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Abstract. The longest induced (or chordless) cycle problem is a graph problem classified as NP-
complete and involves the task of determining the largest possible subset of vertices within a graph
in such a way that the induced subgraph forms a cycle. Within this paper, we present three integer
linear programs specifically formulated to yield optimal solutions for this problem. The branch-and-
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1. Introduction

A significant part of combinatorial optimization is closely related to graphs. Within graph
theory, the concept of graph cycles has fundamental importance. Identifying a simple cycle or
a cycle with a specific structure within a graph forms the basis for numerous graph-theoretical
problems that have been under investigation for many years. One such problem is the Eulerian
walk, a cyclic path that traverses each edge exactly once, as discussed in [19]. Another example
is the Hamiltonian cycle, which traverses every vertex exactly once, as explored in [1].

Kumar et al. [11], introduced a heuristic algorithm for the longest simple cycle problem.
The authors utilized both adjacency matrices and adjacency lists, achieving a time complexity
for the proposed algorithm proportional to the number of nodes plus the number of edges of the
graph. In [2], the authors investigated the longest cycle within a graph with a large minimal
degree. For a graph G = (V, E) with a vertex count of |V| = n, the parameter min_deg(G)
denotes the smallest degree among all vertices in G, while ¢(G) represents the size of the longest
cycle within G. The authors demonstrated that for n > k > 2, with min_deg(G) > n/k, the
lower bound ¢(G) > [n/(k — 1)] holds. Broersma et al. [5] proposed exact algorithms for
identifying the longest cycles in claw-free graphs. A claw, in this context, refers to a star
graph including three edges. The authors introduced two algorithms for identifying the longest
cycle within such graphs containing n vertices: one algorithm operates in O(1.6818") time with
exponential space complexity, while the second algorithm functions in O(1.8878™) time with
polynomial space complexity.

In the work by Lokshtanov [12], the focus lies on the examination of the longest isometric
cycle within a graph, which is defined as the longest cycle where the distance between any two
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vertices on the cycle remains consistent with their distances in the original graph. The author
introduced a polynomial-time algorithm to address this specific problem.

Our primary focus in this paper is dedicated to addressing the challenge of identifying the
longest induced (or chordless) cycle problem. For a graph G = (V, E) and a subset W C V,
the W-induced graph G[W] comprises all the vertices from set W and the edges from G that
connect vertices exclusively within . The objective of the longest induced cycle problem is to
determine the largest possible subset W for which the graph G[W] forms a cycle. While it may
seem straightforward to obtain an induced cycle since every isometric cycle is an induced cycle,
it has been shown that identifying the longest induced cycle within a graph is an NP-complete
problem, as demonstrated by Garey et al. [§].

The longest induced path (P), discussed in [14], represents a sequence of vertices within
graph G, where each consecutive pair of vertices is connected by an edge e € E and there
is no edge between non-consecutive vertices within P. In the context of a general graph G,
determining the existence of an induced path with a specific length is proven to be NP-complete,
as detailed in [8]. Consequently, the longest induced cycle can be considered as a special case
of the longest induced path.

Holes in a graph, defined as induced cycles with four or more vertices, play a significant
role in various contexts. Perfect graphs, for instance, are characterized by the absence of odd
holes or their complements [6]. Moreover, when addressing challenges like finding maximum
independent sets in a graph [15], the existence of odd holes leads to the formulation of odd
hole inequalities, strengthening approaches for these problems. Similarly, in other problem
domains such as set packing and set partitioning [4], these odd hole inequalities serve as crucial
components.

Several papers have explored the longest induced cycle problem in graphs with specific
structures. In [7], the author investigated the longest induced cycle within the unit circulant
graph. To define the unit circulant graph X,, = Cay(Z,;Z*), where n is a positive integer,
consider the following. The vertex set of X,,, denoted as V(n), comprises the elements of Z,,
the ring of integers modulo n. The edge set of X,,, represented as E(n), for x,y € V(n),
(z,y) € E(n) if and only if z — y € Z}, with Z} being the set of units within the ring Z,,. The
author demonstrates that if the positive integer n has r distinct prime divisors, then X,, contains
an induced cycle of length 2" 4+ 2. In a separate study by Wojciechowski et al. [20], the authors
examine the longest induced cycles within hypercube graphs. If G represents a d-dimensional
hypercube, they proved the existence of an induced cycle with a length > (9/64) - 2.

