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Abstract. In the 1.5D terrain guarding problem, an z-monotone polygonal line is defined
by k vertices and a G set of terrain points, i.e. guards, and a N set of terrain points
which guards are to observe (guard). This involves a weighted version of the guarding
problem where guards G have weights. The goal is to determine a minimum weight subset
of G to cover all the points in N, including a version where points from N have demands.
Furthermore, another goal is to determine the smallest subset of GG, such that every point
in N is observed by the required number of guards. Both problems are NP-hard and have
a factor 5 approximation [3, 4]. This paper will show that if the (1 + €)-approximate solver
for the corresponding linear program is a computer, for any € > 0, an extra 1+ ¢ factor will
appear in the final approximation factor for both problems. A comparison will be carried
out the parallel implementation based on GPU and CPU threads with the GUROBI solver,
leading to the conclusion that the respective algorithm outperforms the GUROBI solver on
large and dense inputs typically by one order of magnitude.
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1. Introduction

A terrain T is an z-monotone polygonal chain with a set of vertices, i.e., a piecewise
linear curve intersecting any vertical line at no more than one point. The terrain
polygon Pr determined by 7' is a closed region in a plane bounded from below by
T. The two points p and ¢ in Ppr, are described by saying that p sees ¢ and p ~ q,
if the line segment connecting p and ¢ is contained in Pr, (see Figure 1). This kind
of guarding problem and its generalizations to 3-dimensions are motivated by the
optimal placement of antennas for communication networks [1]. Solving the 1.5D-
terrain guarding problem means selecting the smallest set of guards X from a terrain
T such that for every p € T there is a guard in X that sees p.
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The 1.5D terrain guarding problem is acknowledged to be NP-hard [10]. The
problem can be approximated within 14-¢ for any € > 0 using a local search technique
[7], but how to extend this approach to the weighted the version and version with
demands remains unclear. A first constant factor approximation algorithms based
on LP rounding is presented in [3] and [4]. Thus far, there is no knowledge of any
attempts at implementations, because all the approaches prior to [3] and [4] are
relatively complicated to implement.

This paper presents the implementation of terrain guarding algorithms from the
results [3] and [4] and show how approximately solving corresponding LP of the
terrain guarding problem in an approximate manner can induce an approximation
error in these problems, but also increase efficiency in terms of error.

1.1. Preliminaries

Let T be a 1.5D terrain and let V(T') denote the vertices of the T. The complexity
of 1.5D terrain is the number of terrain vertices |V(T)|. Hence, p < ¢ if p lies
to the left of ¢ and in a symmetrical sense, it is true that p > ¢ if p lies to the
right of ¢. Furthermore, V(q) := {p : p € T,q ~ p} denotes a visibility region of a
point g. The left and right of the visibility region related to a point ¢ is defined as

Vi(q) ={p:p€V(q),p < q} and Vr(q) = {p: p € V(q),p > q}, respectively.

9z gy 1 Px Dy 1
P(Agp) =3 va vy 1[>0 P(Apg) =1 v, o, 1]<0
P Py 1 vf 9o g9y 1

Figure 1: Visibility on 1.5D Terrains

Throughout this paper, the discrete version of the problem is considered, i.e. finite
set of possible guards G C T and a finite set of points N C T are given, with the
goal of selecting a minimum set of guards X C G to guard N. It can be shown that
the 1.5D terrain guarding problem can be reduced to discrete one by assigning extra
O(n?) points to the terrain (see [1]). In this work, implementing 2 variations of the
discrete 1.5D terrain guarding problem is presented as follows:

e The weighted 1.5D terrain guarding problem refers to a 1.5D terrain instance T’
with a set of points N C T and a set of guards G C T with associated weights
w: G — R;. The goal is to find a minimum weight set of guards X C G to
guard all the points in V.

