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Abstract. As one branch of deterministic approaches to disjoint bilinear programming, cutting plane
methods are renowned for its ability to systematically reduce the search space by adding cutting planes
that are able to cut off regions deemed infeasible or suboptimal. Polar cuts have been widely utilized
as a dominating type of cut in terms of deepness. During the establishment of a polar cut, the modified
Newton’s method is employed to derive the cutting points along the positive or negative extensions of
edges emanating from a local solution. Nonetheless, its performance can be further improved along the
positive extensions. Drawing inspiration from integer programming, we develop a new approach based
on the LP duality theory for this purpose. It re-formulates the original program with a piece-wise linear
concave objective function as a single LP. Moreover, we propose a new technique to derive the edges
as accommodation to degeneracy. Numerical results show that, by utilizing our newly developed dual
method, computing time can be gradually saved as the percentage of generated cutting points along
the positive extensions of edges rises.
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1. Introduction

With X0 and Y0 being two bounded and non-empty polytopes, traditional disjoint bilinear
programming (DBLP) can be stated as

min f(x,y) = ctx+ dty + xtCy,

s.t. x ∈X0 = {x ∈ Rn1 : A1x ≤ b1, x ≥ 0}, A1 ∈ Rm1×n1 , b1 ∈ Rm1 ,

y ∈ Y0 = {y ∈ Rn2 : A2y ≤ b2, y ≥ 0}, A2 ∈ Rm2×n2 , b2 ∈ Rm2 .

(1)

A large amount of literature exists on the solution approaches to DBLP (1), among which
two major deterministic approaches are cutting plane methods and branch and bound methods.

Traditional cutting plane methods for DBLP (1) are based on its structural property that
ensures the existence of global solution at a pair of vertices in X0×Y0. Concavity cuts were first
developed in [15] and widely utilized in early developed cutting plane methods [3, 6, 10, 17].
Their convergence had been investigated in several papers [7, 9, 21]. However, it was shown that
concavity cuts, as well as other types of cuts, are uniformly dominated by polar cuts employed
in other cutting plane methods [13, 18]. Decomposition cuts were developed in order to extend
the concept of concavity cuts for deeper cuts [8, 11, 12]. Some other relevant research can also
be found; see for example [2, 4, 5, 14].

In a cutting plane method for DBLP (1), two parts are time-consuming. One part lies in its
local optimization phase with the purpose of identifying a good local solution, x. In this part,
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if we borrow the idea from a local star minimum (also refer to Definition 2) to pursue a better
candidate by examining x’s neighborhood, considerable computing time will elapse. Given the
existence of a better candidate, meaning that the algorithm can escape successfully from the
current local solution, the entire searching process will restart right from the beginning. Things
can get even worse with more escapes. Unfortunately, nowadays, this is what all extant cutting
plane methods exactly do and is still considered as the most efficient approach in search of x for
DBLP (1). The other part lies in the development of a cut, say, a polar cut. Given x from the
local optimization phase, for each edge emanating from x, we need to calculate a cutting point
along either its positive or negative extension (will be referred to as positive or negative cutting
point(s), respectively). In [13], the modified Newton’s method was developed for this purpose.
Drawing inspiration from integer programming, we develop herein a new method based on the
LP duality theory for the derivation of positive cutting points. By re-formulating the original
program with a piece-wise linear concave objective function as a single LP, it is possible to
accelerate the generation of a polar cut and save computing time as the percentage of positive
cutting points rises. Moreover, for the derivation of edges emanating from x, we propose a new
approach being able to accommodate degeneracy.

The rest of this paper proceeds as below. Section 2 briefly describes the local optimization
phase that can provide a candidate, x. Section 3 is devoted to the development of an aug-
mented method for establishing a polar cut. Section 4 provides numerical results to evaluate
the performance of our newly developed method, and the final section concludes our paper.

2. Local Optimization

The essential solution property of DBLP exploited in the local optimization phase of almost all
cutting plane methods is that even though f(x,y) is not quasi-concave, the global optimizer,
(x∗,y∗), is attained at a vertex of X0 × Y0, which means that x and y are vertices of X0 and
Y0, respectively [6].

To facilitate our presentation, denote by Xi
0 the original feasible region X0 when i = 0, or

its subset obtained after i cuts have been introduced.

