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Abstract. Portfolio managers, option traders and market makers are all interested in 
volatility forecasting in order to get higher profits or less risky positions. Based on the 
fact that volatility is time varying in high frequency data and that periods of high 
volatility tend to cluster, the most popular models in modelling volatility are GARCH 
type models because they can account excess kurtosis and asymmetric effects of financial 
time series. A standard GARCH(1,1) model usually indicates high persistence in the 
conditional variance, which may originate from structural changes. The first objective of 
this paper is to develop a parsimonious neural networks (NN) model, which can capture 
the nonlinear relationship between past return innovations and conditional variance. 
Therefore, the goal is to develop a neural network with an appropriate recurrent 
connection in the context of nonlinear ARMA models, i.e., the Jordan neural network 
(JNN). The second objective of this paper is to determine if JNN outperforms the 
standard GARCH model. Out-of-sample forecasts of the JNN and the GARCH model 
will be compared to determine their predictive accuracy. The data set consists of returns 
of the CROBEX index daily closing prices obtained from the Zagreb Stock Exchange. 
The results indicate that the selected JNN(1,1,1) model has superior performances 
compared to the standard GARCH(1,1) model. The contribution of this paper can be 
seen in determining the appropriate NN that is comparable to the standard 
GARCH(1,1) model and its application in forecasting conditional variance of stock 
returns. Moreover, from the econometric perspective, NN models are used as a semi-
parametric method that combines flexibility of nonparametric methods and the 
interpretability of parameters of parametric methods. 
 
Key words:  conditional variance, GARCH, NN, forecast error, volatility persistence 
 
Received: September 23, 2014; accepted: December 12, 2014; available online: December 30, 2014 

 

  

∗ Corresponding author. 

http://www.hdoi.hr/crorr-journal  ©2014 Croatian Operational Research Society 

                                                   



330                           Josip Arnerić, Tea Poklepović and Zdravka Aljinović 

1. Introduction 
 

Forecasting of volatility, i.e., returns fluctuations, has been a topic of interest to 
economic and financial researchers. Portfolio managers, option traders and 
market makers are all interested in volatility forecasting in order to get higher 
profits or less risky positions. The most popular models in modelling volatility 
are generalized autoregressive conditional heteroskedasticity (GARCH) type 
models which can account for excess kurtosis and asymmetric effects of high 
frequency data, time varying volatility and volatility clustering. The first 
autoregressive conditional heteroscedasticity model (ARCH) was proposed by 
Engle [7] who won a Nobel Prize in 2003 for his contribution to modelling 
volatility. The model was extended by Bollerslev [3] by its generalized version 
(GARCH). However, the standard GARCH(1,1) model usually indicates high 
persistence in the conditional variance, which may originate from structural 
changes in the variance process. Hence, the estimates of a GARCH model suffer 
from a substantial upward bias in the persistence parameters. In addition, it is 
often difficult to predict volatility using traditional GARCH models because the 
series is affected by different characteristics: non-stationary behaviour, high 
persistence in the conditional variance and nonlinearity. Due to practical 
limitations of these models, different approaches have been proposed in the 
literature, some of which are based on neural networks (NN).  

Neural networks are a valuable tool for modelling and prediction of time 
series in general ([2], [9], [12]). Most financial time series indicate the existence 
of nonlinear dependence, i.e., current values of a time series are nonlinearly 
conditioned on the information set consisting of all relevant information up to 
and including period 1−t  ([1], [10], [11], [24]). The feed-forward neural networks 
(FNN), i.e., multilayer perceptron, are most popular and commonly used. They 
are criticized in the literature for the high number of parameters to estimate 
and they are sensitive to overfitting ([8], [14]). In comparison to feed-forward 
neural networks, recurrent networks allow feed-back to form a cycle within the 
network architecture which can be analyzed as a nonlinear extension of 
traditional linear models, such as ARMA (AutoRegressive Moving Average) 
models. Recurrent neural networks (RNN) preserve long memory of the series 
and allow adequate forecasts of volatility with a smaller number of parameters 
to estimate ([2], [4]). Therefore, recurrent neural networks are more appropriate 
than feed-forward neural networks in forecasting nonlinear time series. 

