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Color Image Segmentation Based on Intensity and Hue
Clustering – LS and LAD Approaches Comparison

Abstract. This paper addresses the color image segmentation problem. Motivated by the
method for color image segmentation based on intensity and hue clustering proposed in the
paper [22] we give some theoretical explanations for this method that directly follows from
the natural connection between Maximum Likelihood approach and Least Square or Least
Absolute Deviation clustering optimality criteria. The method is tested and illustrated on
a few typical situations, such as the presence of outliers among the data.
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1. Introduction

The term Image Segmentation refers to partitioning an image into two or more dif-
ferent regions that are “similar” in some image characteristic. It is an important task
in image analysis process because all subsequent tasks, such as object recognition,
depends on the quality of the segmentation. For this reason, methods for successful
image segmentation are constantly being improved.

Most attention on image segmentation has been focused on gray scale images (see
e.g. [12]). However, there are situations where this approach is not appropriate, and
color components of the image have to be taken into account. Computers mostly use
RGB (Red, Green, Blue) color space for image storage and manipulation, but it does
not coincide with the vision psychology of human eyes because of high correlation
among its three components (see e.g. [1]). For this reason, we will use HSI color
space which is more compatible with the human vision.

In HSI color representation the I component represents intensity, H component
represents hue, and S component represents saturation. To convert RGB represen-
tation to HSI representation, first compute [1]: Y
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Thereafter, HSI values can be computed as:

I = Y, S =
√

C2
1 + C2

2 , H =

{
arccos(C2

S ) C1 ≥ 0
2π − arccos(C2

S ) C1 < 0.
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2 Color Image Segmentation

Among the three components of HSI representation, the most important ones are H
and I, therefore, they will be used in the segmentation process. In that sense color
image could be represented (see e.g. [22]) by intensity-data set I = {Ii ∈ R : i =
1, . . . ,mI} ⊂ R, with corresponding weights wI

i > 0, where Ii ̸= Ij , i ̸= j, and hue-
data set H = {Hi : i = 1, . . . ,mH} ⊂ [0, 2π⟩ with corresponding weights wH

i > 0,
where Hi ̸= Hj , i ̸= j.

Our starting point is the method proposed in the paper [22], which utilize Least
Squares optimality criterion for image clustering. We will extend that method by
using the Least Absolute Deviation criterion and give some illustrative examples.

The paper is organized as follows. In the next section briefly introduction to the
weighted clustering problem is given. In Sections 3 and 4, the one-dimensional clus-
tering problem in intensity and hue space is considered and corresponding connection
with Maximum Likelihood approach is given. On the basis of the relation between
one-dimensional optimal partitions, image is represented in high-dimensional space.
In Section 5 clustering in high-dimensional space is considered. Section 6 gives
several illustrative numerical examples.

2. Weighted clustering problem

A partition of the set A = {ai ∈ Rn : i = 1, . . . ,m} ⊂ Rn with the corresponding
weights wi > 0 into k disjoint subsets π1, . . . , πk, 1 ≤ k ≤ m, such that

k∪
j=1

πj = A, πr ∩ πs = ∅, r ̸= s, |πj | ≥ 1, j = 1, . . . , k,

will be denoted by Π(A) = {π1, . . . , πk}, and the elements π1, . . . , πk of such partition
are called clusters in Rn.

If d : Rn×Rn → [0,+∞⟩ is some distance-like function (see e.g. [9, 20]), then, by
applying the minimum distance condition (see e.g. [9, 19]), with each cluster πj ∈ Π
we can associate its center cj , defined by

cj = c(πj) := argmin
x∈conv(πj)

∑
ai∈πj

wid(x, ai). (1)

If we define an objective function F : P(A, k) → [0,+∞⟩ on the set of all parti-
tions P(A, k) of the set A containing k clusters by

F(Π) =
k∑

j=1

∑
ai∈πj

wid(cj , ai),

then we define an optimal partition Π⋆, such that F(Π⋆) = min
Π∈P(A,k)

F(Π).

Conversely, for a given set of centers c1, . . . , ck ∈ Rn applying the minimal dis-
tance condition we can define the partition Π = {π1, . . . , πk} of the set A in the
following way: πj = {a ∈ A : d(cj , a) ≤ d(cs, a), ∀s = 1, . . . , k}, j = 1, . . . , k, where
one has to take care that every element of the set A occurs in one and only one
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cluster. Therefore the problem of finding an optimal partition of the set A can be
reduced to the following optimization problem

min
c1,...,ck∈Rn

F (c1, . . . , ck), F (c1, . . . , ck) =
m∑
i=1

min
j=1,...,k

wid(cj , ai), (2)

where F : Rkn → R+, and R+ is the set of all vectors in Rn with nonnegative
components. In general, this functional is not differentiable and it may have several
local minima. Optimization problem (2) can also be found in literature as a k-
median problem and it is most frequently solved by various metaheuristic methods
[4] or by applying integer programming [13, 17].