Definition 1. A local minimizer of g(·) over Xi
0 is a vertex, xℓm, such that g(xℓm) ≤ g(x) for

each x ∈ Bδ(xℓm) ∩Xi
0, where Bδ(xℓm) is a δ-neighborhood around xℓm in Xi

0, and g(xℓm) is
the corresponding local minimum.

Definition 2. A local star minimizer of g(·) over Xi
0 is a vertex, xℓsm, such that g(xℓsm) ≤

g(x) for each x ∈ NXi
0
(xℓsm), where NXi

0
(xℓsm) denotes the vertices adjacent to xℓsm in Xi

0,
and g(xℓsm) is the corresponding local star minimum.

Since f(x,y) is not quasi-concave, a local star minimum is not necessarily a local minimum,
and thus the development of a cut from a local star minimizer cannot take effect as usual for
those with quasi-concave objective functions. Moreover, for DBLP (1), cuts involving variables
associated with bothXi

0 and Y0 may destroy their special structure, and thereby fail the existing
efficient algorithms to solve sub-problems. As a result, to develop a cut that involves only the
x-variables and yet is convergent from a local minimizer, a concept more than Definition 1,
2 is necessary [18].

Definition 3. A vertex (xi,y) in DBLP is a Pseudo-Global Minimizer (PGM) if f(xi,y) ≤
f(x,y) for each x ∈ Bδ(xi) ∩Xi

0 and for each y ∈ Y0.

For DBLP (1), a vertex is adjacent to (xi,y) if and only if it is either of the form (xk,y)
or (xi,yk) where xk ∈ NXi

0
(xi) and yk ∈ NY0

(y). For a PGM, further improvement may be
achieved by an idea analogous to that suggested by Definition 2, i.e., we can examine those
vertices adjacent to xi for a better solution. A so derived PGM can have the advantages from
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both a local minimum and a local star minimum. Algorithm 1, originated from [6] to identify
a PGM, (xi,y), is currently acting as a building block in the local optimization phase of a
cutting plane method. It can be perceived that a PGM provided by Algorithm 1 serves as a
local minimizer in Xi

0 and a global minimizer in Y0.

Algorithm 1: Augmented Mountain Climbing Method

Input: C, c, d, Xi
0, Y0, ỹ ∈ Y0.

Output: (xi,y).
1 repeat
2 x̃ = argminx∈Xi

0
f(x, ỹ); ỹ = argminy∈Y0

f(x̃,y);

3 until x̃ converges;
4 construct NXi

0
(x̃);

5 if ∃x̌ ∈ NXi
0
(x̃) such that f(x̌,y∗) = miny∈Y0

f(x̌,y) < f(x̃, ỹ) then

6 go to line 2 with ỹ = y∗;
7 end

8 terminate with (xi,y) = (x̃, ỹ) as a PGM.

3. Polar Cuts

By Algorithm 1, we can reach a PGM, (xi,y), and try to generate a valid cut from xi to cut
off xi together with a portion of Xi

0. This is referred to as the global optimization phase of
a cutting plane method, following which Algorithm 1 will restart within the reduced feasible
region, Xi+1

0 . Basically, a good cut should eliminate as large as possible the current feasible
region without excluding any potential global minimizer. To this end, polar cuts can serve as a
well qualified candidate but may confront several computational issues during the generation.
For a clear presentation, in what follows, we will simply take x as xi in a PGM, (xi,y).

3.1. Basics

Definition 4. For DBLP (1), given a set Y0 and a scalar α, the generalized reverse polar of
Y0 relative to α is the set

Y0(α) =

{
x ∈ Rn1 : min

y∈Y0

f(x,y) ≥ α

}
.

In Y0(α), the scalar α actually serves as the current best objective value of f(x,y). By [13]
and [16], Y0(α) is a polytope. Denote by yi and H+

i , i = 1, 2, . . . , u, the u vertices of Y0 and
the corresponding u closed half-spaces, respectively. We can rewrite Y0(α) as

Y0(α) = ∩ui=1H+
i (x) = ∩

u
i=1

{
x ∈ Rn1 : ctx+ dtyi + xtCyi ≥ α

}
.

Let xj , j ∈ J , be the n1 non-basic variables at x, where J is the index set for non-basic
variables. Given that x is non-degenerate, there exist precisely n1 distinct edges incident to x.
Consider the extended simplex tableau in Tucker form corresponding to x, and let ej be the
extended column of the non-basic variable xj with components representing the corresponding
negative rate of change. Denote the half lines emanating from x along the n1 edges by

ζj =
{
x : x = x− λje

j , λj ≥ 0
}

for j ∈ J .

