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Abstract. The paper deals with the min-max public service system design, where the 
generalized utility is considered. In contrast to the formulations presented in the 
literature, the generalized utility defined for a public service system assumes that the 
user’s utility comes generally from more than one located service center and the 
individual contributions from relevant centers are weighted by reduction coefficients 
depending on a center order. Given that commercial IP-solvers often fail due to 
enormous computational times or extreme memory demands when resolving this issue, 
we suggested and compared several approaches based on a bisection process with the 
purpose of developing an effective max-min approach to the public service system design 
with a generalized utility. 
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1. Introduction 
 
The design of almost any public service system [3, 5, 9, 11] includes determining 
center locations, from which the associated service is distributed to all users of 
the system. Thus the public service system structure is formed by the 
deployment of a limited number of service centers in a finite set of possible 
locations and the objective in the standard formulation is to minimize some 
form of disutility, which is proportional to the distance between serviced objects 
and the nearest service centers. This assumption of being serviced by the nearest 
center is not fully true, when a rescue service system is designed for random 
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service demand and limited capacity at the service centers. During momentary 
demand for a service, another user may occupy the nearest service center. In 
such situations, momentary demand is usually serviced from the second or even 
the third nearest center, if the second nearest center is also occupied. This 
randomly restricted capacity of a service center can be generalized so that the r 
nearest centers influence the disutility perceived by a user, where r is a 
parameter of the generalized disutility model. In this paper, the generalized 
disutility perceived by a user is modelled by a sum of weighted disutility 
contributions from the r nearest centers. The weights will depend only on the 
order of distances from the user to the r nearest centers. The k-th weight can be 
proportional to the probability that the k-1 nearest centers are occupied and the 
k-th nearest center is available [15]. In contrast to the min-sum public service 
system design, when average user disutility is to be minimized, we focus on the 
fair-optimal system design. 

The fairness in general emerges whenever limited resources are to be fairly 
distributed among participants [2, 12, 13]. The strongest scheme is the so called 
lexicographic min-max criterion. By applying this scheme, the disutility 
perceived by the worst situated user is minimized first, and then disutility of the 
second worst situated user is minimized, unless the previously achieved disutility 
of the worst situated users is worsened. This approach is applied step by step to 
the remaining users [14]. The effective use of the approach is based on 
partitioning the range of all possible disutility values, which can be perceived by 
a user. The initial phase of the process is called the min-max optimal public 
service system design. In this paper, we focus on a problem-solving method for 
the initial phase, when the generalized disutility is considered. Based on our 
experiences in designing the min-sum optimal public service system, we found 
that the radial formulation of the problem can considerably accelerate the 
associated problem-solving process [1, 4, 6, 8]. Furthermore, we can start from 
our previous research [7, 10], where we developed and successfully tested radial 
formulation of the min-sum service system design problem with the generalized 
disutility. We want to ascertain whether the radial approach contributes 
considerably to more effective problem-solving of the min-max optimal public 
service system design. The remainder of the paper is organized as follows. 
Section 2 introduces the generalized model of an individual user’s disutility by 
considering more than one contributing center and provides a mathematical 
formulation of the problem based on location-allocation and radial formulations. 
A possible reduction of the set of relevant disutility values is also discussed. 
Section 3 contains a description of suggested approaches to the min-max 
problem. Next, Section 4 presents the numerical experiments, a comparison of 
the suggested approaches and finally, Sections 5 draws the final conclusions. 
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2. Generalized disutility and min-max criterion in the public 
service system 
 
2.1.  Location-allocation formulation 
 
The generalized model of the public service system disutility for an individual 
user is based on the summation of weighted disutility contributions from a given 
number of located service centers. The nonnegative disutility contribution dij 
from a given service center i to disutility perceived by a user located at a 
location j grows with increasing distance between the center and user locations. 
Let us introduce the mapping  : Rr  Rr such that a vector [u1, u2, …, ur] is 
mapped to the vector [uτ(1), u τ(2), …, u τ(r)] using the permutation τ, where the 
values do not decrease uτ(1)  ≤ u τ(2) ….  ≤ u τ(r). Based on this notation, the 
symbol k(ui : i=1, … , r) denotes the k-th component of the resulting r-tuple. If 
I1 denotes the set of all located service centers in the public service system and 
dij denotes the disutility contribution from service center location i to the 
customer j, then the disutility of the system for the user j can be expressed by 
(1), where r denotes the given number of service centers, which take part on the 
utility for the user. The coefficients qk for k=1...r are positive real values, which 
fulfil the following inequalities q1 ≥ q2 ≥ … ≥ qr. According to [15], the 
coefficients can be proportional to the probabilities that only the k-th nearest 
center is available. 