The most known algorithm for searching for a locally optimal partition is the
k-means algorithm [3, 10], which can be described by two steps which are iteratively
repeated.

Step 1 For each set of mutually different assignment points c1, . . . , ck ∈ Rn the set
A should be divided into k disjoint unempty clusters π1, . . . , πk by using the
minimal distance principle

πj = {a ∈ A : d(cj , a) ≤ d(cs, a), ∀s = 1, . . . , k}, j = 1, . . . , k. (3)

Step 2 Given a partition Π = {π1, . . . , πk} of the set A, one can define the corre-
sponding centroids by

cj = argmin
x∈conv πj

∑
ai∈πj

wid(x, ai), j = 1, . . . , k. (4)

Let cj be locally optimal centers of clusters πj , j = 1, . . . , k. For every ai ∈ A
define a set of indexes of the nearest assignment points

Ui = {j ∈ J : d(cj , ai) ≤ d(cs, ai), ∀s ∈ J}, J = {1, . . . , k}. (5)

Note that the set Ui is unempty, and that it can be a single member set or a
multi-member set. If for every ai ∈ A the set Ui is a single member set, then a cor-
responding partition Π = {π(z1), . . . , π(zk)} is said to be a well-separated partition,
i.e. the partition Π is said to be a well-separated partition if and only if the following
holds

(∀ai ∈ A)(∃j ∈ J) d(cj , ai) < d(cs, ai), ∀ s ∈ J \ {j}.

3. Least square and least absolute deviation one dimensional
weighted clustering in intensity space

The set I = {Ii ∈ R : i = 1, . . . ,mI} ⊂ R of intensity-data, with corresponding
weights wI

i > 0 has to be divided into kI clusters ΠI = {πI
1 , . . . , π

I
kI
}, 1 ≤ kI ≤ mI .

Note that without loss of generality we can suppose that Ii ̸= Ij , i ̸= j. In this
section, we consider a one-dimensional clustering problem using the Least Squares
(LS), based on LS distance–like function d2(x, y) = (x− y)2 and the Least Absolute
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Deviations (LAD) – optimality criterion, based on LAD distance function d1(x, y) =
|x − y|. The problem of finding an optimal partition of the set I according to (2)
reduces to the following nonconvex and nonsmooth optimization problem

min
c1,...,ck∈R

F (p)(c1, . . . , ck), F (p)(c1, . . . , ck) =

mI∑
i=1

min
j=1,...,kI

wI
i dp(cj , Ii), p = 1, 2.

It is well known that generally, the LAD approach ignores outliers among the data
[2, 16], while the LS approach stresses them.

In order to apply the k−means algorithm it is necessary to efficiently determine
the centers of clusters in accordance with (1). It can be shown that for p = 1, 2
the centers cIj (p) of clusters π

I
j (p), j = 1, . . . , kI can be explicitly determined by the

following formula:

cIj (p) = argmin
x∈conv πI

j (p)

∑
Ii∈πI

j (p)

wI
i dp(x, Ii) =


med

Ii∈πI
j (1)

(wI
i , Ii), p = 1

mean
Ii∈πI

j (2)
(wI

i , Ii), p = 2,

where med
Ii∈πI

j (1)
(wI

i , Ii) is a weighted median of the set πI
j (1) (see e.g. [14, 15, 21]) and

mean
Ii∈πI

j (2)
(wI

i , Ii) =

∑
Ii∈πI

j

wI
i Ii∑

Ii∈πI
j

wI
i

is a weighted mean of the set πI
j (2).

3.1. Connection with the Maximum likelihood approach

In this subsection we are going to illustrate the connection between minimization of
the function F (p) and Maximum Likelihood approach. It will be shown that in some
special situation the limit case of the Maximum Likelihood approach is equivalent
to the problem of minimization of the objective function F (p). In order to do this,
let us first suppose that wI

i = 1, i = 1, . . . ,mI .
Let cIj (p) be the centers of clusters πI

j (p), j = 1, . . . , kI and σj > 0, j = 1, . . . , kI
given positive numbers. Let us suppose that intensity-data Ii, i = 1, . . . ,mI are
independent and come from mixing distribution with probability density function

f (p)(x;λ1, . . . , λkI , c
I
1(p), . . . , c

I
kI
(p), σ1, . . . , σkI ) =

kI∑
i=1

λj

σj
φ(p)

(
x− cIj (p)

σj

)
,

∑kI

j=1 λj = 1, λj ≥ 0, j = 1, . . . , kI , where x 7→ 1
σj
φ(p)

(
x−cIj (p)

σj

)
, p = 1, 2 are

respectively a probability density function of Laplace random variable L(cIj (1), σ2
j )

i.e. Gaussian normal random variable N (cIj (2), σ
2
j ), and φ(p)(x) = 1√

2
e−|x|p/2.