Taking each ζj one after the other, we can obtain a convex polyhedral cone containing Xi
0.

The fundamental idea of a cutting plane method for solving DBLP (1) is that along each ζj ,
we move a distance λj until we intersect a facet of Y0(α).
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Denote by λ+
j the step-size along the positive extension of ζj , which is defined as

λ+
j = sup

{
λj : f(x− λje

j ,y) ≥ α for all y ∈ Y0

}
for j ∈ J . (2)

If λ+
j =∞ for some j ∈ J , we have to turn to the negative extension of ζj because ∀λj > 0,

miny∈Y0
f(x − λje

j ,y) ≥ α along the positive extension of ζj , or equivalently, ζj ⊂ Y0(α).
Therefore, we intend to move as far as possible along the negative extension of ζj as long as we
still lie in at least one half space H+

i (x) defining Y0(α). As a result, λ−
j is defined as

λ−
j = sup

{
λj : f(x+ λje

j ,y) ≥ α for some y ∈ Y0

}
for j ∈ J and λ+

j =∞. (3)

According to Theorem 4.1 in [13], define

λj =

{
λ+
j , if 0 < λ+

j <∞,

−λ−
j , if λ

+
j =∞ and 0 < λ−

j <∞.
(4)

Then, the inequality ∑
j∈J

xj/λj ≥ 1 (5)

determines a valid polar cut being able to cut off x without excluding any feasible point of Xi
0

that yields a better objective value along with y ∈ Y0. As (5) is organized in terms of J , some
appropriate linear transformation is necessary to represent it into the original variables.

During the derivation of λj , we confront the following situations, several of which may incur
computational issues.

(a). If λ+
j = ∞, ∀j ∈ J , meaning that ζj ⊂ Y0(α), ∀j ∈ J , we can terminate the cutting

plane method with the current best objective value α as the global minimum.

(b). If 0 < λ+
j <∞, we set λj = λ+

j and continue to handle the next edge, ζj+1.

(c). If there exists some j such that λ+
j =∞, we resort to the negative extension of ζj ; see (3).

Provided 0 < λ−
j <∞, we can set λj = −λ−

j by (4) and continue. Unfortunately, λ+
j =∞

does not necessarily guarantee 0 < λ−
j <∞; see Example 1 for an illustration.

Example 1. The example is taken from [19], in which c = d = (−1,−1)t,

C =

(
1 0
0 1

)
, A1 =

 0 1
−2 −1
2 −1

 , b1 =

 2
−2
2

 , A2 =

−1 1
1 1
0 −2

 , b2 =

 0
2
0

 .

By Algorithm 1, we can reach a PGM (0, 2, 2, 0)t with α = −4, x = x1 = (0, 2)t, and its
two adjacent vertices, x̌1 = (1, 0)t and x̌2 = (2, 2)t. Since x is non-degenerate, we have
|J | = 2 with J = {3, 4}. Along the edge corresponding to the non-basic variable x3, or
equivalently, the edge determined by x and x̌2, we first have λ+

1 =∞ with its objective as
−2. Then, we turn to its negative extension and derive λ−

1 = ∞ with its objective as −2
again. Consequently, we reach a situation where λ+

1 = λ−
1 =∞. One possible approach is

to set λ1 =∞ so that the coefficient of its paired non-basic variable becomes zero. However,
this approach can only take effect on a non-degenerate vertex, as with this example. Things
become quite complicated for a degenerate vertex as it is hard to determine which non-basic
variable to pair with the current edge.
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(d). If λ+
j = 0, we are obliged to discard the development of a polar cut and turn to a computa-

tionally expensive disjunctive cut since the edge under consideration leads to a degenerate
pivot. Nevertheless, such a situation can be identified at an earlier stage by line 4, Algo-
rithm 1 when the algorithm intends to construct the neighborhood of x̃. The treatment
of degeneracy is out of the scope of this paper. Interested readers can refer to [1, 13, 20].

Apart from the derivation of λj , (5) is only suitable for a non-degenerate vertex as each λj

derived along ζj should be paired with one non-basic variable xj ∈ J . For a non-degenerate
x, the associated simplex tableau is unique, and thereby ζj and the corresponding non-basic
variable can be clearly identified. As for a degenerate x, however, such one-to-one correspon-
dence vanishes since many simplex tableaux are associated with x, resulting in a lack of unified
representation. This issue seems more or less related to (c) and (d), and we will propose a new
method for a better treatment regardless of degeneracy in the next subsection.

