
Croatian Operational Research Review                                                                              181 
CRORR 6(2015), 181–194  

 
Modifications of the Omega ratio for decision making under 

uncertainty  
 

Helena Gaspars-Wieloch1,∗ 
 

1  Faculty of Informatics and Electronic Economy, Poznań University of Economics 
Al. Niepodleglosci 10, 61-875 Poznań, Poland 

E-mail: 〈helena.gaspars@ue.poznan.pl〉 
 
Abstract. The Omega ratio (Ω-ratio) was proposed by Shadwick and Keating in 2002 
as a performance measure applied to rankings of assets, portfolios or funds. It involves 
partitioning returns into loss and gain below and above a given threshold. The original 
version was designed for decision making under risk (probabilities completely known), 
but recent research has shown that this measure can be adapted to decision making 
under partial information (likelihood known incompletely). Our contribution will be to 
use the concept of the Omega ratio in decision making under uncertainty (DMUU) 
which occurs when the decision maker (DM) chooses the appropriate alternative on the 
basis of certain scenarios for which probabilities are not known at all. The goal of this 
article is to adjust the Ω-ratio to DMUU so that it takes into consideration the DM’s 
attitude towards risk and the distribution of all payoffs connected with particular 
decisions. The Ω-ratio is combined with a hybrid of Hurwicz and Bayes rules proposed 
by the author in another paper. The significant advantage of the new measure, 
Ω(H+B)ratio, is the possibility to compare alternatives (strategies, projects) when the 
likelihood of particular scenarios is not known or when the DM does not intend to use 
the available data.  
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1. Introduction 
 
The Omega ratio (Ω-ratio) was created by Shadwick and Keating [47, 48]. It is a 
performance measure of an investment asset, portfolio or strategy. It involves 
partitioning returns into loss and gain above and below a given threshold (point 
of reference). The Ω-ratio is then the ratio of the probability of having a gain 
and the probability of having a loss. The original Omega was developed for 
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decision making under risk (DMUR), that is, for decision problems where the 
probabilities of particular scenarios (events, states of nature) are known [51, 52]. 

The literature reveals that a considerable number of extensions of the Ω-
ratio have been suggested recently [1, 28, 29, 31, 38]. Some of them [29, 38] are 
devoted to decision making under partial (incomplete, imprecise) information 
(DMPI), which is characterized by probability distributions that are 
incompletely known, see e.g. [5, 22, 32, 34, 35, 56].  

In this contribution, we examine the possibility of using the concept of the 
Omega ratio in decision making under uncertainty (DMUU) which occurs when 
future factors are neither deterministic (decision making under certainty, 
DMUC) nor probabilistic (DMUR or DMPI) at the time of the decision. Within 
the framework of DMUU the decision maker (DM) has to choose the 
appropriate alternative (decision, project, strategy) on the basis of some 
scenarios which probabilities are not known [6, 21, 33, 45, 51, 52, 54]. This is 
the so-called “complete uncertainty” or “uncertainty without probabilities” [43]. 
The  goal of this article is to adjust the Omega ratio to DMUU so that the  
modified measure takes into consideration DM’s preferences, i.e. the DM’s 
attitude towards risk understood as the possibility that some bad circumstances 
might happen (high losses or low gains). The paper is organized as follows: 
Section 2.1 deals with the main features of DMUU and scenario planning; 
Section 2.2 briefly describes the Ω-ratio and its extensions; Section 2.3 is 
devoted to presenting a hybrid of the Hurwicz and Bayes rules (H+B rule) for 
DMUU which was proposed by the author in [13]; Section 3 demonstrates how 
the Omega ratio can be combined with the H+B rule; Section 4 presents an 
illustrative example. Conclusions are gathered and presented in Section 5.        
 