e The 1.5D terrain guarding problem with demands refers to a 1.5D terrain in-
stance T with a set of guards G C T and a set of points N C T with an
associated demand function d: N — Z,. The goal is to find a minimum guard
set X C G such that every point p € N is guarded by at least d, := d(p)
different guards.
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Let A be a non-negative m x n real matrix, and b, ¢ and u the vectors consisting
of non-negative real values. The following special classes of linear programs are
considered in this paper:

e A packing-covering problem is a primal-dual linear program (LP) pair:
max{cTz: Az < b,z >0} = min{dTy: ATy > ¢,y >0}, (1)

o A multi-cover problem with boxed constraints (as a special case of a mixed
packing-covering problem) is a primal-dual LP pair:
. T, . _ T, . T_. AT,
znel]g}l{c z: Az > b,z <u,z >0} = yERgll?i(ER”{b y—u z: Ay—z2<cy>0,2>0} (2)
The strong duality property implies equality in (1) and (2) (for more information
see [2] and references therein). The interest is to find efficiently an approximate
solution to the problem (1) and (2) respectively (note that these linear programs
can be solved in polynomial time due to [9]).

Definition 1. Let € > 0 be some arbitrary constant. An (1 + €)-approximation for
(1) is a primal-dual feasible pair (z,y) such that bTy < (1+ €)cl .

Definition 2. Let € > 0 be some arbitrary constant. An (1 + €)-approximation for
(2) is a primal-dual feasible pair (z, (y,2)) such that cT'x < (14 ¢€)(bTy — uT2).

1.2. Programming environment

GUROBI is a state-of-the-art solver for mixed integer linear and mixed integer quadratic
programming. The tool employs several parallel methods to find efficiently solutions
to corresponding optimization problems (more details in [8]). CUDA (Compute
Unified Device Architecture) is a computing engine developed for NVIDIA graph-
ics processing units (GPUs) supporting both graphics and general computing. The
CUDA API enables parallel computation over a large number of threads running
on GPU cores. An extensive description of the CUDA architecture and CUDA API
usage can be found in textbook [13].

2. Implementation of the 1.5D terrain guarding algorithms

This section presents an implementation model of guarding 1.5D terrains. The
generic algorithm for the 1.5D terrain guarding problem can be expressed as an
algorithm shown in Figure 2.

The CALCULATE-VISIBILITY procedure receives as input a 1.5D terrain T', a set
of guards G and a set of vertices IV, and subsequently calculates a visibility matrix
for the pairs G, IV of terrain T, i.e. for every point p € N and every guard g € G it
calculates the relation g ~ p by checking whether all terrain vertices v between g and
p lie strictly below this segment. This step can be done by checking if the triangular
area formed by these 3 points is non-negative, as is shown in the Figure 3. The
overall time of this step is O(mnk) where k = |V(T)| (computing the determinant
takes O(1) time). Due to the assumption that there are polynomially many guards
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procedure TERRAIN-GUARDING(T, G, N, w, d)
A <+ CALCULATE-VISIBILTY(T, G, N)
(A, w,d,u,m,n) + LP-FORM(A, w, d)
(z*,y*) + LP-SOLVE(A, w, d, u,m,n,¢)
Xo < FIND-GUARD-POINTS(G N N, z*, o)
(G',N’,w,d") + REDUCE-INSTANCE(Xy, d)
(d},,d’s) < DECOMPOSE(G', N', d’, z*)
X1 < LEFT-GUARDS(T, G’, N, w, d} )
Xp < RIGHT-GUARDS(T, G', N, w, d’g)
X+ XoU XL @] XR
return X

POV RAD IR W

— =

Figure 2: Generic algorithm for guarding 1.5D terrains

1|{<0

Figure 3: Determinant method for computing visibility on the terrain.

and points, the visibility relation is presented as a binary matrix A € R”™*"™ for the
purpose of fast visibility queries (A[p]lg] =1 < p ~ g).

The LP-FORM procedure defines an integer linear program relaxation (i.e, a
linear program) for the corresponding terrain guarding problem:

m]iRn{wa: Az <d,z <wu,z >0} (3)
zeR™

where A is the computed visibility matrix, w are weights and d demands. Vector u
is the upper-bound number of copies of any guard that can be seen.