3.2. Derivation of ej

Different from J defined in the last subsection, denote by J̃ = {1, 2, . . . , |J̃ |} the number of
edges emanating from x. As a by-product of Algorithm 1, the information about all vertices
adjacent to x is already available during the derivation of a PGM. As a result, we can establish
ejs along the positive extensions of ζjs by

ej = x− x̌j , ∀x̌j ∈ NXi
0
(x), (6)

and thus enable the following computation to derive λjs as usual. Note that this approach also
works for a degenerate x without imposing any additional computational workload. By doing
so, we can avoid the complicated correspondence between λj (or ζj) and the non-basic variable
in (5) given a degenerate x. Besides, given all the cutting points, a polar cut can be established
without any further linear transformation, as has been done in the literature; see Example 2.

Example 2. Take the example from [13], in which c = (0, 0)t, d = (8,−6)t, x ≥ 0, y ≥ 0,

C =

(
2 −3
−1 2

)
, A1 =


−2 5
−3 −2
0 −1
3 2
2 12

 , b1 =


18
−11
−1
62
84

 , A2 =

−1 1
−3 4
4 −5

 , b2 =

−1−1
3

 .

By Algorithm 1, we can first reach a PGM (1, 4, 2, 1)t with x = x1 = (1, 4)t, α = 11,
and x3 and x4 as the non-basic variables. By the simplex tableau corresponding to x, we have
e3 = (−2/19, 3/19)t, and thus λ3 = λ+

3 = 95/3. As for λ4, with e4 = (−5/19,−2/19)t, we first
have λ+

4 =∞ and then derive λ−
4 = 494 along its negative extension.

Nevertheless, as long as we have x = (1, 4)t by Algorithm 1, the information about its two
adjacent vertices, x̌1 = (3, 1)t and x̌2 = (6, 6)t, is already available. Along the edge determined
by x and x̌1, we have e1 = x − x̌1 = (−2, 3)t, with which we can derive λ+

1 = 5/3. The
corresponding cutting point is (13/3,−1)t with its objective as 11. Similarly, e2 = x − x̌2 =
(−5,−2)t, λ−

2 = −26, the cutting point is (−129,−48) with its objective as 11. Both coincide
with the previous results.

Since x is non-degenerate in Example 2, |J | = 2 with J = {3, 4} corresponding to the
indices of non-basic variables for the traditional method. For (6), |J̃ | = 2 just indicates the
number of edges emanating from x, whereas J̃ = {1, 2} represents the natural order of these two
edges. The correspondence between indices and edges does not matter that much. Apparently,
ej established by (6) is more appealing for its accommodation to degeneracy. It does not require
any additional computational effort such as the re-construction of the corresponding simplex
tableau at x, or the transformation back to a representation of the original variables.



68 Xiaosong Ding, Jun Ma, Xi Chen and Chao Liu

3.3. Derivation of λ+
j

To derive λ+
j , consider DBLP (1) and (2), in which we need to obtain

max
λ+
j ≥0

{
f
(
x− λ+

j e
j ,y

)
≥ α for all y ∈ Y0

}
= max

λ+
j ≥0

{
min
y∈Y0

f
(
x− λ+

j e
j ,y

)
≥ α

}
= max

λ+
j ≥0

{
min
y

[
ct

(
x− λ+

j e
j
)
+ dty +

(
x− λ+

j e
j
)t
Cy

]
≥ α

∣∣∣∣A2y ≤ b2,y ≥ 0

}
.

(7)

By the LP duality theory, the foregoing can be rewritten as

max
λ+
j ≥0

{
max
u≤0

[
ct

(
x− λ+

j e
j
)
+ bt2u

]
≥ α

∣∣∣∣(x− λ+
j e

j
)t
C + dt ≥ utA2

}
= max

λ+
j ≥0

{
min
u≤0

(
ctejλ+

j − bt2u
)
≤ ctx− α

∣∣∣∣Ctejλ+
j +At

2u ≤ Ctx+ d

}
,

(8)

which is equivalent to finding the maximal λ+
j such that the following linear system is feasible

max λ+
j

s.t.

