (c, ai;S), (19)

contains about 68% data points [2]. The ellipse E(c, σ) will be called the main
Mahalanobis circle (M-circle), and data points outside the ellipse E(c, σ) will be
called peripheral elements of the set A.

Let us suppose that two ellipsoidal data sets π1, π2 with their main M-circles
Ej(cj , σj), j = 1, 2 are given, where

cj =
1

|πj |

∑
a∈πj

a, σ2
j = 1

|πj |

∑
a∈πj

dM (cj , a;Sj), (20)

where Sj is the corresponding covariance matrix. Mutually different relationships
between two ellipsoidal data sets with regard to the relation of their main M-circles
are shown in Figure 2.

Of the criteria stated in Lemma 1, it seems that only criterion (iii) given by (16)
could be adjusted, but unfortunately, there is no explicit formula for determining the
minimal ellipse E(c, σ) that includes both ellipses E1, E2. Assuming that the center
c of the ellipse E coincides with the center of the set π1 ∪ π2, then the M-radius
σ of the ellipse E can be iteratively determined by Algorithm 1. According to this
condition, sets π1, π2 with the main M-circles Ej(cj , σj), j = 1, 2, will be merged if
the following criterion holds

Criterion 1: σ < σ1 + σ2. (21)

In Figure 2, several typical situations are shown. The numerical complexity of de-
termining the parameter σ can be mentioned as the lack of Criterion 1, but also
the fact that clusters in Figure 2b would not be merged according to this criterion,
although that would be expected.
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(a) σ > σ1 + σ2 (b) σ > σ1 + σ2 (c) σ < σ1 + σ2

(d) σ > σ1 + σ2 (e) σ > σ1 + σ2 (f) σ < σ1 + σ2

Figure 2: Mutually different relationships between two ellipsoidal data sets

Algorithm 1. (Merging of two ellipsoidal sets)

Step 1: Input π1, π2, and set: A=π1∪π2, m1= |π1|, m2= |π2|, m = m1+m2, α=1,
ϵ>0;

Step 2: For each j = 1, 2, determine:

cj =
1
mj

∑
a∈πj

a, Sj =
1
mj

∑
a∈πj

(cj − a)(cj − a)T ,

σ2
j = 1

mj

∑
a∈πj

dM (cj , a;Sj), Ej = {a ∈ πj : dM (cj , a;Sj) ≤ σ2
j },

c = 1
m

∑
a∈A

a, S = 1
m

∑
a∈A

(c− a)(c− a)T , σ2
0 = 1

m

∑
a∈A

dM (c, a;S);

Step 3: Set: σ = ασ0;
While [{a ∈ E1 ∪ E2 : dM (c, a;S) ≥ σ2} ≠ ∅, α := α+ ϵ;σ = ασ0].

Therefore, we try to define new conditions which will simplify the calculation, but
also to refine the conditions for merging. Instead of Criterion 1, we will define a
criterion which is analogous to condition (i) given by (14), i.e., which is analogous
to condition (ii) given by (15)

Criterion 2:

∆(c1, c2) := min{
√
dM (c1, c2;S1),

√
dM (c1, c2;S2)} < σ1 + σ2. (22)

According to this criterion, the sets in Figure 2b would be merged, but sets in
Figure 2d and Figure 2e would also be merged, which should definitely be avoided.
Namely, sets should not be merged if the angle between the main directions of their
M-circles is greater than a limit value (e.g., 65o). Therefore, let us introduce the
following additional criterion:

Criterion 3: sp12 := |⟨v1max, v
2
max⟩| > cos 65o ≈ 0.42, (23)
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where v1max, v
2
max are unit eigenvectors corresponding to the largest eigenvalues of

covariance matrices S1, S2. However, a new problem arises here: This criterion
would not allow for the merging of sets in Figure 2f! Namely, the merging of sets
that are not essentially ellipsoidal should be allowed for, although the angle between
the main directions of their M-circles is greater than the given limit value. We will
assume that two sets π1 and π2 are not essentially ellipsoidal if the relative difference
of their eigenvalues is less than 0.5. Criterion 3 will be refined as follows:

Criterion 3′:

δ1 =
λ
(1)
1 −λ

(1)
2

λ
(1)
2

< 0.5 ∨ δ2 =
λ
(2)
1 −λ

(2)
2

λ
(2)
2

< 0.5 ∨ sp12 = |⟨v1max, v
2
max⟩| > cos 65o,

(24)

where λ
(1)
1 > λ

(1)
2 > 0 and λ

(2)
1 > λ

(2)
2 > 0 are eigenvalues of covariance matrices

S1, S2. Note also that, since there holds

¬(A ∨B ∨ C) = (¬A) ∧ (¬B) ∧ (¬C),

Criterion Fig. 2a Fig. 2b Fig. 2c Fig. 2d Fig. 2e Fig. 2f

Criterion 1 - - + - - +
Criterion 2 - + + + + +
Criterion 3 + + + - - -
Criterion 3′ + + + - - +
Criterion 4 - + + - - +

Table 1: Analysis of the impact of the criteria on situations given in Figure 2

according to Criterion 3′, the sets π1, π2 will be merged if at least one of them is
almost spherical or if the angle between their main directions is less than 65o, and
that they will not be merged if both are essentially ellipsoidal or if the angle between
their main directions is greater than 65o. In this way, Criterion 3′ will not allow for
the merging of sets shown in Figures 2d and 2e, but it will allow for the merging of
sets shown in Figure 2f. The analysis of the impact of all criteria is given in Table 1.
Thereby, marks “+” and “-” mean that the sets should be merged and not merged,
respectively. As can be seen in Figure 2, the criterion composed of Criterion 2 and
Criterion 3′ can be acceptable. This criterion will be denoted as Criterion 4.