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The problem behind the min-max optimal public service system design with 
generalized disutility for users is determining the service centers by minimizing 
perceived disutility and restricting the total number of located centers up to a 
given number p. To describe the problem, we denote J as the set of user 
locations and I as the set of possible center locations. The basic decisions in any 
problem-solving process relates to the location of centers for possible locations 
from the set I. These decisions will be modelled by binary variables yi for iI, 
where yi takes the value of 1 if a center is to be located at the location i, and 
takes the value of 0 otherwise. Further, we introduce binary variables xijk for 
iI, jJ, k=1 … r. The variable xijk takes the value of 1 specifically for the case, 
when user j obtains the k-th smallest disutility contribution from the service 
location i. The associated model can be written according to [15] as follows: 
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hMinimize                     (2) 
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Constraint (3) limits the number of located service centers whereas 
constraint (4) link up the allocation variables xijk and the location variables yi, 
preventing the variable xijk from assigning a place i without a service center to 
the user j. Constraints (5) ensure that exactly one contribution dij will be 
assigned to the user j as the k-th smallest contribution. Constraints (6) ensure 
that the contribution dij will be assigned to the given user j at most once. The 
link-up constraints (7) ensure that each perceived disutility is less than or equal 
to the upper bound h. 
 
2.2.  Radial formulation 
 
We assume that the range of disutility contribution value covers only non-
negative integers for the range [d0, dm] of all possible disutility values 
d0<d1<…<dm from the matrix {dij}. The values partition the range into m = 
v+1 intervals. The interval s has the form (ds, ds+1]. The length of the s-th 
interval is denoted by es for s = 0 … v. To describe the homogeneous system of 
radii determined by the values d0<d1<…<dm for individual users’ locations, a 
system of binary constants is defined so that the constant aij

s is equal to 1 if and 
only if the disutility contribution dij for a user from location j from the possible 
center location i is less than or equal to ds, otherwise aij

s is equal to 0. Let the 
location variable yi have the same meaning as above. Further, we introduce 
auxiliary binary variables xjsk for jJ, s = 0… v, k = 1 … r in order to model the 
disutility contribution value of the k-th nearest service center to the user j. The 
variable xjsk takes the value 1 if the k-th smallest disutility contribution for the 
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customer j  J is greater than ds and it takes the value 0 otherwise. Then the 
expression e0 xj0k + e1 xj1k + e2 xj2k + e3 xj3k +…+ ev xjvk constitutes the k-th 
smallest disutility contribution dk

j* for customer j. Under above-mentioned 
preconditions, we can describe the min-max-optimal public service system 
design problem (11) - (17) using the variables and other notations introduced 
above. 

hMinimize                     (11) 
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Constraint (12) defines an upper bound p on the number of located centers. 
Since the second term of the left-hand-side of (13) gives the number of centers 
located within radius ds from the user location j, constraint (13) ensures for a 
given j that the sum of variables xjsk over k = 1 … r expresses the complement of 
that number for the value r. The link-up constraints (14) ensure that each 
perceived disutility is less than or equal to the upper bound h. Validity of the 
assertion that the expression on the left-hand side of (14) expresses the sum 
q1di1,j+ q2di2,j +…+ qrdir,j of weighted relevant disutility values from the r nearest 
service centers i1, i2, …, ir to j, is based on the following reasoning. It can be 
easily found that the minimal sum of the variables xjsk over k=1 … r completes 
the number of located service centers in the radius s from user location j to the 
number r. In this way, the sum gives the number t of the nearest service 
centers, whose disutility contribution is greater than or equal to the value ds. As 
the sequence of qk decreases, only xjsk for k=r-t+1, r-t+2 … r must be equal to 
one for the given j and s. This implies that the biggest disutility contribution is 
assigned the smallest value of qk. The left-hand-side of (14) is pushed down by 
the optimization process, and subsequently the constraints xjsk ≤ xjs-1,k for s=1 … 
v must hold due to the construction of aij

s and constraints (13) and furthermore, 
the constraints xjsk ≤ xjsk+1 for k=1 … r-1 must hold due to convexity given by a 
decreasing sequence of qk. 
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2.3.  Discussion on the location-allocation and radial approaches 
 