(
ctej −bt2
Ctej At

2

)(
λ+
j

u

)
≤

(
ctx− α
Ctx+ d

)
, λ+

j ≥ 0, u ≤ 0.
(9)

So, unlike the modified Newton’s method, we can obtain λ+
j by solving only one LP. Unfor-

tunately, this technique cannot be applied to the derivation of λ−
j since the equivalence between

(8) and (9) cannot be established. Thus, the modified Newton’s method should be employed.

Example 3. Still take Example 2 as an illustrative example. By Algorithm 1, we are able
to reach a PGM (1, 4, 2, 1)t with x = (1, 4)t, α = 11, and x3 and x4 as non-basic variables.
Using e3 = (−2/19, 3/19)t and system (9), we have λ3 = λ+

3 = 95/3, as expected.

3.4. Derivation of λj

Algorithm 2 describes the derivation of λj for j ∈ J̃ . In comparison with the classical cutting
plane method in [13], the following aspects need to be clarified.

(a) The loop from line 1 to 3 to derive λ+
j , ∀j ∈ J̃ is reasonable because it may cause an early

stop and does not sacrifice any additional computational effort. Suppose λ+
j =∞, ∀j ∈ J̃ ,

meaning that we have already solved the problem. Then, all computational effort spent in
deriving λ−

j s is unnecessary if we turn to λ−
j as soon as we identify λ+

j = ∞, as was done

in [13]. Even though this is not the case, the computational cost on λ+
j s is inevitable for

either λ+
j <∞ or λ−

j given λ+
j =∞.

(b) If either λ+
j or λ−

j is finite, i.e., line 9 and 15, we can derive λj by (4). However, in line 13,

we are confronted with the case where both λ+
j =∞ and λ−

j =∞. If x is non-degenerate,

we can set λj =∞, or equivalently, set the coefficient of paired non-basic variable to zero.
As for a degenerate x, we simply set λj = 2 so that at least the adjacent vertex along this
edge can be cut off, just like what a face cut does. In fact, any value such that λj > 1 can
realize this.
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Algorithm 2: Derivation of λjs

Input: x, Y0, e
js, c, d, C, α, J̃

Output: λjs

1 foreach j ∈ J̃ do
2 compute λ+

j by system (9);

3 end

4 if λ+
j =∞, ∀j ∈ J̃ then

5 terminate with α as the global minimum;
6 else

7 foreach j ∈ J̃ do
8 if λ+

j <∞ then

9 λj ← λ+
j ;

10 else
11 λ−

j ←∞ and O← maxy∈Y0
f
(
x+ λ−

j e
j ,y

)
;

12 if O ≥ α then

13 λj ←∞ for a non-degenerate x, or λj ← 2 for a degenerate x;
14 else

15 λj ← −λ−
j by the modified Newton’s method;

16 end

17 end

18 end

19 end

(c) By [13], we first need to compute O′ = miny∈Y0 f
(
x− λ+

j e
j ,y

)
with one LP to determine

whether it is necessary to compute λ−
j . If O′ < α, the modified Newton’s method should

be carried out for λ+
j , demanding some more LPs. By contrast, Algorithm 2 can derive

λ+
j with only one LP by (9). The advantages are twofold. By one LP, Algorithm 2 can

determine not only λ+
j if λ+

j <∞, but also the necessity for computing λ−
j if λ+

j =∞.

(d) If x is non-degenerate, we can simply take J̃ = J and carry out Algorithm 2.

(e) By [13], λ+
j = 0 indicates that the edge under consideration results in a degenerate pivot,

which, in turn, leads to the development of a computationally expensive disjunctive cut.
The wasted effort depends on when λ+

j = 0 occurs. Suppose for j1, j2, . . . , jt ∈ J̃ , λ+
j = 0

does not take place until we intend to identify λjt . This incurs a waste of all the previous
computational effort spent in deriving λj1 , λj2 , . . . , λjt−1

before we develop a disjunctive cut
from scratch. Nevertheless, in line 4, Algorithm 1, prior to the evaluation of objectives
regarding the vertices adjacent to x̃, its degeneracy can be readily determined without any
additional computation. Knowing this enables an early choice of the correct approach to
the development of a valid cut, and thereby save the computational effort.