Almost parallel to our work, Pereira et al. [17] dealt with the longest cordless cycle problem,
which is equivalent to the longest induced cycle problem. They presented an integer linear
program (ILP) formulation along with additional valid inequalities to strengthen and refine the
formulation, all of which were incorporated into a branch-and-cut algorithm. They applied a
multi-start heuristic method for initial solution generation and then conducted performance
evaluations of the algorithm on a range of randomly generated graphs, including those with
up to 100 vertices. They could solve the largest problems within 3,011.17 seconds. Our aim
is to provide models and methods that can work more efficiently. The models and the best
branch-and-cut versions proposed in [17] are discussed in Section 2.5.

Our paper proposes three integer linear programs (ILPs) designed to handle the longest
induced cycle problem within general graphs. Some of these models were built based on those
used in previous work focused on solving the longest induced path problem, as seen in the
studies by Marzo et al. [13] and Bokler et al. [3]. Matsypura et al. [14] introduced three integer
programming (IP) formulations and an exact iterative algorithm based on these IP formulations
for tackling the longest induced path problem. However, it is important to note that we do not
extend these methods, as they were found to be less effective compared to models in [13, 3].

The rest of the paper is organized as follows. Sections 2 and 3 discuss the models and
methodologies used to solve the problem together with the best models and methods presented
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in [17]. Section 4 reports the numerical results to show the efficiency of our models, also
compared to the results in [17]. The conclusion of our work is presented in Section 5.

2. Models

2.1. Notations

Let G = (V, E) be a directed graph with vertex set V and edge set £ C V x V. An edge
e = (i,j) € E is defined for some i,5 € V. The symmetric pair is given as € = (j,4). For
undirected graphs, we introduce the symmetric edge set E* = FU {e = (j,i) : e = (i,7) € E}.

We use the notation § for adjacent edges over vertices and edges as follows. Let us denote
the outgoing and incoming edges incident to vertex i with d%(i) = {(i,k) € E*}, and 6 (i) =
{(k,i) € E*}, respectively. Additionally, (i) = é (i) Ud~ (i) denote all the edges incident to
vertex 1.

For an edge e = (i,j) € E*, outgoing edges are dt(e) = 6T (i) UdT(4) \ {e, €}, and similarly,
incoming edges are = (e) = 6~ () UJ~(j) \ {e,€}. The neighbour edges of e are denoted by
d(e) = 6T (e) U (e) for all e € E*. This notation can be extended to any subset of vertices
C CV, where §7(C):={(k,l) e E* : ke C,le V\C}and 6~ (C) :={(k,]) e E*: 1€ C,k €
V'\ C} denote the outgoing and incoming edges of C, respectively, and 6(C) = 6T (C)U s~ (O)
all edges that connect C with V' \ C.

2.2. Order-based model

The first model to discuss, called LIC, is an MILP model using order-based formulation to avoid
subtours. The formalism of the model is as follows:

max 3 g (1)

eV
subject to
Te+2e <1 VeeE (2)
> oy <i VecE* (3)
geST(€)
Y = Z Tg VieV (4)
gedt (4)
vi= Y VieV (5)
geS™ (i)
i€V
w; < Y; VieV (7
w —u; <n(l—z.)—1+nw; VYeeE" (8)
> iw; < jy; +n(l - y;) VieV (9)
eV
Yi,ui =0 VieV (10)
z. € {0,1} Ve € E* (11)

w; € {0,1} VieV (12)
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The variable y; indicates whether vertex ¢ is part of the longest induced cycle or not.
Consequently, the objective in (1) aims to maximize the sum of these variables, which directly
corresponds to the length of the cycle. The decision variable x. is one if the edge e is included
in the solution, and zero otherwise.

The constraints can be understood as follows. Given that E* is symmetric, constraint (2)
guarantees that only one of the edges e or € can exist in the cycle, preventing the formation of
small cycles. Constraint (3) ensures that for any edge e = (i,j) € E*, only one outgoing edge
from either vertex 4 or vertex j can be part of the cycle. Constraints (4) and (5) ensure that for
a given vertex 7, only one outgoing edge and one incoming edge can be chosen to be part of the
cycle. The variable w; is introduced to handle the position of the last vertex in the solution,
helping in the ordering process. Constraints (6)-(7) ensure that w; is 1 for exactly one vertex
and that w; can be 1 only for one of the vertices in the solution, respectively. The constraint
(8) is a modified Miller-Tucker-Zemlin (MTZ) order-based formulation: if edge e = (4, j) is in
the cycle, vertices ¢« and 7 must be arranged in sequential order according to variables u; and
u; such that u; > u; 4+ 1, unless the binary variable w; equals 1. Constraint (9) functions as a
symmetry-breaking constraint, as described in [18]. It enforces that the last vertex in the cycle
must have the smallest index among all vertices in the cycle.