2. Theoretical background 
 
2.1. Decision making under uncertainty with scenario planning 
 
We will assume that the term “uncertainty” means “external uncertainty”, i.e. 
uncertainty arising when the consequences of an action are unknown because 
they depend on future events (which are beyond the DM’s control). The result 
of the choice made under uncertainty with scenario planning depends on two 
factors: which decision will be selected and which scenario will occur [42]. The 
DMUU can be presented by means of a payoff matrix where m (the number of 
rows) denotes the number of mutually exclusive scenarios (S1, S2, …Si, … Sm), n 
(the number of columns) stands for the number of decisions (D1, D2, …, Dj, …, 
Dn) and aij is the profit connected with scenario Si and alternative Dj. We 
assume in this paper that the distribution of payoffs related to a given decision 
is discrete and that the set of those profits can be a multiset (or a bag). The 
contribution concerns only one-criterion decision problems and optimal pure 
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strategy searching. A pure strategy is a solution assuming that the DM chooses 
and completely executes only one alternative. Meanwhile the mixed strategy 
(mixed acts, mixed actions) allows the DM to select and perform a weighted 
combination of several accessible alternatives [14, 39, 43, 51].          

There are many classical decision rules designed for DMUU, such as the 
Wald’s criterion [55], the maximax criterion, presented for example in [40], the 
Hurwicz’s criterion [25, 26], the Savage’s criterion [45], the maximin joy criterion 
[23, 24], the Bayes’ (Laplace’s) criterion (presented e.g. in [44]). The literature 
also offers various extensions or hybrids of those methods, see e.g. [2, 3, 4, 7, 8, 
9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 27, 36, 41, 46, 53]. Nevertheless, the 
majority of the extended rules refer to the probability calculus (for instance, 
expected profit maximization, expected utility maximization, subjective 
expected utility, maximin expected utility, α-maximin expected utility, 
restricted Bayes/Hurwicz, prospect theory, cumulative prospect theory, Choquet 
expected utility), which is rather characteristic of DMUR. Let us recall that 
according to the Knight’s definition, the uncertainty occurs when we do not 
know (i.e. we cannot measure) the probabilities of particular scenarios (“when 
the uncertainty can be measured it is called”risk” [33]). 
 
2.2. The Omega ratio 
 
The Omega ratio serves to evaluate the performance of an investment, especially 
an investment fund. It is used to make rankings of portfolios, funds and assets. 
It can be applied to portfolio optimization models [1, 30, 37] and robust 
optimization models [29].  

In recent years, the Omega ratio has become a dominant performance 
measure within the downside risk framework, in part due to its relative 
simplicity and its complete non-reliance on any assumptions about the 
distribution of the empirical returns or the shape of the utility function. The 
Omega ratio is calculated according to Equation (1): 
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where [a,b] is the interval of returns, F(x) is the cumulative distribution function 
and r denotes the threshold or point of reference defining the gain versus the 
loss. Other formulas for the original Omega ratio are presented in [1, 28]. The 
higher the ratio the better. Omega takes the value 1 when r is the mean 
outcome. Note that a point of reference is also applied for instance by Tversky 
and Kahneman [27, 53]. 
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In contrast to the Sharpe ratio [48, 49], where only the first two moments 
have an influence on the risk measure, the Ω-ratio enables taking into account 
all moments of the distribution. Omega was developed “to overcome the 
inadequacy of many traditional performance measures applied to investments 
that do not have normally distributed return distributions” [47]. When 
calculating Omega, no assumptions about risk preferences or utility are 
necessary though they may be accommodated.  

The standard formulation of the Omega ratio and its first extensions (e.g. 
Sharpe-Omega [31], Kappa [28], Omega-H [1]) require perfect information for 
the probability distribution of the asset returns, which is the case of DMUR. 
However, in further research, the problem arising from the probability 
distribution only partially known (DMPI) was also investigated (see the 
maxΩmin optimization rule [38] and the robust variant of the conventional 
Omega ratio, i.e. the worst-case Omega ratio [29]). 

As is evident, the numerator (or the denominator) of the above fraction 
(Equation 1) may equal zero when all outcomes connected with a decision are 
lower (or higher) than the point of reference. This leads to a situation where the 
Omega ratios of particular alternatives are not comparable. That is why certain 
rules have been proposed to overcome this impediment [38]. They consist of 
dividing all decisions into three groups: (A) alternatives with gains and losses 
(both the numerator and the denominator of the Ωratio are positive), (B) 
alternatives with no losses, (C) alternatives with no gains. The division is 
followed by using the Omega fraction only for decisions containing gains and 
losses. For the remaining alternatives, only the positive numerator or 
denominator is taken into account. After making the best decision in each group 
separately, an additional criterion (the difference between total gains and losses) 
is introduced to compare the “winners” of particular groups and select the final 
decision. The rules suggested in [38] also enable avoiding the occurrence of more 
than one optimal alternative.      
 