The fundamental part of the algorithm is the LP-SOLVE procedure, which solves
(3) with respect to the error parameter € > 0. If € = 0 then the procedure determines
an optimal solution using the state-of-the art LP solvers, else, it returns (1 + €)-
approximation using the approximate solvers presented in [6] and [5] where the
running-time explicitly depends on the size of problem and the 1/e parameter.

In the FIND-GUARD-POINTS procedure, the algorithm chooses the guards acting
also as points and which have large fractional values with respect to x* and the
parameter « > 0, thus reducing the problem instance and achieving the condition
required by the combinatorial algorithms developed in [3] and [4].

The LEFT-GUARDING and RIGHT-GUARDING procedures are implementations
of the combinatorial algorithms for finding an optimal set of left and right guards.
It’s implementation varies depending on the problem instance (weighted guarding
or guarding with demands).
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2.1. Implementation of weighted 1.5D terrain guarding through
algorithms

The problem instance is represented by (3) whered, = 1,Vp € N and uy, = 1,Vg € G.
The constraint 0 < x < u results in > 0 because every point needs no more than
one guard. The problem (3) is then a dual of packing-covering problem (1).

The LP-SOLVE for € > 0 gives an (1 + €)-approximation but with an 1/€? depen-
dency in running time [6]. The complete CUDA algorithm for the packing-covering
approximate solver is given in [11].

1: procedure PC-APX(A,b,c,¢)
INPUT: A € R’jx",b ERT,ceR}, e>0
oUTPUT: (x*,y*) such that bTy* < (14 €)cTa*

2: e +—1-1/V/1T+e, 5(—(1+5’)((1+e’)m)’1/6,

3: z0(4j) <0, j=1,...,n

4: yo(i) < 6/b(i), i=1,...,m

5. L) « 5 Al Nyl /()

6: P(0)«+ 0, D)« m-6 > primal-dual values
7 while D(k) < 1 do

8: q < argmin; Ly, (j)

9: p < argmin; b(i)/A(%, q)

10: zi(q) + zk—1(q) + b(»)/A(p, )

11: V(i) < yi_1(d) (1+e’%), i=1,...,m
12: P(k) < P(k — 1) + c(q)b(p) /A(p, q)

13: D(k) « D(k — 1) + c(a)b(p)/A(p, ) - p(Yr—1)

14: p <= ming Ly, ()

15: z(j) « @4(5)/logi L (L +€)/8), j=1,2,...,n
16: y() < we(i)/p, 1=1,2,....,m

17: return (z,y)

Figure 4: The approzimation scheme for packing-covering problems from [6]

Suppose, further on, the case when the algorithm in Figure 4 returns a (1 + €)-
approximation of (3) (treated as a covering problem, and appropriate dual packing
problem), namely, (2/,v').

FIND-GUARD-POINTS finds the point-guards Xo = {g: g € G N N,z > a}
where « = 1/5. Updated terrain guarding instance is N’ = N\ {p: g ~p,9 € Xo}
and G’ = G'\ X, obtain the condition G' N N’ = {).

The DECOMPOSE procedure defines the partition of points N’ as two sets N,
and Ny as

Np = {p EN| X ev. (e Tg = %} Nr = {P EN| X yevnmng Tg = %}
(4)
In terms of generic algorithm notation, wesayp € N;, & d,, =landp € N &
dp,r = 1. The left guarding problem can be solved in polynomial time optimally as
shown in [3]. The simple procedure shown in Figure 5 is a greedy algorithm that
finds a optimal set of left guards X, from G’ that guard all the points in Ny, (see [12,
on croatian] for a complete proof). By a symmetric formulation, the WEIGHTED-
RIGHT-GUARDING procedure finds an optimal set of right guards Xg from G’ that
guards Ng. Both algorithms run in O(mn) time.