For a variation of the above introduced LIC model consider the following constraint:
xe+xézyz+y]_l ve:(l7.7)€E (13)

Constraint (13) guarantees that either edge e or € must be included in the solution if both
endpoints ¢ and j are part of the solution. Conversely, if an edge is not selected for the solution,
neither of its endpoints can be included in the solution. By substituting constraint (3) in the
original LIC model with constraint (13), we create a new model, LIC?2. This modification leads
to improved runtime performance compared to LIC, as demonstrated in Section 4.

2.3. Subtour-elimination model

The second model we employ to address the longest induced cycle problem is based on the
model presented by Bokler et al. [3], which is referred to ILP.,; and was originally designed
for identifying the longest induced path. E* is the symmetric edge set, as defined previously.
Let C represent the set of cycles in G. The model is defined as follows:

max% Te (14)

e€E*

subject to

Te = Te Vee E (15)
T < Zg Ve=(ij)€E" (16)

g€~ (i)
St > wg<2 Ve=(ij) € E* (17)

geS— (1) g€8T(j)

Y oxe< Y w, VCeCieC (18)

e€6(4) 9€8(C)
z. € {0,1} Ve € E* (19)

The binary decision variable x. indicates whether edge e is a part of the longest induced
cycle, but unlike in the LIC model (in Section 2.2), in this case, edge selection is symmetric.
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Consequently, the objective is to maximize half of the sum of these variables, as defined in
objective function (14). Symmetry of the solution is guaranteed by (15). Constraint (16)
enforces that the solution forms a cycle or cycles, while constraint (17) specifies that for any
edge e in the solution, precisely two of its adjacent edges must also be in the solution. This
ensures the induced property of the solution. Constraint (18) is utilized to eliminate small
cycles in the graph.

2.4. Cycle-elimination model

Our third model, called cec, is a modified version of the cec model introduced in [13] to find
the longest induced path. In this model, the symmetry of the edges is not used. The formalism
of the model is as follows:

max Z Yi (20)

=%
subject to
> we =2y VieV (21)
e€d (i)
Te <y VieV,eed(i) (22)
TeZzyity;—1 Ve=(i,j)€E (23)
dy<icl-1 vCecC (24)
ieC
y; € {0,1} VieV (25)
z. €{0,1} Vee E (26)

The binary decision variable y; maintains its previous interpretation, equal to 1 if vertex 4
is part of the solution. Additionally, variable x. is set to 1 if edge e is included in the solution.
However, in this context, the symmetric edge is not needed. The objective function (20) seeks
to maximize the number of vertices within the induced cycle. Constraint (21) guarantees that
each vertex within the solution is connected to precisely two vertices in the cycle. Constraints
(22) and (23) are in place to ensure that the cycle is induced. To eliminate solutions composed
of small cycles from consideration, constraint (24) is introduced. C represents a set of the cycles
for the given graph. Constraint (24) is added to the model to enforce the solution to consist of
a single cycle. This means that multiple small cycles are not deemed valid solutions.

2.5. Cordless-cycle model

The CCP formulation was introduced by Pereira et al. [17] to deal with the problem at hand.
The CCP formulation is formally described as follows:

max Z Yi (27)

i€V
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subject to

ecE eV
Zyi >4 (29)
eV
> we =2y VieV (30)
e€d (i)
> wg>2yity—1) CCVieCjeV\C (31)
9€8(C)
ZTe < Y; VieV,eedi) (32)
Te>yity—1 Ve=(i,j)EE (33)
z. € {0,1} Vee E (34)
y; € {0,1} VieV (35)

The formulation includes the usual sets of binary variables: y; and z., indicating whether
vertex ¢ and edge e are in the cycle or not. Consequently, the number of selected vertices and
edges is equal, as required by (28), and at least four vertices must be selected by (29). Each
vertex within the solution is incident to precisely two edges, as guaranteed by (30). Moreover,
the subgraph defined by = and y remains connected, as guaranteed by the subtour elimination
constraint (31). Furthermore, (32)—(33) ensures that any solution is an induced subgraph of
G. More specifically, any edge of G with both its endpoints belonging to the solution must be
part of the solution.

