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Abstract. In this paper, the authors have determined certain upper and lower bounds
for Roman domination numbers on cardinal products for any two graphs and some exact
values for the cardinal product of paths and cycles. Roman domination was named after
the historical fact that Roman legions were distributed across regions during the reign of
the Roman Emperor Constantine in the 4th century A.D. Some areas had 1 or 2 legions,
some had no legions, but every area had at least 1 neighboring area with 2 legions. Roman
domination is used even today, not only in military situations, but also in protecting some
locations against fire or crime.
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1. Historical background and basic definitions

In the 4th century A.D., the Roman Empire was under the rule of Constantine the
Great. During that time, the Empire suffered numerous barbaric attacks. Constan-
tine saw that he had to arrange Roman legions in all the strategically important
places for protection. Not only did this placement of Roman legions have to be
successful in defending the Empire, it also had to be easy to maintain.

A location was considered secure if at least one Roman legion was stationed
there. On the other hand, unsecure locations had no stationed legions, but had to
be situated adjacent to at least one secure location. If an unsecure location was
under attack, sending a legion from its secure neighbor would not be effective if it
meant the neighboring location unsecure. Therefore, Constantine decreed that at
least two legions had to be stationed at a location before one of them was sent to
assist its neighbor under attack. In order to reduce costs of maintaining the army,
Constantine had to use as few legions as possible, but still secure the whole Empire.
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This historical background motivated Ian Stuart (1999) to suggest a new variant
of the domination known as Roman domination. By representing locations in the
Empire as graph vertices and roads in the Empire as graph edges, the problem of de-
fending the Roman Empire transforms into a problem of protecting (or dominating)
a graph.

A dominating function on G is any function f : V → {0, 1} satisfying the condi-
tion that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for
which f(v) = 1. Such a function obviously induces the ordered partition (V0, V1) of
V such that each vertex in V0 is adjacent to at least one vertex in V1. Therefore,
the set V1 is called a dominating set.
There is a bijection between the set of all functions f : V → {0, 1} and the set of
all ordered partitions (V0, V1). Thus, the formulation f = (V0, V1) is obtained. The
weight of f equals w(f) =

∑
v∈V f(v) = 0 · |V0|+1 · |V1| = |V1|. Obviously, the most

interesting dominating functions are those of minimum weight.
For a graph G = (V,E), a Roman dominating function (RDF) is a function

f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is
adjacent to at least one vertex v for which f(v) = 2. Since this function also induces
the ordered partition of V , Vi = {v ∈ V : f(v) = i}, i ∈ {0, 1, 2}, the formulation
f = (V0, V1, V2) becomes valid. The weight of an RDF equals w(f) =

∑
v∈V f(v) =

0 · |V0|+ 1 · |V1|+ 2 · |V2| = |V1|+ 2|V2|.
This definition implies that the same graph can be protected under several dif-

ferent RDFs, but the most important RDFs are those for which w(f) achieves its
minimum. This minimum weight is called the Roman domination number of G
and we denote it by γR(G). An RDF which satisfies w(f) = γR(G) is called a
γR-function. It is obvious that γR(G) ≤ |V1|+ 2|V2| for any RDF f = (V0, V1, V2).

The main result describing a connection between domination and the Roman
domination number of an arbitrary graph G is

γ(G) ≤ γR(G) ≤ 2γ(G).

Graphs for which γR(G) = 2γ(G) are called Roman graphs. It is obvious that
|V1| = 0 for every minimum weight RDF of any Roman graph.

Despite the fact that Roman domination has been studied for just a little over a
decade, we already know the exact values of Roman domination numbers for many
classes of graphs ([1],[2],[3]). However, the complexity of some graphs allows the
author(s) to establish only an upper bound.
For more on the domination parameters and the terminology, see [5].

For arbitrary graphs G and H, the cardinal product of G and H is the graph
G×H which satisfies the following

• Its vertex set is V (G×H) = V (G)× V (H);

• Two vertices (g, h), (g′, h′) ∈ V (G×H) are adjacent if and only if g is adjacent
to g′ in G and h is adjacent to h′ in H.

The cardinal product of two paths Pm × Pn has two connected components. If
the vertices of Pm and Pn are denoted by {1, 2, 3, . . . ,m} and {1, 2, 3, . . . , n}, respec-
tively, then the component of Pm × Pn containing the vertex (1, 1) will be denoted
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by K1, and the other component by K2. If at least one of the parameters m or n
is even, components K1 and K2 are isomorphic. Otherwise, the component K1 has
one vertex more than the component K2.