(f) The modified Newton’s method may incur many LPs for a piecewise linear and concave
function with breakpoints occurring whenever the vertex solution optimizing this function
changes. In Figure 1, we use the notations as in [13] for illustration. Figure 1(a) indicates
that it may be possible to skip the workload over line segment FG when deriving λi+2

from λi+1 due to the relationship among the slopes of different pieces. Things can become
even better if a single derivation of some λi can ignore the workload over several pieces.
Nevertheless, we can also confront the case where workload over no line segments can be
neglected; see Figure 1(b). As an LP should be carried out in search of the optimizer in Y0
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for each piece when we intend to make progress from λi to λi+1, many LPs are required.
It is this aspect that (9) can take effect in the derivation of λ+

j .

λi+2 λi+1 λi

F

G

H

λj(0, α) λ

ψj(λ)

(a)

ψj(λ
i) < α

· · · λi+2 λi+1 λi

F

G

H

I

λj

(0, α) λ

ψj(λ)

(b)

ψj(λ
i) < α

Figure 1: The Modified Newton’s Method.

4. Numerical Results

To evaluate the performance of two methods, we carry out the numerical experiments on a PC
equipped with Intel(R) Core(TM) i5-6267U CPU @ 2.90GHz and 4G memory. Gurobi 11.0.0
serves as the LP solver. We randomly generate 32 test instances by [19] for each dimension and
average the corresponding results. In addition, we impose a limit of 300 seconds over the total
computing time for each test instance, beyond which the instance is considered unsolvable.

As the dual method can only take effect on positive cutting points, we evaluate their perfor-
mance on those instances whose percentages of positive cutting points in a test instance exceed
40%, 50%, and 60%, respectively. For a specific instance, we compute its percentage as

percentage =
the number of positive cutting points

the dimension of an instance
, (10)

and we only consider qualified instances for each dimension. Apparently, beyond 60%, positive
cutting points are dominating. By contrast, below 40%, the dual method can hardly influence
the computational performance due to the large number of negative cutting points.

Figure 2 illustrates the performance between two methods with respect to three thresholds
imposed on percentages. The computing time along three y axes includes the average CPU time
to derive both positive and negative cutting points for the qualified instances with dimension n.
For a clear presentation, we deliberately fix the scale on each y-axis from 0 to 225 seconds. By
the left sub-figure where the threshold is 40%, the dual method performs inferior to the modified
Newton’s method for most dimensions. When it comes to 50%, on average, the performance of
two methods overlaps so that they become competitive; see the middle sub-figure. Finally, as
we further increase the threshold to 60%, the dual method runs faster for almost all dimensions
and the computing time savings gradually improve. This seems reasonable since the higher the
percentage of positive cutting points, the more computing time we are able to save by utilizing
the dual method. However, we cannot exclude the possibility that for an extreme instance with
even a dominating number of positive cutting points, the performance of the dual method may
still appear inferior due to the formulation of a not easy-to-solve LP program by (9). We can
safely conclude that, in general, along with an increase in the percentage of positive cutting
points, the performance of the dual method can improve little by little. This again verifies the
influence the dual method will have on the derivation of positive cutting points.
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Figure 2: Performance between two Methods.

Table 1 provides more detailed results but with a step-size of 20. The results are concerned
with the savings in computing time, which are calculated according to

time savings =
modified Newton’s computing time - dual’s computing time

modified Newton’s computing time
× 100%. (11)

n
% ≥ 20% ≥ 30% ≥ 40% ≥ 50% ≥ 60%

n = 100 3.098 6.118 13.545 30.233 34.609
n = 120 -8.132 -5.644 -2.487 9.413 27.831
n = 140 -6.410 0.372 0.235 15.237 29.131
n = 160 -1.483 7.132 7.352 17.422 24.736
n = 180 5.423 5.842 12.762 22.125 21.014
n = 200 -15.731 -12.484 -2.065 12.495 28.177
n = 220 -4.362 -4.578 0.244 13.960 40.838
n = 240 5.838 7.271 14.375 12.858 28.794
n = 260 -15.602 -18.228 -1.996 11.893 58.458
n = 280 -0.011 -5.297 13.603 15.472 33.331
n = 300 -9.586 -1.770 -5.498 13.563 42.222
n = 320 -2.787 -13.891 -8.657 10.408 0.039
n = 340 -5.911 -7.169 -12.717 6.885 10.250
n = 360 -20.376 -16.299 -17.347 11.837 58.278
n = 380 -37.716 -44.139 -34.829 -2.073 36.517
n = 400 -20.372 -22.555 -19.375 -7.910 19.709
n = 420 -43.160 -38.215 -12.061 1.357 -14.964
n = 440 -28.739 -29.949 -37.160 1.804 20.025
n = 460 -39.937 -31.819 -21.101 -6.634 34.616
n = 480 -40.161 -40.161 -31.578 -4.978 17.754
n = 500 -78.464 -79.384 -77.831 -24.743 33.452

Table 1: Savings in Average Computing Time (%).