The objective of this paper is to develop a parsimonious neural networks 
model with an appropriate recurrent connection, which can capture the 
nonlinear relationship between past return innovations and conditional variance 
in the context of nonlinear ARMA models. The second objective of this paper is 
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to determine if NN outperforms standard GARCH models when there is high 
persistence of the conditional variance. Out-of-sample forecasts of selected NN 
and GARCH (1,1) model will be compared to determine their predictive 
accuracy. In general, this paper introduces NN as a semi-parametric approach 
and an attractive econometric tool for conditional volatility forecasting. The 
data set consists of returns of the CROBEX index daily closing prices obtained 
from the Zagreb Stock Exchange. 

The remainder of this paper is organized as follows: Section two discusses 
modelling of the conditional variance process. Neural networks related to 
nonlinear ARMA models with GARCH innovations are presented in Section 
three. The data and the results obtained by recurrent neural networks are 
presented and compared with standard GARCH(1,1) models in Section four, 
while the final section contains concluding remarks. 
 

2. The conditional variance process 
 
The most widespread approach to volatility modelling consists of the GARCH 
model of Bollerslev [3] and its numerous extensions that can account for 
volatility clustering and excess kurtosis found in financial time series. The 
accumulated evidence from empirical research suggests that the volatility of 
financial markets can be appropriately captured by the standard GARCH(1,1) 
model [21]. In this paper, GARCH models of higher order are not analyzed since 
the GARCH (1,1) model gives satisfactory results with a small number of 
parameters to estimate. Besides that, the GARCH(1,1) model has ARCH (∞) 
representation, and is thus parsimonious. According to Bollerslev [3], GARCH 
(1,1) can be defined as: 

𝑟𝑟𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜀𝜀𝑡𝑡                                      …           . . 
𝜀𝜀𝑡𝑡 = 𝑢𝑢𝑡𝑡 · �𝜎𝜎𝑡𝑡2                             .  .  .           . 
𝑢𝑢𝑡𝑡 ~ 𝑖𝑖. 𝑖𝑖. 𝑑𝑑. (0,1)                              . . .         .(1) 

𝜎𝜎𝑡𝑡2 =  𝛼𝛼∩ + 𝛼𝛼1 ·  𝜀𝜀𝑡𝑡−12 + 𝛽𝛽1 · 𝜎𝜎𝑡𝑡−12 ,    ...               . 

where tµ  is the conditional mean of return process { }tr , while { }tε  is the 
innovation process with its multiplicative structure of identically and 
independently distributed random variables tu . The last equation in (1) is the 
conditional variance equation with GARCH(1,1) specification which means that 
variance of returns is conditioned on the information set 1tI −  consisting of all 
relevant previous information up to and including period 1t − . ARMA(1,1) 
representation of the GARCH(1,1) model is: 
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According to ARMA(1,1) representation of GARCH(1,1)  in (2), it follows that 
the GARCH(1,1) model is covariance-stationary if and only if 1 1 1α +β <  [3]. In 
particular, the GARCH(1,1) model usually indicates high persistence in the 
conditional variance, i.e., integrated behaviour of the conditional variance when 

1 1 1α +β =  (IGARCH). The reason for the excessive GARCH forecasts in 
volatile periods may be the well-known high persistence of individual shocks in 
those forecasts. Lamoureux and Lastrapes [13], among others, show that this 
persistence may originate from structural changes in the variance process. They 
demonstrate that shifts in the unconditional variance lead to biased estimates of 
the GARCH parameters suggesting high persistence. High volatility persistence 
means that a long time period is needed for shocks in volatility to die out (mean 
reversion period). Wong and Li [22] demonstrate that the existence of shifts in 
the variance process over time can induce volatility persistence. An alternative 
solution to overcome the abovementioned problems is to define an appropriate 
neural network which can be analyzed as a nonlinear extension of the 
ARMA(1,1) model in (2).  