2.3. A hybrid of the Hurwicz and Bayes rules (H+B rule)  
 
As was mentioned in Section 1, a hybrid of the Hurwicz and Bayes rules has 
been already described in [13]. In the opinion of the author, combining this 
procedure and the original Omega ratio provides a new tool in decision making 
under uncertainty. Hence, let us briefly analyze the essence of the H+B rule.  

This method, thanks to parameter α, takes into account the DM’s 
preferences, i.e. the DM’s attitude towards risk. Symbol α denotes the 
coefficient of pessimism, which fulfills the following condition: ]1,0[∈α . It is 
close to 0 for extreme optimists, i.e. adventurous decision makers (risk-prone 
behavior), and it tends towards 1 for radical pessimists, i.e. cautious decision 
makers (risk-averse behavior). This coefficient is not a measure of probability – 
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it is just a subjective parameter presenting someone’s behavior. Of course, β 
stands for the coefficient of optimism and 1=+ βα . The original version of the 
Hurwicz rule also applies α and usually leads to sensible results, but in some 
cases this procedure provides answers contradictory to the logic and not 
reflecting the decision maker’s preferences. Such a phenomenon is due to the 
fact that the Hurwicz criterion takes only extreme payoffs into consideration 
(transitional values connected with a given decision are ignored). Additionally, 
the above rule does not examine the frequency of relatively high and low 
payoffs belonging to the set of all profits assigned to particular alternatives (see 
[11, 13, 16]). In the H+B rule, in contradiction to the Hurwicz approach, all 
outcomes have an influence on the value of the final measure.   

In the first step, the hybrid requires us to present the payoffs of each 
alternative as a non-increasing sequence ),...,,...,( 1 mjsjjj aaaSq =  where m still 
denotes the number of scenarios, s is the number of the term and jsjs aa ,1, +≥  
(s = 1, 2, …, m-1). 

In the second step, it is recommended to calculate for each decision index 

jhb ( p
jhb , o
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where bj denotes the Bayes criterion, i.e. the average of all payoffs. 
The denominators in Equations (2) and (3) are introduced so that the final 

value of particular indices belong to the interval [wj,mj], where wj and mj are the 
values of the Wald criterion and the maximax criterion respectively, i.e. the last 
(amj) and the first (a1j) term of Sqj. Hence, these denominators are not crucial – 
they can be omitted when preparing the ranking.  

In the third and last step, one should choose the alternative fulfilling 
condition (5). 

}{max*
jjj hbhb =                                      (5) 
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 The assignment of such parameters (α and β) to particular payoffs, 
depending on the level of optimism, is justified in [13]. Briefly, the H+B rule 
recommends for a pessimist an alternative with a relatively high payoff amj or 
with quite frequent high payoffs. For an optimist, this procedure suggests an 
alternative with the highest payoff a1j, but its highest payoffs do not have to be 
frequent.   
 In contradiction to the Hurwicz rule, the H+B approach recommends logic 
rakings for both symmetric and asymmetric distributions of payoffs. In the next 
section, we will attempt to modify the original Omega ratio by using the 
concept of the H+B rule.  
 

3. Combining the Omega ratio and the H+B rule as a new 
approach in decision making under uncertainty 
 
A possible procedure combining the Omega ratio with the hybrid of the 
Hurwicz and Bayes rules consists of the following steps: 

1) Define the DM’s point of reference (r). 
2) Transform initial outcomes (aij) into relative outcomes (ar

ij) on the basis 
of the reference point: 

raa ij
r
ij −=                    njmi ,...,1;,...,1 ==                  (6) 

