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Abstract. This paper deals with designing a fair public service system. To achieve 
fairness, various schemes are be applied. The strongest criterion in the process is 
minimization of disutility of the worst situated users and then optimization of disutility 
of the better situated users under the condition that disutility of the worst situated users 
does not worsen, otherwise called lexicographical minimization. Focusing on the first 
step, this paper endeavours to find an effective solution to the weighted p-median 
problem based on radial formulation. Attempts at solving real instances when using a 
location-allocation model often fail due to enormous computational time or huge memory 
demands. Radial formulation can be implemented using commercial optimisation 
software. The main goal of this study is to show that the suitability solving of the min-
max optimal public service system design can save computational time. 
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1. Introduction 
 
A classical approach to optimal public service system design usually locates a 
limited number of service centre positions from a given finite set of possible 
locations in order to minimise the sum of distances from a particular system 
user to the nearest located service centre. Regardless of the type of distance, 
representing travelling time, cost or other form of social costs, this approach 
usually involves the weighted p-median problem [8, 9]. Complexity of the p-
median problem and the necessity to solve large instances of the problem has 
led to the search for a suitable algorithm suitable to the task. The study found 
that the radial formulation approach to the problem considerably facilitates 
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establishing the associated solution process [1, 5, 6]. Together with this research, 
attention was given to so-called approximate approaches, which make use of 
commercial IP-solvers and radial formulation with a homogenous system of radii 
related to individual users [7, 12]. These approaches are called approximate not 
because of the solving tool, but the slight impreciseness connected with rounding 
off the distance values to the values from the set of so-called dividing points. 
The approximate approach used for the optimal public service system design 
proved to be a suitable and adequately precise tool when faced with the system 
designer’s lack of time necessary for developing a proprietary informatics-based 
decision support tool. As the public service system designer must often face 
objections from potential system users concerning unfair service accessibility 
provided by the designed system, approaches to fair optimal public service 
system design were broadly studied. The issue of fairness in general emerges 
whenever limited resources should be fairly distributed among participants [2, 
13 and 14]. A plethora of fairness schemes was studied, but the best applicable 
scheme in public service system design is the so-called lexicographic min-max 
criterion. In applying this criterion, the distance or generally disutility of the 
worst situated user is minimised first and only then that of the second worst 
situated user, unless the previously achieved disutility of the worst situated 
users worsens. This step-by-step approach is applied to the remaining users. 
Various approaches to lexicographic minimisation were developed [3, 15]. The 
effective utilisation of the above approaches is based on partitioning the range of 
all possible disutility values, as perceived by a user. The similarity of the range 
of the partitioning and dividing points in the radial approach led us to the idea 
of employing homogenous radial formulation for solving the lexicographic 
location problem.  

This paper focuses on the first step of the lexicographic approach, which 
consists in solving the min-max optimal public service system design, where only 
the worst situated user’s disutility is minimised.  

The remainder of this paper includes the following sections: Section 2 
contains a description of three different effective approaches for searching for a 
min-max optimal design of a public service system. Section 3 reports on 
performed experiments and the results. Finally, Section 4 summarizes the 
benefits of this study and provides some concluding remarks. 
 

2. Min-max optimal design of public service system 
 
2.1.  Location-allocation approach to min-max optimization 
 
The problem involving the min-max public service system design can be 
described by the following denotations. Symbol J denotes the set of user 
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locations and symbol I the set of possible service centre locations. Constant bj is 
the number of users, who share location j. To solve the problem, a maximum of 
p locations is chosen from I so that the maximal disutility perceived by the 
worst situated user is minimal. The value of a user’s disutility is given by the 
mutual positions of a user’s location and the location of the centre providing the 
service. The assumption is that the user’s disutility grows with distance 
increasing between the user and the service centre. Disutility describing the 
distance between locations i and j is denoted as dij. Decisions that determine the 
designed public service system are further modelled by introducing decision 
variables. The variable yi ∈ {0, 1} models the decision at the service centre 
located at i ∈ I. The variable has the value of 1 if a service centre is located at i 
or 0 if otherwise. Furthermore, allocation variables zij ∈ {0, 1} are introduced 
for each i ∈ I and j ∈ J to assign a user location j to the service centre location 
i (zij = 1), which provides the service to the user. Thus, the location-allocation 
model can be formulated as follows. 
 

hMinimize                      (1) 
JjforztoSubject

Ii
ij ∈=∑

∈

1:              (2) 

JjIiforyz iij ∈∈≤ ,             (3) 

py
Ii

i ≤∑
∈

                (4) 

Jjforhzd
Ii

ijij ∈≤∑
∈

            . (5) 

Iiforyi ∈∈ }1,0{             (6) 

JjIiforzij ∈∈∈ ,}1,0{            (7) 
0≥h                (8) 

In this model, the objective function (1) represented by the single variable 
h gives the upper bound of all perceived disutility values. The constraints (2) 
ensure that each user location is assigned to exactly one of the possible service 
centres. The link-up constraints (3) assure that the locations of users are 
assigned only to the located service centres and the constraint (4) limits the 
number of located service centres by p. The link-up constraints (5) ensure that 
each perceived disutility is less than or equal to the upper bound h. 
 