Donaldson and Kamstra [5] constructed a seminonparametric nonlinear 
GARCH model based on neural network. They evaluated its ability to forecast 
stock return volatility in London, New York, Tokyo and Toronto. In-sample and 
out-of-sample comparisons revealed that the NN model captures volatility 
effects overlooked by GARCH, EGARCH and GJR models and that its 
volatility forecasts encompass those from other models. Maillet and Merlin [15] 
propose a new methodology for abnormal return detections and corrections. 
They also evaluate its economic impact on asset allocation with higher-order 
moments. Indeed, extreme returns greatly affect empirical higher-order moments 
such as skewness and kurtosis. Considering the GARCH family models enhanced 
by a neural network, they extend the earlier work on outlier corrections. 
Considering a CAC40 daily stocks database on the period from January 1996 to 
January 2009, they compare a GARCH and an NN-GARCH denoising 
procedure before evaluating the impact of such pre-processing on some local 
optimal efficient portfolios using higher-order moments in their classical and 
robust versions. Mantri et al. [16] apply different methods, i.e., GARCH, 
EGARCH, GJR - GARCH, IGARCH and NN models for calculating the 
volatilities of Indian stock markets. Fourteen years of data of BSE Sensex and 
NSE Nifty are used to calculate the volatilities. The performance of data 
exhibits that there is no difference in the volatilities of Sensex and Nifty 
estimated under the GARCH, EGARCH, GJR - GARCH, IGARCH and NN 
models. It is observed that though the volatilities obtained by the NN model is 
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less than that of the GARCH, EGARCH, GJR - GARCH and IGARCH models, 
the ANOVA test is conducted to conclude that there is no difference in the 
volatility estimated by the different models. Hence, the traders, financial 
analysts and economists may remain indifferent while choosing the model and 
the estimation of volatility. In their later paper, [17] focused on the problem of 
estimation of volatility of the Indian Stock market. The paper begins with 
volatility calculation by ARCH and GARCH models of financial computation. 
Finally the accuracy of using Neural Network is examined. It can be concluded 
that NN can be used as a best choice for measuring the volatility of the stock 
market. Sarangi and Dublish [18] make a comparison between the most 
successful and widely used GARCH family of models to that of newly 
implemented neural networks models. Eighteen various specifications of 
GARCH family of models and twenty various NN models with four 
architectures are constructed to predict gold market return. Forecasting errors 
are calculated by using six forecasting error measures. It has been proved that 
the 3-5-1 model of NN is ranked best with the minimum forecasting error.  

All of the above research combines GARCH and NN models by adding the 
NN structure to the existing GARCH models. This paper, however, examines 
these models as separate and unique in search of the suitable model for 
forecasting conditional variance of stock returns. Moreover, NN models have 
continuously been observed as a nonparametric method relying on automatically 
chosen NN provided by various software tools. Since this is unjustified from the 
econometric perspective, in this paper NN will be observed as a semi-parametric 
method which combines flexibility of nonparametric methods and the 
interpretability of parameters of parametric methods, i.e., the “black box” will 
be opened. 
 

3. Neural networks for prediction of volatility 
 
Neural network (NN) is an artificial intelligence method, which has recently 
received a great deal of attention in many fields of study. Usually neural 
networks can be seen as a non-parametric statistical procedure that uses the 
observed data to estimate the unknown function [19]. A wide range of statistical 
and econometric models can be specified modifying activation functions or the 
structure of the network (number of hidden layers, number of neurons etc.), i.e., 
multiple regression, vector autoregression, logistic regression, time series models, 
etc. Neural networks often give better results than other statistical and 
econometric methods. Empirical research shows that neural networks are 
successful in forecasting extremely volatile financial variables that are hard to 
predict with standard statistical methods such as exchange rates [6], interest 
rates [20] and stocks [23]. 
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In this paper, NN are observed as a semi-parametric method that combines 
flexibility of nonparametric models, i.e., with less restricted assumptions and the 
interpretability of parameters, which is a feature of parametric models. It can 
approximate any function (linear or nonlinear) to any desired degree of 
accuracy, without suffering from the problem of misspecification like parametric 
models do, or without requiring a large number of variables like nonparametric 
models usually do. Thus, a NN is a parsimonious and flexible model. Many 
researchers rely on automatically chosen NN provided by various software tools. 
This can be valid for certain fields of studies but it is unjustified from the 
econometric perspective.  Therefore, in this paper NN will be used as an 
econometric tool, designing it by custom based on a particular econometric 
model, i.e., the solution is to define an appropriate neural network which can be 
analyzed as a nonlinear extension of the ARMA(1,1) model in (2). 