The corresponding likelihood function reads

L(p)(γ1, . . . , γkI , c1, . . . , ckI , σ1, . . . , σkI ) =

m∏
i=1

kI∑
j=1

γj
σj

φ(p)

(
Ii − cj
σj

)
.
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Particulary, if we suppose γj = 1
kI

and σj = σ > 0, j = 1, . . . , kI are given
constants then the problem of centers estimation could be reduced to the following
maximization problems

max
c1,...,ck∈R

lnL(p)

(
1

kI
, . . . ,

1

kI
, c1, . . . , ckI

, σ, . . . , σ

)
, p = 1, 2

which is obviously equivalent to the following minimization problems

min
c1,...,ckI

∈R
F (p)
σ (c1, . . . , ckI

), F (p)
σ (c1, . . . , ckI

) = −2σp
m∑
i=1

ln

kI∑
j=1

e
− 1

2

∣∣∣ Ii−cj
σ

∣∣∣p
, p = 1, 2.

Since for every vector r = (r1, . . . , rn) ∈ Rn holds (see [9]) max
1≤j≤n

rj = lim
ϵ→0+

ϵ ln

(
n∑

j=1

exp
( rj

ϵ

))
,

and min
1≤j≤n

rj = − max
1≤j≤n

(−rj) it follows immediately

lim
σ→0+

F (p)
σ (c1, . . . , ckI ) = F (p)(c1, . . . , ckI ), p = 1, 2.

Generally, in the weighted case it is reasonable to consider the following weighted–
likelihood function

L(p)

(
1

kI
, . . . ,

1

kI
, c1, . . . , ckI

, σ, . . . , σ

)
=

m∏
i=1

 kI∑
j=1

1

kIσ
φ(p)

(
Ii − cj

σ

)wI
i

,

which maximization is equivalent to the following minimization problem

min
c1,...,ckI

F (p)
σ (c1, . . . , ckI

), F (p)
σ (c1, . . . , ckI

) = −2σp
mI∑
i=1

wI
i ln

kI∑
j=1

e
− 1

2

∣∣∣ Ii−cj
σ

∣∣∣p
, p = 1, 2,

that in the limit case σ → 0+ converges to the corresponding weighted objective
function F (p)f.

3.2. Data representation with fuzzy membership function

Let σ > 0 be a given positive number and let us suppose that the optimal centers
cIj (p) of clusters π

I
j (p), j = 1, . . . , kI , p = 1, 2 have been determined. Motivated by

the paper [22] and Maximum likelihood approach, to every intensity-data Ii with

respect to center cIj (p) we can assign the value ω
(p)
σ (Ii, π

I
j (p)), where

x 7→ ω(p)
σ (x, cIj (p)) :=

φ(p)

(
x−cIj (p)

σ

)
∑kI

l=1 φ
(p)
(

x−cIl (p)

σ

) =
e
− 1

2

∣∣∣∣ x−cIj (p)

σ

∣∣∣∣p
∑kI

l=1 e
− 1

2

∣∣∣∣ x−cI
l
(p)

σ

∣∣∣∣p ,

is so called fuzzy membership function.
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Note that

kI∑
j=1

ω(p)
σ (Ii, c

I
j (p)) = 1 and lim

σ→0+
ω(p)
σ (Ii, c

I
j (p)) =

{
1

µ
(p)
i

, if j ∈ U
(p)
i

0, if j ∈ {1, . . . , k} \ U (p)
i ,

where U
(p)
i is defined by (5) for corresponding distance-like function d(x, y) =

dp(x, y), p = 1, 2, and µ
(p)
i = |U (p)

i |. In this context every intensity-data Ii with
respect to partition ΠI(p) could be represented by kI−tuple(

ω(p)
σ (Ii, c

I
1(p)), . . . , ω

(p)
σ (Ii, c

I
kI−1(p)), ω

(p)
σ (Ii, c

I
kI
(p))

)
∈ [0, 1]kI .