Both the above mentioned approaches were broadly tested and compared. The 
studies were performed for the case of min-sum optimization, which is used 
when designing the min-sum optimal public service system. In that case, the 
sum of all disutility values perceived by all users is minimized. That means that 
the link-up constraints (7) and (14) were absent in models (2)-(10) and (11)-
(17), respectively. It was found [4, 10] that the radial approach considerably (in 
orders) outperformed the location-allocation approach in terms of computational 
time when designing the min-sum optimal public service system. Nevertheless, 
our preliminary experiments suggested that the link-up constraints for the upper 
bound definition significantly spoil the convergence of the computational process 
based on the branch and bound principle. This deterioration was so strong that 
it discharged the better convergence characteristic of the radial approach. We 
tried to improve convergence of the location-allocation and radial approaches 
using a trick and which was used in fuzzy optimization to avoid solving a non-
linear problem. This approach consists in fixing the upper bound h at some 
chosen value and solving the problem with some surrogate objective function to 
find whether the original problem has a feasible solution with the fixed objective 
function value. This process is repeated for decreasing values of h until no 
feasible solution exists.  

Furthermore, the generalized disutility concept is accompanied by another 
disadvantage comparing to the classical disutility coming only from the nearest 
located center. When designing the min-max public service system, and only a 
classical disutility model. Then, the minimal disutility value of the worst 
situated user can be used as a threshold and all disutility values exceeding the 
threshold can be excluded from the process. The general disutility model does 
not have this useful property, as we will show in the next sub-section. 
 
2.4.  Impossibility of reducing general disutility 

The perceived disutility model is based on the matrix {dij} of integer 
contributions from a possible center location i to a user located at a place j. The 
set of all values contained in the matrix {dij} can be represented by an ordered 
sequence of unique values d0< d1< d2<… dm. In such cases, when the classical 
disutility model is considered, i.e. r =1, and a solution of the problems (2) – 
(10) or (11) – (17) is found for h = dt at step t of the bisection process, then 
both problems can be considerably reduced. The problem (2) – (10) can be 
reduced by excluding all the allocation variables, associated with disutility value 
dij>dt. The problem (11) – (17) can be reduced in the parameter v so that v can 
be set at the value dt-1 instead of the original value dm-1. This reduction can be 
used in further steps, even if only the initial phase of the lexicographic 
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minimization or the complete process is continued. We will show in the next 
example that this straightforward reduction is impossible, when using the 
generalized utility with r ≥ 2.  

Let us consider the network graph depicted in Figure 1. The graph consists 
of the vertex set V = {1, 2, …, 6, j, j’} and the set of weighted edges, where the 
lengths of the edges are placed at individual edges as depicted in the figure. 

 

 

 

 

 

 

 

 

 
Figure 1: Example network 

The counter example can be defined on the network, where J = {j, j’} 
represents the set of user locations and I = {1, 2 … 6} is the set of possible 
center locations. The matrix {dij} of the potential disutility contributions from 
the center locations is presented in Table 1. 
 

Center locations dij dij’

1 7 7
2 7 7
3 7 7
4 6 8
5 10 4
6 10 4

 
Table 1: Potential disutility contributions from the center locations to the user 

locations j and j’. 

 
The disutility contributions from individual centers to a user are defined 

here as the lengths of the shortest paths from the user location to the center 
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locations. We consider the counterexample parameters r = 3 and p = 3. The 
reduction coefficients qk for k=1, 2, 3 are 1, 0.2 and 0.1, respectively. The 
objective is to find three locations from I so that the maximal value from 
generalized disutility perceived by users j, and j’ is minimal. It can be easy 
found that three centers located at locations from I1 = {1, 2, 3} represent a 
feasible solution, where the generalized disutility value for users j and j’ are 
q1d1j+ q2d2j+ q3d3j =1*7+0.2*7+0.1*7=9.1 and q1d1j‘+ q2d2j‘+ q3d3j‘= 
1*7+0.2*7+0.1*7=9.1, respectively. Since the complete sequence of the disutility 
contribution values consists of the values 4, 6, 7, 8 and 10, and the two highest 
values are not used in the discussed solution, it may seem that the values 8 and 
10 could be excluded from the next steps of the computational process, similarly 
to the case of r=1. However, in contrast to the classical case, the reduction of 
these values in the presented example excludes the better solution given by I1 = 
{4, 5, 6}, where generalized disutility values for j and j’ are q1d4j+ q2d5j+ q3d6j 

=1*6+0.2*10+0.1*10=9 and q1d4j‘+ q2d5j‘+ q3d6j‘=1*4+0.2*4+0.1*8=5.6, 
respectively. The maximum of these general disutility values for j and j’ is 9, 
but this solution would be unattainable if the disutility values 8 and 10 were 
excluded. 
 