4. A new fusion algorithm

Given is a data points set A = {ai : i = 1, . . . ,m} ⊂ [α, β] ⊂ Rn. Suppose that by
some method (see [5, 3]) an optimal fuzzy partition Π = {π1, . . . , πk} with mem-
bership matrix U ∈ Rm×k and fuzzifier q ∈ [1.5, 2.5] is determined. Based on the
considerations from Section 3, we propose a new fusion algorithm.

As an input, the algorithm takes the set A and an optimal fuzzy k-partition with
membership matrix U ∈ Rm×k and fuzzifier q ∈ [1.5, 2.5] (Step 1). First, for each
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cluster the algorithm determines their center, covariance matrix with their largest
and smallest eigenvalue and the corresponding eigenvectors, and the radius of the
main M-circle (Step 2). In Step 3, the DB-index of the initial partition is calculated.

The next step is to see if there are possible candidates for merging in the given k-
partition (Step 4). If there are such candidates, among all pairs of clusters for which
condition (22) is satisfied up to an ϵ > 0, Algorithm 2 looks for that pair πr, πs

which coincides most (Step 4) and defines a new partition with (k − 1) clusters
({π1, . . . , πk} \ {πr, πs}) ∪ π̂, where π̂ is a cluster resulting form merging of two
clusters πr, πs (Step 5). The procedure is repeated until there are candidates for
merging and as long as the value of the DB index decreases.

By using Algorithm 2, a new partition with the most appropriate number of
clusters is obtained.

Algorithm 2. (Fusion algorithm)

Step 1: Input: A ⊂ Rn, U ∈ Rm×k and set ϵ > 0;

Step 2: For each j = 1, . . . , k determine cj =
1

m∑
i=1

uq
ij

m∑
i=1

uq
ij a

i,

Sj =
1

m∑
i=1

uq
ij

m∑
i=1

uq
ij (cj − ai)(cj − ai)T , σ2

j = 1
m∑

i=1

uq
ij

m∑
i=1

uq
ij dM (cj , a

i;Sj),

and the largest and smallest eigenvalue (λj
max, λ

j
min) and the corresponding

eigenvectors (vjmax, v
j
min) of covariance matrix Sj;

Step 3: Determine DB-index DB(k) = 1
k

k∑
r=1

max
s∈{1,...,k}

s̸=r

σ2
r+σ2

s

max{dM (cr,cs;Sr),dM (cr,cs;Ss)} ;

Step 4: Determine the set

J0 = {(r, s) ∈ J×J : r ̸= s, κrs+ϵ > 0∧(δr < 0.5∨δs < 0.5∨sprs > cos 65o)},

where δr, δs, sprs are given by (24), and

κrs = σr + σs −min{
√
dM (cr, cs;Sr),

√
dM (cr, cs;Ss)};

If J0 = ∅, Print[There are no candidates for merging]; STOP;
Else, {r0, s0} = argmax

(r,s)∈J0

κrs;

Step 5: Define a new partition ({π1, . . . , πk} \ {πr0 , πs0}) ∪ π̂, where π̂ is defined
according to Step 2 of Algorithm 1;
Determine a new DB-index DB(k − 1);

Step 6: If DB(k − 1) < DB(k), put k := k − 1 and GoTo Step 4;
Else, STOP.
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5. Numerical examples

We will demonstrate our fusion algorithm by means of the following illustrative
example.

Example 1. k = 11 points Cj: (5, 5), (3, 3), (2.5, 4.2), (2.3, 6), (2.5, 7.3), (3, 9), (6, 1.5),
(7, 2), (7.5, 3.5), (7.8, 5.2), (7.5, 6.5) were chosen in the square [0, 10]2 and k uniform
distributed random numbers m1, . . . ,mk were chosen in the interval [70, 80]. In the
neighborhood of each point Cj, mj random points were generated by using Gaussian
normal distributions. In this way, we obtain a data set A (see Figure 3a). By us-
ing Algorithm 2, a partition with the most appropriate number of clusters should be
determined.

(a) Data points (b) Initial partition (c) Final partition

Figure 3: Searching for a partition with the most appropriate number of clusters

First, by using the fuzzy c-means algorithm [3], we determine a locally optimal
fuzzy partition with 20 clusters (see Figure 3b) and after that, by using Algorithm 2,
we obtain the final optimal partition with three clusters (see Figure 3c).

As an illustration, Figure 4 shows the 10th iteration. Figure 4a shows the parti-
tion with 11 clusters in which two clusters for merging have been chosen, and Figure
4b shows the partition with 10 clusters where the previously mentioned clusters have
been merged.

(a) Clusters chosen for merging (b) Partition with merged clusters

Figure 4: Selection of clusters for merging
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6. Conclusion

The paper presents a new fusion algorithm for fuzzy clustering. Criteria for merging
two ellipsoidal clusters with associated Mahalanobis circles were defined. Starting
with a larger number of clusters in every iteration the algorithm merges two candi-
date clusters as long as there are candidates for merging and the value of the adapted
Davies-Bouldin index decreases. Numerical examples suggest that the proposed al-
gorithm successfully finds various banana-form clusters. Future work could include
the adaption of the proposed algorithm to higher dimensional problems as well as a
comparison with fusion algorithms from literature on a larger number of data sets.
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