Since
∑kI

j=1 ω
(p)
σ (Ii, c

I
j (p)) = 1 it is sufficient to consider kI −1−tuple representation

with respect to partition ΠI(p) :

Ii ≡ Ii(σ,Π
I(p)) =

(
ω(p)
σ (Ii, c

I
1(p)), . . . , ω

(p)
σ (Ii, c

I
kI−1(p))

)
∈ [0, 1]kI−1, i = 1, . . . ,mI .

4. Least square and least absolute deviation one dimensional
weighted clustering in hue space

The set H = {Hi : i = 1, . . . ,mH} ⊂ [0, 2π⟩ of hue-data, with corresponding weights
wH

i > 0 has to be divided into kH clusters ΠH = {πH
1 , . . . , πH

kH
}, 1 ≤ kH ≤ mH .

Note that without loss of generality we can suppose that Hi ̸= Hj , i ̸= j. In this
section, we consider a one-dimensional clustering problem using the Least Absolute
Deviation (LAD) – optimality criterion, based on LAD distance function [11, 18]:

D1(x, y) =

{
|x− y|, |x− y| ≤ π
2π − |x− y|, else = min{|x− y|, 2π − |x− y|} = π − ||x− y| − π|.

and Least Squares (LS) – optimality criterion, based on LS distance–like function
[11, 22]: D2(x, y) = D2

1(x, y) = (π − ||x − y| − π|)2. The problem of finding an
optimal partition of the set H according to (2) reduces to the following nonconvex
and nonsmooth optimization problem

min
c1,...,ckH

∈[0,2π⟩
G(p)(c1, . . . , ckH

), G(p)(c1, . . . , ckH
) =

mH∑
i=1

min
j=1,...,kH

wH
i Dp(cj , Hi), p = 1, 2.

In order to apply the k−means algorithm it is necessary to efficiently determine
the centers of clusters

cHj (p) = argmin
x∈[0,2π⟩

∑
Hi∈πH

j (p)

wH
i Dp(x,Hi), j = 1, . . . , kH , p = 1, 2. (6)

In the paper [22] very useful formula for calculating the centers of clusters in hue
space was given. Unfortunately, it is only a local solution of the problem (6). Instead
of this, some efficient numerical method for a global optimization should be used.
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One of the most popular algorithms for solving a global optimization problem for the
Lipschitz continuous function is the DIRECT (DIvidingRECTangles) algorithm [6, 7].
The DIRECT algorithm requires the objective function to be Lipschitz continuous. In
this context let us show the following proposition.

Proposition 1. Functions gp : [0, 2π⟩ → R+, gp(x) =
∑

Hi∈πH
j (p) Dp(x,Hi), p =

1, 2 are Lipschitz continuous on [0, 2π⟩, i.e. there exists L > 0 such that

gp(α)− gp(β) ≤ L|α− β|, ∀α, β ∈ [0, 2π⟩

Proof. Since the proofs for p = 1 and p = 2 are very similar, we will prove only the
case p = 1. Let α, β ∈ [0, 2π⟩, then it holds

g1(α)− g1(β) =

m∑
Hi∈πH

j (1)

wH
i ||α−Hi| − π| −

∑
Hi∈πH

j (1)

wH
i ||β −Hi| − π|

≤
∑

Hi∈πH
j (1)

wH
i ||α−Hi| − |β −Hi|| ≤

m∑
i=1

wH
i |α− β|.

Analogously it can be shown g1(β)− g1(α) ≤
∑

Hi∈πH
j (1)

wH
i |α− β|, and finally

g1(α)− g1(β) ≤ L|α− β|, L =
∑

Hi∈πH
j (1)

wH
i .

4.1. Connection with the Maximum likelihood approach

Let cHj (p) be the centers of clusters πH
j (p), j = 1, . . . , kH and σj > 0, j = 1, . . . , kH

given positive numbers. Let us suppose that hue-data Hi, i = 1, . . . ,mH are inde-
pendent and comes from mixing distribution with probability density function (see
e.g. [11]):

g(p)(x;λ1, . . . , λkH
, cH1 (p), . . . , cHkH

(p), σ1, . . . , σkH
) =

kH∑
j=1

λj

σj

∞∑
l=−∞

φ(p)

(
x− cIj (p) + 2lπ

σj

)
,

∑kH

j=1 λj = 1, λj ≥ 0, j = 1, . . . , kH , where x 7→ 1
σj

∑∞
l=−∞ φ(p)

(
x−cIj (p)+2lπ

σj

)
, p =

1, 2 are respectively a probability density function of Wrapped Laplace random
variable LW(cIj (1), σ