In order to perceive the effectiveness of the dual method, we impose two more thresholds on
percentages, i.e., 20% and 30%. It can be observed that for the first three thresholds (column 2–
4), most savings in computing time are negative. By (11), it means that the performance of the
dual method, in most cases, is inferior to that of the modified Newton’s method. Nevertheless,
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as the threshold is increased to 50%, negative percentages become much less. When it comes
to 60%, there is only one negative percentage left. For large-scale instances where n = 480 or
500, the improvement in computational performance brought by the dual method appears more
remarkable. Together with Figure 2, the improvement in percentages of savings in computing
time for low dimensional instances is less substantial than that for high dimensional instances.
For example, the same improvement when n = 100 and n = 500 can lead to great difference in
their respective absolute improvements in the computing time.

Table 2 shows the number of LPs that will be performed by the modified Newton’s method
and the dual method, respectively. It gives the percentages of savings in the number of LPs
according to

LP savings =
Newton’s LPs−Dual’s LPs

Newton’s LPs
× 100% (12)

n
% ≥ 20% ≥ 30% ≥ 40% ≥ 50% ≥ 60%

n = 100 modified Newton’s method 268 265 263 260 262
dual method 204 197 186 165 160

savings 23.7% 25.7% 29.4% 36.6% 39.1%
n = 150 modified Newton’s method 394 381 379 372 368

dual method 289 268 262 246 230
savings 26.6% 29.7% 31.0% 33.9% 37.6%

n = 200 modified Newton’s method 518 513 502 492 489
dual method 372 362 345 328 304

savings 28.1% 29.5% 31.2% 33.4% 37.9%
n = 250 modified Newton’s method 681 680 671 650 667

dual method 499 488 449 402 382
savings 26.7% 28.2% 33.2% 38.2% 42.8%

n = 300 modified Newton’s method 821 809 775 767 769
dual method 617 586 534 494 477

savings 24.9% 27.5% 31.1% 35.6% 37.9%
n = 350 modified Newton’s method 989 982 975 960 948

dual method 726 705 685 637 568
savings 26.6% 28.2% 29.7% 33.6% 40.0%

n = 400 modified Newton’s method 1155 1154 1143 1123 1104
dual method 810 788 740 659 622

savings 29.9% 31.7% 35.3% 41.3% 43.6%
n = 450 modified Newton’s method 1348 1355 1341 1333 1353

dual method 922 910 858 784 757
savings 31.6% 32.8% 36.0% 41.2% 44.0%

n = 500 modified Newton’s method 1532 1480 1455 1429 1481
dual method 1090 996 949 878 834

savings 28.9% 32.7% 34.8% 38.6% 43.7%

Table 2: Savings in the Number of LPs (%).

. As has been expected, the percentages of savings in the number of performed LPs gradually
increase while the thresholds rise from 20% to 60%; see rows in bold texts. Nevertheless, such a
trend does not necessarily imply a similar tendency in computing time. By (9), although we are
able to re-formulate the problem to derive λ+

j as a single LP, its dimension and constraints are
both greater than one LP in the modified Newton’s method. By Table 2, the average number
of LPs in the modified Newton’s method to derive λj lie between 2 to 3 times. Therefore, it is
not surprising to find out that the computing time of the dual method is more than solving one
LP in the modified Newton’s method, but less than solving 3 LPs. This is essential for the dual
method to run faster when the thresholds increase. Besides, since the difficulty levels for solving
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LPs varies, it may cost more computing time than expected when the dual method is faced with
a troubling LP, and vice versa. That is why we average the results of many instances. Given an
enhancement to the ability of an LP solver to solve a single large-scale LP, the computational
performance of the dual method can be further improved.

5. Conclusion

In this paper, we develop a new method for the derivation of positive cutting points based on
the LP duality theory, and a new technique for the derivation of ejs as an accommodation to de-
generacy without any additional computational workload. Numerical results demonstrate that
along with a rise in the percentage of positive cutting points, the computational performance
for the generation of a polar cut can, on average, be improved by utilizing the dual method.
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