2.2.  Radial approach to min-max optimization 
 
The problem (1) – (8) is also known as the p-centre problem, which is the task of 
determining the maximum  p network nodes as service centre locations so that the 
maximal disutility perceived by the worst situated user is minimal. Nevertheless, the 
p-centre problems associated with the above-mentioned service system design are 
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characterised by a considerably large number of possible service centre locations. 
The location-allocation model constitutes this mathematical programming problem, 
which resists any attempt at a fast solution. A similar situation arises when large 
instances of the p-median problem were solved. At that time, it was found that large 
instances of the covering problem could be easily resolved using common 
optimization software. The necessity of solving large instances of the p-median 
problem has led to radial formulation [1, 4, 5 and 6]. This approach avoids assigning 
the individual user location to some of the located service centres and deals only 
with the information, regardless of whether a particular service centre is located 
within a given user radius. The later approach leads to the model that is similar to 
the set covering problem, and can be easily solved even for large instances using 
common optimisation software. To model a decision on locating a service centre at a 
particular location i, the zero-one variable yi ∈ {0, 1} was used as in the previous 
subsection. In the same sense, the variable h was also applied, i.e. as the upper 
bound of all perceived disutility values. To obtain an upper or a lower bound of the 
original objective function, the range [d0, dm] of all possible m+1 disutility values d0 
< d1 < … < dm from the matrix {dij} is partitioned into v+1 zones according to [7, 
8]. The zones are separated by a finite ascending sequence of so-called dividing 
points D1, D2 … Dv chosen from the sequence d0 < d1 < … < dm, where 0 = d0 = D0 
< D1 and also Dv < Dv+1 = dm. The zone s corresponds to the interval (Ds, Ds+1]. 
The length of the s-th interval is denoted by es for s = 0 … v. Further, auxiliary 
zero-one variables xjs for s = 0 … v are introduced. The variable xjs takes the value of 
1, if the disutility of the user at j ∈ J from the nearest located centre is greater than 
Ds, or takes the value of 0 otherwise. Then, the expression e0xj0 + e1xj1 + … + evxjv 
constitutes an upper approximation of disutility dj* from the user location j to the 
nearest located service centre. If disutility dj* belongs to the interval (Ds, Ds+1], then 
the value of Ds+1 is the upper estimation of dj* with a maximal possible deviation es. 
This requires introducing a zero-one constant aij

s for each triple [i, j, s], where i ∈ I, 
j ∈ J, s ∈ [0 ... v]. The constant aij

s is equal to 1, if disutility dij between the user 
location j and the possible centre location i is less than or equal to Ds, otherwise aij

s 
is equal to 0. Then the radial min-max public service system design problem can be 
formulated as follows. 
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In this model, the objective function (9) defined by the single variable h gives 
the upper bound of all perceived disutility values. The constraints (10) ensure that 
the variables xjs are allowed to take the value of 0, if there is at least one centre 
located in radius Ds from the user location j and the constraint (11) limits the 
number of located service centres by p. The link-up constraints (12) ensure that 
each perceived disutility is less than or equal to the upper bound h. 
 
2.3.  Bisection radial approach to min-max optimization 
 
The bisection radial approach makes use of the radial model, but uses only its 
reduced form in determining whether there is a solution with the objective function 
value less than or equal to the given disutility value Ds. In this model, the zero-one 
variables yi ∈ {0, 1} for i ∈ I are also used to model the decision on locating a 
service centre at the location i. The variables xj are introduced to indicate whether 
the disutility of the users at the location j ∈ J following from the nearest located 
centre is greater than Ds. In such a case, the variable takes the value of 1, or 0 
otherwise. The corresponding model is formulated as follows. 

∑
∈Jj

jxMinimize               (16) 

∑
∈

∈≥+
Ii

i
s
ijj JjforyaxtoSubject 1:            (17) 

py
Ii
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∈

               (18) 

Iiforyi ∈∈ }1,0{                (19) 
Jjforx j ∈≥ 0            (20) 

In this model, the objective function (16) represents the number of user 
locations, where the perceived disutility is greater than Ds. The constraints (17) 
ensure that variables xj are allowed to take the value of 0, if there is at least one 
centre located within radius Ds extending from the user location j and constraint 
(18) limits the number of located service centres by p.  