2
j ) i.e. wrapped normal random variable NW(cIj (2), σ

2
j ), and

φ(p)(x) = 1√
2
e−|x|p/2. Completely analogously as in the intensity space it can be

shown that in the limit case for sufficiently small variances (σ2
j , j = 1, . . . , kH) the

corresponding negative log-likelihood function can be approximated by the objective
function G(p).
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4.2. Data representation with fuzzy membership function

Let σ > 0 be a given positive number and let us suppose that the optimal centers
cHj (p) of clusters πH

j (p), j = 1, . . . , kH , p = 1, 2 have been determined. Analogously

to the intensity space case, any pixel with respect to partition ΠH(p) could be
represented by kH − 1− tuple

Hi ≡ Hi(σ,Π
H(p)) =

(
v(p)σ (Hi, c

H
1 (p)), . . . , v(p)σ (Hi, c

H
s−1(p))

)
∈ [0, 1]kH−1, i = 1, . . . ,mH ,

where the corresponding fuzzy membership function is given by the following for-
mula:

v(p)σ (x, cHj (p)) :=

φ(p)

(
x−cHj (p)−2π

σ

)
+ φ(p)

(
x−cHj (p)

σ

)
+ φ(p)

(
x−cHj (p)+2π

σ

)
∑kH

l=1 φ
(p)
(

x−cHl (p)−2π

σ

)
+ φ(p)

(
x−cHl (p)

σ

)
+ φ(p)

(
x−cHl (p)+2π

σ

) .
5. Multidimensional weighted clustering

Any pixel ai, i = 1, . . . ,m is uniquely determined with pair (Ii,Hi), where Ii and Hi

are corresponding values of intensity and hue. Here we suppose that mI ,mH ≤ m.
Let ΠI(p) and ΠH(p), be optimal partitions obtained by clustering in intensity and
hue space. According to [10], a k-means algorithm is initiated with e.g. 100 different
randomly generated initial centers, and the one that gives the smallest value of the
objective function (2) is taken as a solution.

With respect to partitions ΠI(p) and ΠH(p) every pixel ai, i = 1, . . . ,m could
be represented by (kI + kH − 2)−tuple

ai ≡ ai(σ,Π
I(p),ΠH(p))

=
(
ωσ(Ii, c

I
1(p)), . . . , ωσ(Ii, c

I
kI−1(p)), v

(p)
σ (Hi, c

H
1 (p)), . . . , v(p)σ (Hi, c

H
kH−1(p))

)
∈ [0, 1]kI+kH−2.

Finally, the problem of image segmentation could be considered as a clustering
in (kI + kH − 2)-dimensional space. For this purpose k-means algorithm based
on distance-like function dp : [0, 1]kI+kH−2 × [0, 1]kI+kH−2 → [0,∞⟩, defined by
dp(x, y) = ∥x− y∥pp, p = 1, 2 with e.g. 100 randomly initialization should be used.

6. Numerical and illustrative examples

Example 1. Figure 1 shows a greyscale image with “noise” (outliers) which is
clustered in intensity space with kI = 2 clusters. It is noticeable that LS – optimality
criterion separates outliers in the individual cluster, while the rest of the image falls
into another cluster. Nevertheless, LAD – optimality criterion ignores those outliers
and segments the image more accurately.

Example 2. Similar example of clustering in hue space using kH = 2 clusters is
shown in Figure 2. LS optimality criterion stresses the outliers, while LAD optimal-
ity criterion ignores them.
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(a) Original image (b) LS based clustering (c) LAD based clustering

Figure 1: Weighted clustering in intensity space

(a) Original image (b) LS based clustering (c) LAD based clustering

Figure 2: Weighted clustering in hue space

Example 3. Figure 3 shows the benefits of multidimensional weighted clustering.
When the test image of an athletic track is segmented in intensity space with kI = 2
clusters, numbers on the track are well separated, but pixels showing the grass and
the track falls into the same cluster. Similar situation occurs when clustering in hue
space with kH = 2 clusters: the grass and the track are separated, but the numbers
fall into the same cluster as the track. However, when we perform multidimensional
weighted clustering (Section 5) in two-dimensional space (kI + kH − 2 = 2) into
3 clusters, we obtain an accurate and well separated representation of the original
image. Let us note that the appropriate number of clusters has been determined in
accordance with Silhouette width criterion (see [8]).

(a) Original image (b) Clustering in in-
tensity space

(c) Clustering in hue
space

(d) Multidimensional
clustering

Figure 3: Multidimensional weighted clustering
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