84 Goran Martinovié¢, Domagoj Matijevié and Domagoj Severdija

1: procedure WEIGHTED-LEFT-GUARDING(T, G, N, w)

2 PROCESSING FROM THE LEFT:

3 X+ 0,Y«0

4 w'(g) + w(g), Vgedaq

5: for p € N processed from left to right do

6: if Vr(p) N X =0 then

7 gp « argmin{w’(g): g € Vr(p)}

8 w'(g) < w'(g) —w'(9p), Vg € Vr.(p) \ {gp}
9 X+ XU{gp}, Y+<YU{p}

10: PRUNING STEP:

11: for p € Y processed from right to left do
12: if (X \{gp}) NVL(p)# 0 then

13: X «+— X\ {9p}

14: return X

Figure 5: Finding an optimal set of left guards

Let (2*,y*) denote an optimal (fractional) solution of (3). The LP-SOLVE pro-
cedure returns (z’,y’) such that

Zyl’,gZy;:ngngngm'gg(l-i-e)Zy;S(l-i-e)Zy; (5)

peEN peEN geqG geG peEN peEN

The argument is put forward that using the (1 4 ¢)-approximation can produce
an approximate solution that arbitrarily is not far from the optimal solution.

Theorem 1. The weighted 1.5D terrain guarding problem with m points and n
guards can be approzvimated by the 5(1+¢) factor in O(mnk+ e 2n?mlogn) time on
a RAM machine, and in O(mnk + e 2mnlognlogm) time on the PRAM machine
where € > 0 is an error in the (14¢€)-approximation of the corresponding LP solution.

Proof. The analysis strictly follows that of [3] which is given for e = 0. The cost
of rounded point-guards is w(Xp) < + D gex, Woly < 11+e >_pen Yp- Moreover,
using the same analysis, it can be shown that w(X) <5/2 deG’ wyxy, therefore,
overall and using (5):

w(Xo) +w(Xr) +w(Xgr) <5 Z ng; +5 Z ng/g <5( Z wgac; + Z wg:c'g)
IS geG’ 9E€Xo geq’

<5(1+€) Yy, <5(1+e€) Y ys <5(1+€OPT
PEN pPEN

where OPT is an optimal solution of the weighted problem. The running time of
the algorithm takes O(e ?n?mlogn) steps on the RAM machine due to [6] and the
CUDA algorithm takes O(e~?mnlognlogm) time due to [11].

O

2.2. Implementation of the 1.5D terrain guarding problem with
demands through algorithms

The problem instance is represented by (3) where w, = 1,uy, = 1,Yg € G. Due to
non-trivial demands, the condition 0 < z < u cannot be simplified and (3) is then a
primal of the multi-cover problem with boxed constraints (2).
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If the error parameter ¢ = 0, then the procedure LP-SOLVE uses the GUROBI
LP solver to solve optimally LP, otherwise, an approximate solver for (2) from [5] is
used.

Fleischer [5] proposed the approximation algorithm based on primal-dual updates
described in Figure 6.

1: procedure MULTI-COVER-APX (A, b, ¢, €)
INPUT: A € ]RTX",b €LY, ceERY, uell, e>0
ouTPUT: (¥, (y*,2")) as (1 + €)-approximation of (2).

2: §— (14 e)((1+e)cTu)"te

3 2() ~u@), j=1,2,...,n,3" <=2, (y,2) =(0,0)
4 La(i) := 32, A(, 5)z(5)/b(0)

5: o™ < min; L, (i), p < argmin; L (%)

6: while ¢’z < 1 do

7 a <+ (14 ¢€)L,(p)

8: while L, (p) < a and ¢’z < 1 do

9: Qp) = {1 <j < n: 2(j) <u(ja}

10: 7+ minjeq(p) A((py)]) min{1, - (j)a I(J)}
11 y(p) < y(p) +n v

12: 2(5) < 2() (1 + 2281 G e Q(p)
13: 2(7) «+ 2(J) + nA(p,5), J € Q(P)

14: p < arg mml L (i

15: if cTz/a < cTz*/a* then

16: ¥+ x, a* —

17: z* ez*/a*,(y*,z*)&@(y,z)

18: return (z*, (y*, 2%))

Figure 6: The approxzimation scheme for multi-cover problems with boxed constraints from

5]

Theorem 2 ([5]). Algorithm given in Figure 6 in O(e~2n?mlog(cTu)) time returns
an (1 + €)-approximation of (2).