With the reduced form of the radial approach (16) – (20), the dividing points 
are not needed, because the smallest relevant disutility DmM is searched by the 
bisection method that is applied on the whole disutility range. This allows the exact 
solution of the former problem (1) – (8) to be obtained by iterative solution to the 
radial model (16) – (20), thus enabling to take advantage of the set-covering 
problem. 
 

3. Computational study 
 

3.1.  Research goals 
 
The main goal of this study is to develop and verify an effective method for solving 
the problem associated with the min-max optimal public service system design, and 
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involves identifying the smallest relevant disutility value DmM used in the 
lexicographic optimisation process. The previous experiments described in [11] 
indicated that this important first step is the most time-consuming part of the 
whole algorithm. In the previous section, three possible approaches to this problem 
were suggested: original location-allocation approach, radial approach based on 
radial formulation of the p-median problem and the bisection radial approach based 
on reduced radial formulation accompanied by the bisection method. This paper 
endeavours to answer the question of whether the radial approach considerably 
accelerates the algorithm of the solving the p-centre problem. Therefore, we compare 
the location-allocation approach based on the formulation (1) – (8) with the radial 
approach based on the covering model (9) – (15). Then, we explore the properties of 
the bisection radial approach and compare it to the previous two approaches. When 
using the radial model (9) – (15), the set of optimal dividing points defining 
particular zones was determined by the procedure described in [9, 10].  
 
3.2.  Benchmarks and used optimisation software  
 
All reported experiments were performed using the optimisation software FICO 
Xpress 7.5 (64-bit, release 2013) for both the location-allocation model and the 
radial approaches. The associated code was run on a PC equipped with the Intel® 
Core™ i7 2630QM processor running at 2.0 GHz and 8 GB RAM. 

Particular approaches were tested on the pool of benchmarks obtained from the 
road network of the Slovak Republic. The instances were organised so that they 
corresponded to the administrative organisation of Slovakia. A corresponding 
number of inhabitants bj was taken for each  city and settlement in particular self-
governing region (Bratislava - BA, Banská Bystrica - BB, Košice - KE, Nitra - NR, 
Prešov - PO, Trenčín - TN, Trnava - TT and Žilina - ZA). The coefficients bj were 
rounded to the hundred. The number of possible service centre locations |I| was the 
same as the number of user locations |J| in all solved instances. That meant that 
each community (even the smallest) could represent a possible service centre 
location. The network distance from a user to the nearest located centre was taken 
as a user disutility. To obtain a bigger pool of benchmarks for the computational 
study, the value of p was set in such a way, so that the ratio of |I| to p equalled 2, 
3, 4, 5, 10, 15, 20, 30, 40, 50 and 60 respectively. The number m+1 of all possible 
disutility values in the sequence d0, d1 … dm depended on the parameter p which 
limited the number of located service centres. As shown in [7], when minimizing the 
objective function value of the radial model, the p-1 largest disutility value from 
each matrix column can be excluded as non-relevant. Thus, the value of m+1 may 
differ for each benchmark even for the same self-governing region. The size of the set 
I together with the value of parameter p and the associated value of m+1 for each 
self-governing region have been entered in Table 1 below. The associated results of 
numerical experiments are reported in the following subsection. 
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Region |I|  Case 
1 