There are two types of NN in forecasting time series in general: feed-
forward and recurrent neural networks.  

Multi-layer feed-forward networks (FNN) which forward information 
from the input layer to the output layer through a number of hidden layers. 
Neurons in a current layer connect to a neuron of the subsequent layer by 
weights and an activation function (Figure 1.a). In order to obtain weights the 
backpropagation (BP) learning algorithm, which works by feeding the error 
back through the network, is mostly used. The weights are iteratively updated 
until there is no improvement in the error function. This process requires the 
derivative of the error function with respect to the network weights. The sum of 
squared error E is the conventional least square objective function in a NN, 
defined as: 

( )
2

1

ˆ1min ∑
=

−=
n

t
tt yy

n
E ,             (3) 

where ty  denote observed values of time series (targets) and tŷ  fitted values of 
time series (outputs). 

FNN are highly non-parsimonious requiring an infinite amount of past 
observations as inputs (since an MA can be expressed as an infinite AR) to 
achieve the same accuracy in forecasting comparing to RNN. Moreover, in 
practical applications, recurrent neural networks provide a significantly better 
prediction than a feed-forward network. Figure 1 presents FNN and RNN with a 
single hidden layer representing nonlinear AR(p) and ARMA(p,q) models, 
respectively. 
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Feed-forward neural network with a single hidden 
layer representing a nonlinear AR(p) model 

Recurrent neural network with a single hidden 
layer representing a nonlinear ARMA(p,q) model 

                          ty                        ty               

   pttt yyy −−− ........21     qttpttt yyy −−−−− εε ˆ....ˆ........ 121  

Figure 1 a) FNN with a single hidden layer representing a nonlinear AR(p) model;  
b) RNN with a single hidden layer representing a nonlinear ARMA(p,q) model 

 

Recurrent neural networks (RNN) are useful, among others, in 
situations when nonlinear time dependence of financial time series exists. They 
are constructed by taking a feedforward network and adding feedback 
connections to previous layers. The standard backpropagation algorithm also 
trains these networks except that patterns must always be presented in time 
sequential order. The one difference in the structure is that there is an extra 
neuron next to the input layer that is connected to the hidden layer just like the 
other input neurons. This extra neuron holds the contents of one of the layers as 
it existed when the previous pattern was trained. In this way, the network sees 
previous knowledge it has about previous inputs. This extra neuron is called the 
context unit and it represents the network’s long-term memory [2]. 

The structure of RNN representing nonlinear ARMA(p,q) is comparable to 
the GARCH(p,q) model with appropriate lag selection. This kind of network is 
known as the Jordan neural network (JNN). 

There are two types of RNN: Elman and Jordan recurrent networks. An 
Elman neural network (ENN) has an additional neuron in the input layer, which 
is fed back from the hidden layer. However, the ENN does not have an 
econometric application.   

A Jordan neural network (JNN) has a feedback connection from the 
output layer to the input layer. The input layer has an additional neuron, which 
is fed back from the output layer. Econometric interpretation of such feedback 
connection lies in the fact that in this way the model is expanded by the lagged 
error term, i.e., by it−ε (Figure 1.b). Using JNN the problem of overfitting can 
be solved by a more parsimonious model. Although this network is more 
complicated than a multi-layer feed-forward network, the characteristics of 

ttt yy ˆˆ −=ε
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feeding back data to the network are similar to the GARCH model, having the 
previous variance in current forecasts [4]. 

In general, JNN can be represented as 
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where t is a time index, tŷ  is the output vector, ity −  is the input matrix with 
t-i time lags, f(·) and g(·) are activation functions (usually linear and logistic, 
respectively). coφ  denotes the constant term in the output layer, chφ  denotes 
the constant term in the hidden layer. The weights ihφ  and hoφ  denote the 
weights for the connections between the inputs and hidden neurons and between 
the hidden neurons and the output, rhφ  denotes the weight for connections 
between the context unit and hidden neurons and 1ˆ −tε  denotes the difference 
between observed values of time series (targets) and fitted values of time series 
(outputs) from the previous period. JNN with p inputs, q hidden neurons and 
one target unit has the abbreviation JNN(p,q,1) [2]. 