In [1] we proved bounds for Roman domination numbers of the cardinal product
of two paths and two cycles. Now, some bounds for cardinal product of any two
graphs will be provided, and will take the exact values of Roman domination numbers
for products of some graphs..

2. Bounds for Roman domination numbers on the cardinal
product

The degree of a vertex x on graph G is the number of vertices on G which are
adjacent to x. Using ∆(G) ( δ(G)) we denote the maximum (minimum) degree of
vertices on G.

Lemma 1. In [2], it has been proven that for any graph G of order n

γR(G) ≥ 2n

∆+ 1

γR(G) ≤ n
2 + ln((1 + δ(G))/2)

δ(G) + 1
.

Theorem 1. For any two graphs G and H of order m and n

γR(G×H) ≥ 2mn

∆(G)∆(H) + 1

γR(G×H) ≤ mn
2 + ln((1 + δ(G)δ(H))/2)

δ(G)δ(H)) + 1
.

Proof. According to the definition of the cardinal product, vertex (i, j) ∈
V (G ×H), i ∈ V (G), j ∈ V (H), is adjacent to zw vertices in graph G ×H, where
z is the number of the vertices which are adjacent to i in graph G, and w is the
number of the vertices which are adjacent to j in graph H, which implies that
∆(G×H) = ∆(G)×∆(H). (The same is true for minimal degree.) But, since graph
G×H is of order mn, the statement is true based on the previous Lemma.

Here, the exact values of Roman domination numbers for the products of certain
graphs will be taken.

3. Specific values of Roman domination numbers

Observation 1. Let Cn and Pn denote the cycle and path with n vertices, respec-
tively. Then

γR(Cn) = γR(Pn) = ⌈2n
3
⌉.
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Following the investigations into the Cartesian product, cardinal products where
one of the factors is a path are considered.

Theorem 2. For any tree T and any graph G without cycles of odd length we have

γR(P2 × T ) = 2γR(T ) = γR(P2)γR(T )

and
γR(P2 ×G) = 2γR(G) = γR(P2)γR(G).

Proof. Obvious, since P2 × T and P2 × G consist of two disjoint copies of T
and G, respectively.

Theorem 3. For the path P2 and any odd cycle C2n+1, n ≥ 1,

γR(P2 × C2n+1) = ⌈2(4n+ 2)

3
⌉ = 2⌈4n+ 2

3
⌉ = γR(P2)γR(C2n+1)

Proof. Note that the cardinal product of P2 and C2n+1 is isomorphic to C4n+2.
Then Observation 1 implies that

γR(C4n+2) = ⌈2(4n+ 2)

3
⌉ = 2⌈2n+ 1

3
⌉ = γR(P2)γR(C2n+1).

Definition 1. For a fixed m, 1 ≤ m ≤ n, the set (Pk)m = {(i,m)|i = 1, ..., k} is
called a column of Pk × Pn. For a fixed l, 1 ≤ l ≤ k,The set (Pn)l = {(l, j)|j =
1, ..., n} is called a row of Pk × Pn.

Theorem 4. Let n ≥ 2. Then

γR(P3 × Pn) =


6(n4 ) n ≡ 0(mod4),

6⌊n
4 ⌋+ 2 n ≡ 1(mod4),

6⌊n
4 ⌋+ 4 n ≡ 2(mod4),

6⌊n
4 ⌋+ 5 n ≡ 3(mod4)

Proof. First, it is necessary to find the upper bound for γR(P3 × Pn) by con-
structing some Roman dominating sets. Later, the minimality will be proven.

Case 1. n ≡ 0(mod4)
Since, for this case, P3 × Pn consists of two isomorphic components, we consider
only K1. Set S1 = {((2, 4j − 2) ∈ V2; j = 1, ..., n

4 ) ∪ ((2, 4j) ∈ V1; j = 1, ..., n
4 )} is a

Roman dominating set and hence for n ≡ 0(mod4),
γR(P3 × Pn) ≤ 2|S1| = 2(3n

4 ) = 6n
4 .

Case 2. n ≡ 1(mod4)
On K1, the set S1 = {((2, 4j − 2) ∪ (2, n − 1) ∈ V2; j = 1, ..., ⌊n

4 ⌋) ∪ ((2, 4j) ∈
V1; j = 1, ..., ⌊n

4 ⌋ − 1)} is deemed to be a Roman dominating set, and on K2 the set
S2 = {((2, 4j − 1) ∈ V2; j = 1, ..., ⌊n