Let 2’ be a feasible solution from a (1 + €)-approximation of (3) returned by
Algorithm 6.
An update is applied to the problem instance with Xy = {z,: g € GN N, :c’ >

a} where o = g dmm‘“ (dmm is a minimum demand of points from N) such that
G=G\ Xy, G= G"\ 0.dp =d, —{g: 9 ~p,g € Xo}| achieving the G'N N’ =0
condition.

The DECOMPOSE procedure defines the portions of demand that should be met
from left and right with respect to the fractional value z':

[ ) (3 )| (o) [ 2 i)

9EVT (P) 9EVL(p)

A combinatorial algorithm is given in Figure 7 from [4] that can be used to find
a minimum set of left guards X, such that for every point p € N’ there are d L
different guards in X, that see the point p. By symmetry, the version for the rlght
guard, namely, RIGHT-MULTI-GUARDING algorithm produces a set of optimal right
guards. Both algorithms run in O(mn) time.
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procedure LEFT-MULTI-GUARDING(T, G, N, dr)
X<« 0
for p € N processed from left to right do
while | X NV (p)| < dp 1 do
X + X UL(p)

return X

Figure 7: Finding an optimal set of left guards where points have demands.

Let (2/, (v', 2)) be a primal-dual (1+¢)-approximation returned by the LP-SOLVE
procedure implemented in Figure 6. By definition of the (1 4 €)-approximation and
the strong LP duality property, the following condition is achieved:

Do =D s =D wp s w140y (dyy =) %)

peEN geG geG geG peEN geG

Theorem 3. For the 1.5D terrain guarding problem with demands there is a 5/2(1+
€)(141/duin ) -approzimation algorithm in O(mnk+e2n?mlogn) time on the RAM
machine.

Proof. Following the analysis from [4] we can construct a feasible solution for left

and right multi-guarding problem (as an LP formulation) with respect to z’. The
cost of the returned solution is

1 1
|Xo| + | Xz| + | XR| < - ( Z xy + Z xé) < a(l+€)(2 dpy), — Z zg)

geXo geG’ peEN' geG’

5
< -1
<sa+

)(1 + €)OPT

min

where OPT denotes the optimal solution of guarding problem with demands.

3. Experiments

This section tests the terrain guarding approximation algorithms against the GUROBI
integer Linear Programming solver for 1.5D terrain guarding instances. The imple-
mentation presented here uses the CUDA programming environment for the algo-
rithm given in Figure 4 and POSIX threads to solve the left and right guarding
problems in parallel.

3.1. Platform

All the measurements were carried out on the quad-core Intel 2.8 MHz 15 processor
with 8 Gb RAM coupled with a GPU processing unit type TESLA C2070 and 6 GB
of DDR5 RAM having 448 massively threaded processing cores at a clock rate of
1.15 GHz that runs 30000 threads in parallel, and a high memory bandwidth of 144
GB/s.
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3.2. Tests and comparisons

Testbeds are 1.5D terrains and every vertex of the terrain is a guard and a point,
ie. G = N = V(T) with trivial weights and demands. The input depends on terrain
sizes, which are randomly generated.

Table 1 and Table 2 show the obtained experimental results for the testbeds.
The number of terrain vertices is denoted as |V (T")| and d represents a density of
the corresponding visibility matrix. The optimal solution value returned by the
GUROBI ILP solver is given as GRB-OPT with a running time of GRB-TIME.
The approximation value returned by the algorithm is given in TG-APX and the
running time is given as TG-TIME. The approximation ratio is expressed as . The

: : o . GRB-TIME
performance ratio of the algorithm and the GUROBI solver is given in TETIME -
Time measurements are expressed in seconds.