3) Define a non-increasing sequence of gains ),...,,...,()( 1 xjujjj gggGSq =  for 
each alternative, where juju gg ,1, +≥  (u = 1, 2, …, x-1), and a non-
decreasing sequence of losses ),...,,...,()( 1 zjwjjj lllLSq = , where jwjw ll ,1, +≤  
(w = 1, 2, …, z-1):  

juj
r
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r
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r
ij

r
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Notice that mzx ≤+≤0  (x – number of gains, z – number of losses). 
4) Determine α, i.e. the DM’s coefficient of pessimism (as an individual 

measure of the attitude towards risk): 
a) If )5.0,0[∈α , then oo ββαα == ,  (αo and βo are the optimist’s 

coefficients).  
b) If ]1,5.0(∈α , then pp ββαα == ,  (αp and βp are the pessimist’s 

coefficients). 
5) For each decision, compute numerator Nj and denominator Dnj 

according to the following equations: 
a) If mx <<1 , mz <≤1  and )5.0,0[∈α : 
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b) If 1=x , mz <≤1  and )5.0,0[∈α : 
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i) If 5.0=α , one can use any formulas (see Equations (9)-(16)) 
depending on the value of x and z. Regardless of the applied 
formula, Nj is equal to the arithmetical mean of gains and Dnj is 
the arithmetical mean of losses.   

6) Divide all alternatives Dj into three groups: (A) alternatives with a 
positive numerator and denominator, (B) alternatives with a positive 
numerator and a zero denominator, (C) alternatives with a zero 
numerator and a positive denominator: 

( ) ( ) ADDnN jjj ∈⇒>∧> 00                              (17) 
( ) ( ) BDDnN jjj ∈⇒=∧> 00                             (18) 

( ) ( ) CDDnN jjj ∈⇒>∧= 00                             (19) 
7) Find the best decision in each group separately (choose alternatives 

fulfilling Equations (20)-(22)) and determine D - the set of the best 
decisions from each group. If D is a singleton, stop (the best solution is 
found). Otherwise, go to step 8. 
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8) Find the optimal decision by means of an additional criterion (Equation 
23) used only for the decisions selected in step (7), i.e. for the decisions 
belonging to D: 

( ) { }jjDDj DnNhb
j

−=Ω
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                             (23) 

If more than one alternative fulfills condition (23), it means that there is 
more than one optimal solution. If the sets B and C are empty, but 
more than one alternative satisfies condition (20), then the additional 
criterion (Equation 23) may facilitate the selection of one optimal 
solution. 

 
4. Illustration 
 
Let us illustrate an application of the Omega(H+B) ratio. In the analyzed 
example, the DM can select one of seven decisions. It is a fact that one out of 
five scenarios will occur in the future. Possible outcomes dependent on the 
chosen alternative and on the true event are given in Table 1. Tables 2-4 
present relative outcomes (Equation 6), gains and losses (Equations 7-8) 
respectively, on the assumption that the reference point is equal to r = 9 (steps 
1-3). The sequences of losses contain more terms than do the sequences of gains 
due to the high level of r. Assume that the DM’s coefficient of pessimism 
amounts to α=0.35 (step 4). Hence, the DM is a moderate optimist. The first 
two rows of table 5 contain the values of the numerators and denominators 
(step 5). The numerators for D2, D4 and D7 are equal to zero because those 
decisions have no gains. In the third row of Table 5, the alternatives have been 
assigned to an appropriate group (step 6): A={D1, D3, D5, D6}, B={∅}, 
C={D2, D4, D7}. The fourth and fifth row present the Omega(H+B) ratio. As 
can be seen, D5 is the best decision within Group A, and D2 is the best 
decision among alternatives belonging to Group C (step 7): D={D2, D5}. Now 
let us compute the additional measure for the two winners (sixth row) - D5 is 
the optimal solution (step 8). 
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Scenarios \ Decisions D1 D2 D3 D4 D5 D6 D7 
S1 4 7 3 -6 0 16 -4 
S2 5 3 10 9 -7 -4 9 
S3 12 8 -3 4 -8 -3 0 
S4 -2 9 -4 8 20 11 9 
S5 4 -2 13 9 15 3 8 

Table 1: Payoff matrix (example) 

 
Scenarios \ Decisions D1 D2 D3 D4 D5 D6 D7 

S1 -5 -2 -6 -15 -9 7 -13 
S2 -4 -6 1 0 -16 -13 0 
S3 3 -1 -12 -5 -17 -12 -9 
S4 -11 0 -13 -1 11 2 0 
S5 -5 -11 4 0 6 -6 -1 

Table 2: Relative payoff matrix, r = 9 (example) 