4 ⌋) ∪ ((2, 4j − 3) ∪ (2, n) ∈ V1; j = 1, ..., ⌊n
4 ⌋)} is

a Roman dominating set.
Hence for n ≡ 1(mod4), γR(P3 × Pn) ≤ |S1| ∪ |S2| = 2(3⌊n

4 ⌋+ 1) = 6⌊n
4 ⌋+ 2.
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Case 3. n ≡ 2(mod4)
Since, for this case, P3×Pn consists of two isomorphic components, onlyK1 is consid-
ered. Set S1 = {((2, 4j−2)∪(2, n) ∈ V2; j = 1, ..., ⌊n

4 ⌋)∪((2, 4j) ∈ V1; j = 1, ..., ⌊n
4 ⌋)}

is a Roman dominating set and hence for n ≡ 2(mod4),
γR(P3 × Pn) ≤ 2|S1| = 2(3⌊n

4 ⌋+ 2) = 6⌊n
4 ⌋+ 4.

Case 4. n ≡ 3(mod4)
On K1, the set S1 = {((2, 4j − 2) ∪ (2, n − 1) ∈ V2; j = 1, ..., ⌊n

4 ⌋) ∪ ((2, 4j) ∈
V1; j = 1, ..., ⌊n

4 ⌋)} is considered a Roman dominating set, and on K2 the set
S2 = {((2, 4j − 1)∪ (2, n) ∈ V2; j = 1, ..., ⌊n

4 ⌋)∪ ((2, 4j − 3) ∈ V1; j = 1, ..., ⌊n
4 ⌋+1)}

is a Roman dominating set, hence for n ≡ 3(mod4),
γR(P3 × Pn) ≤ |S1| ∪ |S2| = (3⌊n

4 ⌋+ 2) + (3⌊n
4 ⌋+ 3) = 6⌊n

4 ⌋+ 5.

We now prove that

γR(P3 × Pn) ≥


6(n4 ) n ≡ 0(mod4),

6⌊n
4 ⌋+ 2 n ≡ 1(mod4),

6⌊n
4 ⌋+ 4 n ≡ 2(mod4),

6⌊n
4 ⌋+ 5 n ≡ 3(mod4)

Proof of the minimality:

Case 1. Let n is even.
We will consider the component K1.

Lemma 2. There is a minimum Roman dominating set D, such that D only con-
tains vertices of the row (2,i), i ∈ {2, 4, ..., n}.
Proof (of the Lemma). Let D be a minimal Roman dominating set that does not
satisfy the assertion. Without loss of generality, D is assumed to contain a vertex
of the row (Pn)1. Let (1, j) be this vertex for some fixed j ∈ {3, ..., n− 1}.

If (1, j) ∈ V1 and (3, j) /∈ D then (2, j − 1) or (2, j + 1) ∈ V2. Then the set
D′ = D\(1, j) also Roman dominates K1 and |D′| ≤ |D|. So, D is not minimal.

If (1, j) ∈ V1 and (3, j) ∈ V1 then (2, j − 1) or (2, j + 1) ∈ D.
a) Let (2, j + 1) ∈ V2 Then the set D′ = {D\((1, j), (3, j))} also Roman dominates
K1. So, D is not minimal.
b) If (2, j+1) ∈ V1, we can also take the same set D′ as in a), and D is not minimal.

If (1, j) ∈ V1 and (3, j) ∈ V2, Then the set D′ = (D\{(1, j), (3, j)})∪{(2, j−1) ∈
V1, (2, j + 1) ∈ V2} also Roman dominates K1.

If (1, j) ∈ V2 and (3, j) /∈ D then (2, j − 1) or (2, j + 1) ∈ V2. Let (2, j + 1) ∈ V2.
Then the set D′ = D\(1, j) ∪ ((2, j − 1) ∈ V2) also Roman dominates K1.

If (1, j) ∈ V2 and (3, j) ∈ V1, then the set D′ = {(D\(1, j), (3, j)) ∪ ((2, j + 1) ∈
V2, (2, j − 1) ∈ V1)} also Roman dominates K1.
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If (1, j) ∈ V2 and (3, j) ∈ V2, Then the set D′ = (D\{(1, j), (3, j)}) ∪ {((2, j −
1), (2, j + 1) ∈ V2)} also Roman dominates K1.

For (1, 1) ∈ D is similarly.

Case 2. Let n be odd.
For both components, the assertion of Lemma 1 can be shown analogously.

From Lemma 1 and condition that each vertex from Vo must be adjacent to at least
one vertex from V2, it follows that, to R-dominate vertices from the first and last
row (on K1), at least vertices {((2, 4j − 2); j = 1, ..., ⌊n

4 ⌋)} must be in V2, and then
the remaining vertices on row (2,i) must be in V1. (For K2 this is similar.) And this
is exactly the structure from the set S = S1 ∪ S2.