To define appropriate JNN based on GARCH innovations we concentrate 
on a nonlinear version of ARMA(1,1) originated from equation (4): 
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In equation (5), function ( )⋅f  is the linear activation function in the output 
layer and ( )⋅g  is a nonlinear activation function in the hidden layer, which 
processes information from the input layer to the output layer. A recurrent 
neural network in (5) assumes one neuron in a single hidden layer network, a 
nonlinear activation function in a hidden layer, i.e., a sigmoid, a linear 
activation function in the output layer, one input (squared innovations with one 
time lag, i.e., 2

1−tε ), one target (current squared innovations, i.e., 2
tε ), while the 

error term tv  is added through feed-back connection from the output layer to 
the input layer. The parameters 1α , 1β  and λ  are the called weights, while 

0α  and 0β  are the biases (constant terms) of the hidden layer and output 
layer, respectively. These parameters are estimated from a training sample by 

minimizing the sum of the squares residuals of innovations ( )∑
=

−
T

t
tt

1

222 ε̂ε  using 

the gradient descent procedure known as “backpropagation” (BP). Parameter 
1α  is the weight for the connection between the hidden neuron and the output, 

1β  is the weight for the connection between the input and the hidden neuron, 
while λ  is the “memory weight”. The network, which takes into account all 
assumptions above, can be presented as a Jordan neural network with memory. 
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A Jordan net without memory “remembers” only the output from the previous 
time step. A Jordan net with memory remembers past values as an 
exponentially decaying weighted average of inputs (no outputs are forgotten; 
they just “fade away”). The context unit is called a long-term memory unit in a 
RNN since it remembers past events. According to equation (4), there is only 
one context unit which accounts for a moving average structure of a time series. 

 
4. Research methodology and results 
 
The data set consists of returns of the CROBEX index daily closing prices 
obtained from the Zagreb Stock Exchange in the period from January 2011 until 
September 2014. However, for the purpose of this research, the sample is divided 
into two parts: the in-the-sample part consists of 666 observations in the period 
from January 2011 until September 2013 which is used for the estimation of 
parameters in the GARCH(1,1) and the JNN(1,1,1) model; and the out-of-the-
sample part which consists of the remaining 252  observations, i.e., from 
September 2013 until September 2014, which is used for the prediction purposes. 
In order to estimate the JNN(1,1,1) model, in-the sample log returns of the 
CROBEX index daily closing prices (Figure 1.a) are used for the calculation of 
squared mean corrected returns (Figure 1.b), i.e., squared innovations which are 
then used as a target in the JNN. The input for JNN is squared mean corrected 
returns with one time lag. 
 

  
Figure 2 a) Daily returns; b) Squared mean-corrected returns 

 

JNN is estimated in R package using the BP algorithm with a constant 
learning rate. The learning rate is used to update the weights (parameters). 
When the learning rate is too large, the network may quickly converge to 
suboptimal local minima. Therefore, an appropriate learning rate should be 
chosen from the interval [0,1]. In this paper, the learning rate is set to 0.2 to 
prevent the algorithm from getting stuck in local minima.  
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Moreover, with everything else being equal, in this paper 25 JNN (1,1,1) 
have been estimated only by changing the ratios for the train and the test 
sample and the weight of the context unit representing the memory of the 
network. The results of the estimated 25 JNN(1,1,1) are presented in Table 1. 
Mean squared errors (MSE) are calculated and presented for the train and the 
test period, and for the out-of-sample period. Moreover, Akaike Information 
Criteria (AIC) is calculated and presented for the train and the test period, and 
since it shows divergent results, AIC is averaged.  
 