[ V(D) ] d | GRB-OPT | TG-APX | v | GRB-TIME | TG-TIME | SEETIME

10 | 0.44 2 3 ] 1.50 0.00 0.00 0.20
0.52 2 6 | 3.00 0.00 0.00 0.20

0.72 2 3| 1.50 0.00 0.00 0.27

100 | 0.28 1 6 | 1.50 0.06 0.16 0.38
0.58 2 2 | 1.00 0.01 0.04 0.24

0.76 1 2 | 2.00 0.01 0.04 0.27

1000 | 0.20 13 22 | 1.69 1.58 182 0.32
0.52 1 2 | 2.00 0.29 0.44 0.65

0.63 1 2 | 2,00 0.43 0.43 1.00

2000 | 0.31 2 2 | 1.00 1.38 1.10 1.25
0.55 1 2 | 2.00 1.83 1.03 1.78

0.70 1 2 | 2.00 2.94 1.03 2.87

5000 | 0.18 2 2 | 1.00 9.35 5.01 1.56
0.55 1 2 | 2.00 93.98 4.76 19.75

0.72 1 2 | 2.00 107.96 4.75 22.71

8000 | 0.19 35 148 | 1.740 98.00 902.662 0.11
0.54 1 2 | 2.00 245.56 11.609 21.15

0.65 1 2 | 2.00 284.10 11.572 24.55

Table 1: GUROBI solver vs 5.5-approzimation (e = 0.1).

[ VDI ] d | GRB-OPT | TG-APX | v [ GRB-TIME [ TG-TIME [ SEZTIME
10 | 0.44 2 3 ] 1.50 0.00 0.00 0.91
0.52 2 6 | 3.00 0.00 0.00 1.00

0.72 2 3| 1.50 0.00 0.00 1.00

100 | 0.28 1 6 | 1.50 0.06 0.04 1.43
0.58 2 2 | 1.00 0.01 0.01 0.79

0.76 1 2 | 2.00 0.01 0.01 0.71

1000 | 0.20 13 21 1.62 158 145 1.09
0.52 1 2 | 2.00 0.29 0.16 1.80

0.63 1 2 | 2.00 0.43 0.16 2.68

2000 | 0.31 2 2 | 1.00 1.38 0.37 3.75
0.55 1 2 | 2.00 1.83 0.37 4.89

0.70 1 2 | 2.00 2.94 0.57 5.20

5000 | 0.18 2 2 | 1.00 9.35 1.70 5.51
0.55 1 2 | 2.00 93.98 1.63 57.55

0.72 1 2 | 2.00 107.96 1.62 66.55

8000 | 0.19 85 148 | 1.740 98.00 257.94 0.38
0.54 1 2 | 2.00 245.56 3.95 62.19

0.65 1 2 | 2.00 284.10 3.93 72.28

Table 2: GUROBI solver vs 6-approzimation (e = 0.2).
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Based on the above results, it is evident that the algorithm outperforms the
GUROBI ILP solver for larger and denser inputs. The reason for this is that the
current algorithm implementation has been developed for dense matrices and the
overhead for initialization of GPU computation (mapping threads, copying data to
device memory etc.) as is evident on lower inputs. Moreover, for larger inputs,
CUDA achieves better performance due to the large number of threads working in
parallel. It is also worth noting that the number of algorithm iterations given in
Figure 4 is much smaller for a greater e. The approximation ratio achieved in these
examples is not as strict as in the analysis.

4. Conclusion

This paper has presented implementation of state-of-the-art approximation algo-
rithms for 2 variants of the 1.5D terrain guarding problem in a multi-threaded
parallel environment using CUDA and POSIX threads. In applying the (1 + ¢)-
approximation from LP solvers, an error in overall approximation was induced but
an explicit dependency of the approximation algorithms in terms of 1/e? was ob-
tained. The implementation was tested with the GUROBI integer linear programming
solver and has led to the conclusion that the algorithm behaves well on large and
dense inputs depending on the choices of e.

Future work on the topic should focus on rewriting CUDA programs for sparse
matrices, which would also improve the performance of the algorithms applied to
terrain inputs with sparse visibility matrices. The implementation can be used in
heuristics for solving guarding problems on 3D terrains.
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