Theorem 5. Let n ≥ 2. Then

γR(P4 × Pn) =

{
2n+ 2 n = 5
2n otherwise

Proof.
Since P4 × Pn consists of two isomorphic components, only K1 is considered.

Case 1. n ≡ 0(mod6)
Set S1 = {(2, 6j + 2), (3, 6j + 6) : j = 0, 1, ..., ⌊n

6 ⌋ − 1) ∈ V2;∪(1, 6j + 6), (4, 6j + 2) :
j = 0, 1, ..., ⌊n

6 ⌋ − 1) ∈ V1} is Roman dominating set and hence for n ≡ 0(mod6),
γR(P4 × Pn) ≤ 2|S1| = 2(n).

Case 2. n ≡ 1(mod6)
The set S′

1 = (S1\((1, n − 2) ∈ V1) ∪ ((2, n − 1) ∈ V2)) is considered. This set is a
Roman dominating set and hence for n ≡ 1(mod6),
γR(P4 × Pn) ≤ 2|S′

1| = 2(n).

Case 3. n ≡ 2(mod6)
The set S′

1 = (S1\({(4, n− 6), (1, n− 3)} ∈ V1, (3, n− 3) ∈ V2)∪ ({(3, n− 5), (2, n−
2), (3, n− 1) ∈ V2)) is considered. This set is a Roman dominating set and hence for
n ≡ 2(mod6),
γR(P4 × Pn) ≤ 2|S′

1| = 2(n).

Case 4. n ≡ 3(mod6)
The set S′

1 = (S1 ∪ ((2, n) ∈ V2, (4, n) ∈ V1) is considered. This set is a Roman
dominating set and hence for n ≡ 3(mod6),
γR(P4 × Pn) ≤ 2|S′

1| = 2(n).

Case 5. n ≡ 4(mod6)
The set S′

1 = (S1 ∪ ((2, n − 2), (3, n − 1) ∈ V2)) is considered. This set is a Roman
dominating set and hence for n ≡ 4(mod6),
γR(P4 × Pn) ≤ 2|S′

1| = 2(n).
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Case 6. n ≡ 5(mod6)
The set S′

1 = (S1\((4, n−6) ∈ V1)∪((3, n−7), (3, n−2), (2, n−1) ∈ V2) is considered.
This set is a Roman dominating set and hence for n ≡ 5(mod6),
γR(P4 × Pn) ≤ 2|S′

1| = 2(n).

Proof of minimality:
Let n ≡ 0(mod6) (or n ≡ 3(mod6)). If we partition the graph P4 × Pn into 4 × 3
blocks, it follows that in S1, on each such block there exists 1 vertex from V2 ( weight
2) which Roman dominates 5 vertices, and 1 vertex from V1 (weight 1) which Roman
dominates only itself, and it lies in the first or the last row. In [1] it has been proved
that the optimal Roman dominating set has exactly such structure. For other cases
of n each new column increases the weight of the graph by 1. A smaller increase is
not possible.

For P5 × Pn and P6 × Pn we have the following bounds:

γR(P5 × Pn) ≤

 8(n3 ) n ≡ 0(mod3),
8⌊n

3 ⌋+ 4 n ≡ 1(mod3),
8⌈n

3 ⌉ n ≡ 2(mod4)

γR(P6 × Pn) ≤

 10(n3 ) n ≡ 0(mod3),
10⌊n

3 ⌋+ 2 n ≡ 1(mod3),
10⌊n

3 ⌋+ 4 n ≡ 2(mod3)

We also have the conjecture that equality holds in both bounds, but still remains to
be proven.

4. Conclusion

This paper provides bounds of Roman domination numbers for the product of any
two graphs. Furthermore, exact values (not bounds) are given for the product of
P2 with any graph, and for P3 × Pn and P4 × Pn. Upper bounds for the Roman
domination number of P5 × Pn and P6 × Pn are also given, and conjecture is that
they are exact values. This paper is a continuation of the paper in [1]. Bounds
have been given only for Roman domination numbers of the cardinal product of two
paths and two cycles.

Even today, Roman domination can be applied in the real life, and not only in a
military sense. For instance, in unsecure parts of a town, where police are often called
to intervene, there should be at least two teams of police. Meaning that when, one
team goes out, the other team can react to another call. This service arrangement
already exists in emergency medical stations. Such stations have several teams ready
to intervene. The Roman domination can even be generalized by postulating that 3
or more teams dominate an area.
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[10] Pavlič, P. and Žerovnik, J. (2012). Roman domination number of the Cartesian prod-
ucts of paths and cycles. The Electronic Journal of Combinatorics, 19, Paper P19.