 

λ  train/test 50%/50% 60%/40% 70%/30% 80%/20% 90%/10% 

0.1 
MSE(train) 6.460E-08 1.589E-09 7.441E-10 1.438E-08 1.763E-09 
MSE(test) 6.460E-08 1.589E-09 7.440E-10 1.438E-08 1.763E-09 

MSE(out-of-sample) 6.315E-08 1.480E-09 8.256E-10 1.508E-08 1.611E-09 

0.3 
MSE(train) 6.504E-08 1.539E-09 7.470E-10 1.913E-08 3.033E-09 
MSE(test) 6.504E-08 1.539E-09 7.470E-10 1.913E-08 3.033E-09 

MSE(out-of-sample) 6.412E-08 1.618E-09 6.903E-10 1.894E-08 3.323E-09 

0.5 
MSE(train) 6.298E-08 1.521E-09 7.978E-10 1.593E-08 2.978E-09 
MSE(test) 6.298E-08 1.521E-09 7.978E-10 1.593E-08 2.978E-09 

MSE(out-of-sample) 6.312E-08 1.684E-09 8.003E-10 1.565E-08 2.797E-09 

0.7 
MSE(train) 5.573E-08 1.702E-09 8.008E-10 1.293E-08 2.486E-09 
MSE(test) 5.573E-08 1.702E-09 8.008E-10 1.293E-08 2.486E-09 

MSE(out-of-sample) 5.531E-08 1.751E-09 6.847E-10 1.242E-08 2.692E-09 

0.9 
MSE(train) 5.462E-08 1.536E-09 7.420E-10 1.697E-08 2.490E-09 
MSE(test) 5.462E-08 1.536E-09 7.420E-10 1.697E-08 2.490E-09 

MSE(out-of-sample) 5.312E-08 1.628E-09 7.979E-10 1.676E-08 2.687E-09 

 train/test 50%/50% 60%/40% 70%/30% 80%/20% 90%/10% 

0.1 
AIC (train) -5502.83 -8073.8 -9784.78 -9596.55 -12063.6 
AIC (test) -5502.83 -5399.46 -4193.8 -2409.7 -1340.47 

AIC (average) -5502.83 -6736.63 -6989.29 -6003.12 -6702.03 

0.3 
AIC (train) -5500.57 -8086.56 -9782.97 -9444.71 -11738.6 
AIC (test) -5500.57 -5408 -4192.99 -2371.45 -1304.12 

AIC (average) -5500.57 -6747.28 -6987.98 -5908.08 -6521.37 

0.5 
AIC (train) -5511.29 -8091.26 -9752.31 -9542.09 -11749.6 
AIC (test) -5511.29 -5411.14 -4179.83 -2395.98 -1305.34 

AIC (average) -5511.29 -6751.2 -6966.07 -5969.04 -6527.46 

0.7 
AIC (train) -5552.01 -8046.39 -9750.56 -9653.1 -11857.7 
AIC (test) -5552.01 -5381.12 -4179.08 -2423.94 -1317.44 

AIC (average) -5552.01 -6713.76 -6964.82 -6038.52 -6587.59 

0.9 
AIC (train) -5558.71 -8087.34 -9786.1 -9508.45 -11856.8 
AIC (test) -5558.71 -5408.52 -4194.33 -2387.5 -1317.34 

AIC (average) -5558.71 -6747.93 -6990.22 -5947.98 -6587.06 

Table 1 MSE and AIC obtained from various JNN(1,1,1) regarding different weights 

on context unit  (λ ) and a different train/test ratio. 
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The table shows that MSE firstly decreases with the increase in the train 
sample, and it is the lowest when 70% of the sample is used for training and 
30% for testing, and then it increases. Moreover, it is the lowest when the 
weight of the context unit λ  is the highest, i.e., 0.9. This indicates the long-
term memory of this network. When calculating AIC for each network train and 
test sample, AIC shows extremely divergent results because AIC penalizes for 
the number of observations and the number of parameters in the model. 
Therefore, when presenting the average AIC for each network, the results 
confirm the MSE’s choice of the appropriate NN. 

Therefore, one neural network is selected based on the lowest MSE and 
AIC, with 70% of the training and 30% of the testing sample, and with λ  equal 
to 0.9. Results are obtained using the RSNNS package (R – Stuttgart Neural 
Network Simulator), where the number of units equals 4, and therefore, the 
number of connections equals 5. The learning rate is set to 0.2 and the learning 
function is the back-propagation algorithm (JE_BP). The results are presented 
in Table 2. 
 