Case 
2 

Case 
3 

Case 
4 

Case 
5 

Case 
6 

Case 
7 

Case 
8 

Case 
9 

Case 
10 

Case 
11 

BA 87 
p 44 29 22 18 15 9 6 5 3 2 --- 

m+1 55 62 64 65 66 68 71 72 75 77 --- 

BB 515 
p 258 172 129 103 52 35 26 18 13 11 9 

m+1 107 131 148 155 166 171 173 175 176 177 177 

KE 460 
p 230 154 115 92 46 31 23 16 12 10 8 

m+1 118 156 165 171 182 185 187 189 192 193 194 

NR 350 
p 175 117 88 70 35 24 18 12 9 7 6 

m+1 88 97 102 108 118 121 124 126 128 130 130 

PO 664 
p 332 222 166 133 67 45 34 23 17 14 12 

m+1 135 157 168 180 215 223 226 229 231 233 235 

TN 276 
p 138 92 69 56 28 19 14 10 7 6 5 

m+1 105 117 125 128 134 137 139 141 142 143 144 

TT 249 
p 125 83 63 50 25 17 13 9 7 5 --- 

m+1 98 114 123 129 141 146 149 151 152 154 --- 

ZA 315 
p 158 105 79 63 32 21 16 11 8 7 6 

m+1 101 115 123 128 136 139 141 143 145 148 149 

Table 1. Size of tested benchmarks 

 
3.3.  Results of numerical experiments  
 
The results for the region of Žilina covering all generated instances, which differ for 
parameter p, have been entered in Table 2. The first two columns are necessary for 
identifying the benchmark. As was mentioned previously, parameter p limited the 
number of located service centres with the value of m+1 representing the number of 
all possible disutility values in the sequence d0, d1 … dm, where only the |I| - p +1 
smallest values from each matrix column were included. The experiments were 
organised so that each benchmark was solved using all studied approaches. 
Computational times in seconds for particular method are given in the column 
denoted by Time and the maximum relevant disutility is given in the DmM 
columns. Here, it is important to note that the radial approach described by the 
model (9) – (15) consists of two optimisation processes. First, the optimal set of 
dividing points is computed then the radial model (9) – (15) is solved. Values 
reported in Table 2 represent the global time for both processes. The bisection 
radial approach does not require the dividing points, but the computational process 
is formed by solving of the radial model (16) – (20) in an iterative manner for 
different disutility values Ds as defined by the bisection method applied on the 
whole disutility range. Thus, the reported computational time contains all 
iterations. The total number of performed iterations is given in the column denoted 
by NoI. 
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p m+1 
Location-allocation 
approach (1) – (8) 

Radial approach 
(9) – (15) 

Bisection radial approach 
(16) – (20) 

Time [s] DmM Time [s] DmM Time [s] DmM NoI 
158 101 16.34 4 6.06 4 0.13 4 7 

105 115 39.12 6 5.12 6 0.14 6 7 

79 123 38.92 7 4.89 7 0.15 7 7 

63 128 60.45 8 5.78 8 0.29 8 7 

32 136 66.52 14 3.72 14 0.26 14 8 

21 139 78.21 16 9.24 16 0.24 16 8 

16 141 61.08 20 9.68 21 0.26 20 8 

11 143 68.13 25 13.62 26 0.69 25 8 

8 145 85.19 31 28.06 31 0.33 31 8 

7 148 156.01 34 26.37 36 0.35 34 8 

6 149 154.00 34 29.38 36 0.35 34 8 

Table 2: Results of the experiments for the self-governing region of Žilina with |I| = 315 
possible service centre locations 

 
Since the detailed results for other self-governing regions had similar 

characteristics as was obtained for the region of Žilina, only selected instances for 
the other regions have been reported. The value of parameter p in these instances 
was chosen to correspond to the original set of problems from a real-life emergency 
medical service system (the ratio of |I| to p takes the value around 10). In the 
following Table 3 the same denotation as before is used. 
 

Region |I| p m+1 
Location-allocation 
approach (1) – (8) 

Radial approach 
(9) – (15) 

Bisection radial approach 
(16) – (20) 

Time [s] DmM Time [s] DmM Time [s] DmM NoI 
BA 87 9 68 1.47 14 0.65 14 0.03 14 7 

BB 515 52 166 496.01 13 6.77 13 0.41 13 8 

KE 460 46 182 195.98 12 10.48 12 0.67 12 8 

NR 350 35 118 112.10 13 5.02 13 0.72 13 7 

PO 664 67 215 1042.41 12 17.57 12 2.82 12 8 

TN 276 28 134 29.74 12 3.50 12 0.22 12 8 

TT 249 25 141 68.65 13 3.54 13 0.38 13 8 

ZA 315 32 136 66.52 14 3.72 14 0.26 14 8 

Table 3: Results of the experiments for the self-governing regions of Slovakia for the selected 
parameter p 
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4. Conclusions 
 
The main goal of this study was to introduce and compare three different 
approaches to solving the problem of the min-max optimal public service system 
design for the initial step of the lexicographic optimisation process. We have solved 
several real instances and compared suggested models. 

Based on the reported results, the location-allocation approach proved to be 
the most demanding as concerns computational time. Therefore, this approach was 
not suitable for large instances due to its complexity and memory requirements. 
Simple reformulation of the location-allocation model into the radial form did not 
result in considerable improvement. Despite some reduction of computational time, 
the results were not convincing as had been expected. We presume that the link-up 
constraints of the upper bound definition degraded the useful features of the radial 
model, which proved its effectiveness in solving the min-sum location problem. 
Furthermore, the accuracy of the result strongly depends on disutility 
approximation by implementing dividing points. In some cases, this method 
provided such a solution, which differed considerably from the optimal one. 

The third approach combining the reduced radial model with the bisection 
method applied to the whole disutility range proved to be the most suitable. Its 
main advantage is providing an exact solution and a small computational time. It is 
in two orders faster in comparison to the former location-allocation approach and 
the respective model is much smaller. 

Thus, we can conclude that we have constructed a very useful tool for the 
solving the problem of a middle-sized min-max optimal public service system design, 
which can be implemented simply using readily available commercial optimisation 
software. The initial phase studied and successfully solved in this paper plays a very 
important role in not only the lexicographic optimisation process, but it also 
provides considerable reduction of the set of effective disutility values, thus saving a 
lot of computational time. 
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