3. Min-max problem solving methods 
 
We have to note that the min-max problem solution can be obtained directly by 
using a common IP-solver to solve the problems described by models (2)-(10) or 
(11)-(17). 

Another more promising approach is based on a bisection search covering 
the range of the generalized disutility values. This search tries to find the 
minimal value G* for a feasible service system design, where no user perceives a 
disutility higher than G*. 

The searching process consists of individual steps, where step t answers the 
question as to whether there is a feasible solution with maximal perceived 
disutility less than or equal to a given value Gt determined at step t of the 
bisection process.  

If the location-allocation formulation of the public service system design 
problem is considered and a common IP-solver is used, then there are two 
different formulations of the particular problem solved at step t. The first 
formulation consists in minimizing expression (18) subject to (3)-(6), (8), (9) 
and (19). 
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If the optimization process of the used IP-solver leads to an optimal 

solution for the above problem, a feasible solution exists and the lower value 
Gt+1 can be tested. In the opposite case, the searched value G* is higher than 
Gt. 

In the second formulation, the auxiliary variables hj ≥ 0 for jJ are 
introduced and the minimization problem (20) subject to (3)-(6), (8), (9), (21) 
and (22) is solved. 
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If the optimization process of the used IP-solver leads to an optimal 
solution of the above problem and the optimal objective function value is zero, a 
feasible solution for the t-th step problem exists and the lower value Gt+1 can be 
tested. In the opposite case, the searched value G* is higher than Gt. 

A similar construction can be developed for radial formulation, where the 
first formulation consists of minimizing expression (23) subject to (12), (13), 
(15), (16) and (24). 
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In the second formulation, the auxiliary variables hj ≥ 0 for jJ are also 

introduced and the minimization problem (25) subject to (12), (13), (15), (16), 
(26) and (22) is solved. 
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Further, the zero value of the objective function value indicates that a 
feasible solution for the t-th step problem exists. 
 

4. Computational study 
 
To compare the four approaches mentioned in the Section 3 and the two 
approaches in the Section 2, several initial experiments were performed. The 
benchmarks were obtained by modifying a model of a real emergency health 
care system, which was originally designed for a self-governing region of Žilina. 
This system covers the demands of 315 communities - towns and villages, over a 
region covered by 36 ambulance vehicles, where each represents a service center. 
These communities were considered as elements of the set J of users’ locations 
and as elements of the set I of possible service center locations. The disutility 
contribution from a possible location i to a user location j was represented by 
the road network distance between the two locations. In the benchmarks, the 
generalized disutility perceived by a user sharing a given location was the sum 
of three distances from the user’s location to the three nearest vehicle locations. 
The distances are multiplied by the reduction coefficients so that the largest 
coefficient multiplies the smallest distance etc. The four triples q1, q2, q3, q4 of 
the reduction coefficients define the individual benchmarks, and the symbols of 
the triples are used for distinguishing the results obtained using individual 
approaches on the benchmarks. The used triples were q1 = [1, 0.2, 0.1], q2 = [1, 
0.1, 0.05], q3 = [1, 0.5, 0.2] and q4 = [1, 0.8, 0.5]. 

The tested approaches are called LA_EX, RA_EX, LA_BG, RA_BG, 
LA_BGh and RA_BGh. The prefixes LA and RA denote location-allocation 
and radial formulation, respectively. The suffix EX denotes the exact approach, 
when IP-solver solves the problem described by program (2)-(10) or (11)-(17). 
The suffixes BG and BGh denote bisection approaches, where the IP-solver 
solves the optimization problem for a fixed value Gt at each step t. The 
denotation BG corresponds to the models (18), (3)-(6), (8), (9), (19) or (23), 
(12), (13), (15), (16), (24), while the denotation BGh is used for the models 
(20), (3)-(6), (8), (9), (21), (22) or (25), (12), (13), (15), (16), (26), (22) 
depending on location-allocation or radial formulations. To solve the problems 
described by the mentioned models, optimization software FICO Xpress 7.3 (64-
bit, release 2012) was used and the experiments were run on a PC equipped 
with the Intel® Core™ i7 3610 QM processor, at 2.3 GHz and with 8 GB RAM. 
The preliminary experiments showed that the IP-solver required unpredictable 
computational time. When the middle-size integer programming problem is 
solved to optimality, we decided to test each approach during a one-hour period. 
The LA_EX and RA_EX approaches were run for an hour to solve the problem 
for each triple of the reduction coefficients and the objective function values of 
the best found feasible solutions are presented in Table2. The best found 
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objective function values in the computation study were put in the row denoted 
as “Best found solution”. 
 