 Input1 Hidden1 Output1 Context1 
Input1 0 0.73366 0 0 

Hidden1 0 0 0.00005 0 
Output1 0 0 0 1.0 
Context1 0 0.97964 0 0.9 

Table 2 Weight matrix for estimated JNN(1,1,1) with 9.0=λ  and the train/test 
ratio 70%/30%. 

 
Although it is obvious that time series is not stationary since the variance 

of returns is time varying (Figure 2), the CCF (cross-correlation function) test 
confirmed nonstationarity in variance. Detailed results are omitted due to a lack 
of space. They are available from authors upon request. 

 
Parameters Estimates 
μ -0.000111 
α0 0.000004* 
α1 0.075720*** 
β1 0.853510*** 
LJ.-B. (1) 4.119 
LJ.-B. (2) 4.253 
LJ.-B. (5) 5.992 

Note: parameter estimates are significant at 1% (***), 5% (**) and 10% (*) significance level 
using robust standard errors (asymptotic normal and consistent); Ljung-Box (LJ.-B.) test on 
standardised residuals and standardized squared residuals confirms no serial correlation. 

Table 3 Estimation of GARCH(1,1) model 
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Parameters of the standard GARCH(1,1) model are also estimated using R 
according to the maximum likelihood method and assuming normal distribution 
of innovations (rugarch package, i.e., R-Univariate GARCH). These results are 
given in Table 3.  

According to parameter estimates, ARMA(1,1) representation of the 
GARCH(1,1) model can be written as: 

 

1
2

1
2 ˆ85351.092923.0000004.0ˆ −− −+= ttt vεε             (6) 

 
Out-of-sample prediction of the volatility using JNN and GARCH models is 
presented in Figure 3. 
 

 
Figure 3 Out-of-sample predictions 

 
The selected JNN(1,1,1) and GARCH(1,1) models are given in Table 4 

with their out-of-sample forecasting performances which show superior 
performances of the neural network model compared to the standard GARCH 
model. 
 

  GARCH(1,1) JNN(1,1,1) 

MSE 0.142512 0.121231 

RMSE 0.377507 0.348183 

Table 4 MSE and RMSE for GARCH(1,1) and JNN(1,1,1) models 
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5. Concluding remarks 
 
Forecasting of volatility, i.e., returns fluctuations, is in the focus of the paper. 
This research begins with the most widespread approach to volatility modelling, 
i.e., the GARCH model. Furthermore, ARMA(1,1) representation of the 
GARCH(1,1) model is defined. However, disadvantages of these models led to 
an alternative solution, i.e., to define an appropriate neural network which can 
be analyzed as a nonlinear extension of the ARMA(1,1) model. Therefore, a 
particular type of RNN, called JNN, is explained in detail and used in further 
research. Although this network is more complicated than a FNN, the 
characteristic of feeding back data to the network is similar to the GARCH 
model, having the previous variance in current forecasts. Therefore, 25 different 
JNN(1,1,1) have been estimated and the most appropriate network is selected 
and compared further to the GARCH model. The benefit of using recurrent 
networks in time series forecasting is reflected in the results, because JNN(1,1,1) 
presents a better performance than the GARCH(1,1) model in forecasting 
volatility. 

A study that analyzes which models best represent the characteristics of 
financial time series, or better predict their future behaviour is highly beneficial, 
because that allows market participants to make decisions based on predicted 
future values. This paper makes contribution in that direction, because it 
analyzes the performance of the standard GARCH(1,1) model with the 
performance of the JNN(1,1,1) model in forecasting conditional variance of stock 
returns on the Croatian stock market.  

Results of this paper confirm conclusions of previous research about 
superiority of neural networks versus other linear and nonlinear models. 
However, they are still a challenge for the researchers in order to improve their 
performances in forecasting conditional variance of stock returns and time series 
in general. The use of advanced algorithms in the network training, or other 
feedback architectures, open space for future work and further studies. 
Moreover, the limitation of this study can be seen in the pure data. The paper 
uses only Croatian capital market data, and the market itself is found to be 
narrow and illiquid. Therefore, future research in this field could be conducted 
on developed capital markets in order to test the proposed methodology and to 
obtain results that are more significant. However, the limitation of this paper 
also presents the challenge for future research since including other countries 
does not guarantee that the same selected neural network would be most 
appropriate for all countries.  
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