 
Sj \ Dj D1 D2 D3 D4 D5 D6 D7 

S1 - - - - - 7 - 
S2 - - 1 - - - - 
S3 3 - - - - - - 
S4 - - - - 11 2 - 
S5 - - 4 - 6 - - 
x 1 0 2 0 2 2 0 

Sq(G)j (3) - (4,1) - (11,6) (7,2) - 
Table 3: Gain matrix, r = 9 (example) 

 
Sj \ Dj D1 D2 D3 D4 D5 D6 D7 

S1 5 2 6 15 9 - 13 
S2 4 6 - - 16 13 - 
S3 - 1 12 5 17 12 9 
S4 11 - 13 1 - - - 
S5 5 11 - - - 6 1 
z 4 4 3 3 3 3 3 

Sq(L)j (4,5,5,11) (1,2,6,11) (6,12,13) (1,5,15) (9,16,17) (6,12,13) (1,9,13) 
Table 4: Loss matrix, r = 9 (example) 

 
Decisions D1 D2 D3 D4 D5 D6 D7 

Nj 1.95 0.00 2.95 0.00 9.25 5.25 0.00 
Dnj 8.75 7.30 10.85 7.65 14.70 10.85 8.35 

Group  A C A C A A C 
Ω(hb)Aj=Nj/Dnj 0.22 - 0.27 - 0.63 0.48 - 

Ω(hb)Cj=Dnj - 7.30 - 7.65 - - 8.35 
Ω(hb)j - -7.30 - - -5.45 - - 

Table 5: Numerators, denominators and Omega(H+B) ratios for particular decisions 
(α=0.35). 
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 Note that for a moderate pessimist (e.g. α=0.65), the sets A, B, C and D 
are totally the same in this example, but the final optimal decision is D2. Thus, 
we see that the Omega(H+B) ratio recommends different strategies depending 
on the DM’s risk aversion, which is certainly a valuable feature of the new 
approach. The fact that all outcomes concerning particular decisions have an 
impact on the suggested solution is also advantageous (compare with [16]).    
 

5. Conclusions  
 
Previous research has shown that the Omega ratio has been used in decision 
making under risk (DMUR) or decision making with partial information 
(DMPI). This paper presents how it can be used in decision making under 
uncertainty (DMUU). Thanks to a combination of the Omega ratio with the 
hybrid of the Hurwicz and Bayes rules, we obtain an index that takes into 
account all gains and losses (the Bayes rule takes into consideration all 
outcomes, that is, the frequency of good and bad results) and which, 
additionally, is adjusted to the decision maker’s attitude towards risk (the 
Hurwicz rule is based on the coefficients of pessimism and optimism). Note that 
the last factor is not considered in the original version of the Ωratio. However, 
in the author’s opinion, DM’s preferences should be taken into account in the 
case of uncertainty. They do have an impact on the final decision. 

It is also worth emphasizing that, for decisions with zero numerators or 
denominators, the Omega(H+B) ratio incorporates principles proposed by 
Michalska [38]. As we observed in the above example, zero numerators and 
denominators may occur when a given decision has no gains or no losses, but 
this is not the only situation where an alternative does not belong to the set A. 
The zero dividend or divisor in the fraction Nj/Dnj also occurs when we deal 
with an extreme optimist (α=0.00) or a radical pessimist (α=1.00), even if the 
decision has both gains and losses!  

Due to the existence of four criteria in the suggested Omega(H+B) rule 
(separate criteria for the sets A, B, C and D), this procedure is designed to 
select the optimal decision and, if possible, generate a ranking of the best 
decisions, i.e. a ranking of the winners from particular groups. As a matter of 
fact, a complete ranking of all alternatives can be obtained merely when (a) all 
of them belong to the same group or (b) the value of the Omega(H+B) ratio is 
the same for all decisions within the framework of particular groups.      

The Omega(H+B) ratio is always a non-negative number, but the 
additional criterion (Nj-Dnj) may be negative. The new measure, like the Omega 
ratio for DMUR, copes with not normally distributed return distributions. The 
significant advantage of the Ω(H+B) rule is the possibility of comparing 
alternatives (strategies, projects) when the likelihood of particular scenarios is 
not known, or when the DM does not intend to use the available data. Future 
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research could take into account the structure of the payoff matrix in 
constructing the previously mentioned measure, as the position of particular 
outcomes in the set of all payoffs connected with a decision seems to be 
important in the decision making process (compare with [17]).       
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