Approaches q1 q2 q3 q4 
LA_EX 100.4 96.3 77.2 87.5 
RA_EX  25.2 18.95 32.2 43.5 
Best found solution 20.8 17.25 30.6 43.5 

Table 2: The best found objective function values reached by the LA˙EX and RA˙EX 
approaches over a one-hour period. 

 
Comparison of the approaches are based on bisection met with several 

technical obstacles due to the fact that optimization procedures of the IP-solver 
are run at each step of the bisection process, and furthermore, only the first 
feasible solution was searched in order to complete the step, when LA_BG and 
RA_BG are tested. Since the bisection process needs at most seven steps to 
finish the optimization process, the performance of one step was limited to 450 
seconds, to prevent the solver from doing a long search for verifying unnecessary 
optimality. On the other hand, this restriction may cause premature stopping of 
the particular search before the first feasible solution is found, even if a feasible 
solution exists. The bisection process may then fail in separating the correct 
interval containing the searched minimal value. That is why two parameters of 
the bisection processes are studied. The first parameter is the computation time 
CT in seconds and the second one is the number CS of steps, which do not 
terminate prematurely. The symbol G* denotes the best found value of the 
generalized disutility, which corresponds to the maximal disutility perceived by 
the most exposed users of the designed public service system. The results of 
experiments are presented in Table 3. 
 

  q1   q2 q3 q4  
Approaches CS CT [s] G* CS CT [s] G* CS CT [s] G* CS CT [s] G* 

LA_BG 7 1535 20.8 7 1030 17.3 7 1883 30.6 6 1237 46.0 
LA_BGh 5 2548 53.3 3 2922 40.3 5 2704 48.8 4 2587 59.8 
RA_BG 7 2186 20.8 6 1709 23.0 6 2211 34.0 6 1999 46.0 
RA_BGh 5 2640 24.7 6 1687 23.0 5 1779 35.7 4 1933 52.9 

Table 3: Comparison of the bisection approaches 

 
As can be seen, the bisection approaches were able to obtain a better 

solution than the exact approaches in the limited time, but they were not too 
reliable as concerns the possibility to fail at the particular steps of the bisection 
process. The approaches BG (meaning LA_BG and RA_BG) perform better 
than the BGh approach. Surprisingly, the LA_BG approach outperformed the 
radial formulation approach. The unreliability of the bisection approaches 
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evoked the idea to start the bisection process with an initial pre-search based on 
strengthening of the constraints (24). We replaced constraints (24) with (27). 

1
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This approximation of the original constraints enabled solving the problem 
(25), (28), (30), (12) and (15) instead of (23), (12), (13), (15), (16) and (24) at 
each step of the bisection process. 
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This initial phase gives the result presented in Table 4. 
 

q1 q2 q3 q4

CT [s] G* CT [s] G* CT [s] G* CT [s] G*

0.39 32.5 0.38 28.8 0.39 42.5 0.36 57.5
Table 4: Results of the initial phase 

 

5. Conclusions 
 
This paper suggests and compares solving techniques for the min-max public 
service system design with the generalized disutility model. The generalized 
disutility model impacts the complexity of the problems, where such problems 
are resolved using the presented techniques. The consequence of using the 
generalized disutility model when designing the min-max optimal public service 
system is that the suitability of the common approaches to the min-sum public 
service system design changes considerably. We suggested several bisection 
approaches to the problem and explored their effectiveness. In contrast to 
previously obtained results for min-sum designs, the radial approach seems not 
to outperform the location-allocation approach. Furthermore, we suggested 
improving the bisection process requiring the insertion of so a called initial 
phase, which in turn provides a good starting solution with good objective 
function value in very short time. This initial phase algorithm is much faster 
than the continuing bisection process. The min-max design, treated and solved 
in this paper, plays not only important role in lexicographic optimization, but 
also considerably reduces the set of effective general disutility values. 
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