The CCP formulation was employed by the authors of [17], along with various valid in-
equalities. They introduced nine branch-and-cut (BC') algorithms and subsequently chose the
top three among them. The first one, labeled as BC1 contains constraints (28)-(35), and in
addition the following constraint:

Y wg>2. CCVie=(i,j)eEicCjeV\C (36)
ged(C)

This algorithm initiates by separating (31), and subsequently, the resulting inequality is en-
hanced to the more robust form of (36). This specific constraint ensures that if z. = 1, then
it is mandatory for y; = y; = 1 to hold true, due to the presence of inequalities (32)-(33).
For the BC2 and BC3 algorithms, both constraints (37) and (38) were included together with
constraints (28)-(36).

doui<2 (37)

i€Q

Y= -1 (38)

ecE(Q) i€Q

For a clique Q C V, |Q| > 3. Constraint (37) ensures that within a clique @ at most two of its
vertices can be part of the induced cycle. On the other hand, constraint (38) guarantees that
for a clique @ the number of vertices that can be part of the induced cycle is limited to at most
one more than the number of edges that can be included from the clique. Namely, only one of
the edges from @) might be included in the solution.

For the BC?2 algorithm, they implemented a rule that imposes no restrictions on the number
of separation rounds. In other words, whenever a violated inequality is detected, it is included
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in the cut pool. Conversely, for BC3, a fixed number of separation rounds, specifically 30,
was established, and inequalities were added to the cut pool if a clique did not share two or
more vertices with a clique in a previously accepted inequality. The order of inequalities in
the cut pool was determined by descending order of the absolute values of their corresponding
linear programming relaxation dual variables. All three algorithms utilized the lower bounds
obtained from the multi-start CCP heuristic [17], which is a constructive procedure that takes
a predefined edge as input data. The algorithm then seeks to extend a tentative path, P,
containing the selected vertices. Vertices are added to P one at a time, accepted if they are
adjacent to one of the path’s current extremities and not adjacent to any internal vertices. The
procedure terminates when the endpoints of P meet, resulting in a chordless cycle of G, or
when further expansion of P becomes impossible.

3. Algorithms

Out of the three models we have introduced, only LIC (and LIC?2) can be directly solved using
any MILP solver. Both ILP,,; and cec rely on the set of small cycles, which are usually created
as part of the solution process, either through an iterative cut generation approach or, more
effectively, via branch-and-cut algorithm by employing separation.

Note that subtour elimination inequalities (18) and (24), present in the ILP.;: and cec
models respectively, exhibit exponential complexity. Consequently, attempting to enumerate
all inequalities corresponding to each subtour within the graph and subsequently cutting them
becomes impractical. Instead, we have added these inequalities to the ILP.,; and cec models
as soon as facing them. Hence, the cut generation approach is employed as follows: the method
is initiated with a model relaxing all subtour elimination inequalities, and if subtours arise in
integer solutions, violated inequalities are added, and this process is repeated until the optimal
solution is reached. For that, callback functionality from Gurobi [9] was employed, which can
be used to add these inequalities iteratively.

We employed the Depth-First Search (DFS) algorithm on the induced subgraph of the
integer solution to identify cycles, subsequently introducing a new inequality for each subtour
discovered.The entire procedure, which combines the models and cut generations, is shown in
Algorithms 1 and 2.

3.1. Initialization

In the initialization phase of the procedure, the ILP.,; and cec models are created, encompass-
ing the creation of their variables, constraints, and objective functions.

3.2. Cut generation

To tackle the ILP.,; and cec models, we combine the cut generation mechanism with the
Branch-and-bound method, as explained earlier in this section. Consequently, each model was
addressed using two distinct methodologies, as outlined below.

3.2.1. Soft approach

The first approach involves cut generation as outlined in Algorithm 1. In each iteration, a
subproblem from the Branch-and-Bound tree is solved. In line 4 the algorithm checks if the
solution of the subproblem is an integer solution. Based on this, the DFS algorithm is employed
to detect any subtours within the solution, as shown in line 5. If a subtour exists, and its length
is less than or equal to the value of the variable longest_induced_cycle, a cut is appended for
that cycle. If not, the value of the variable is updated to reflect the length of the cycle, and
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there is no need to introduce a cut because the cycle could potentially be the optimal solution.
These details are clarified in lines 6 through 9. The cut generation terminates when there are
no further subtours present in the solution, indicating the completion of the procedure.

Algorithm 1 Cut_Generationl

1: Input: model Initialization()
2: longest_induced_cycle < 0
3: function CUT_GENERATION1()

4: if model.status == feasible_integer then > model has integer solution
5 C < DFS(feasible_integer) > find subtour in the solution
6 if length(C) < longest_induced_cycle then

7: model.addConstr (18, 24) > add cut (18) or (24) to the model
8 else

9: longest_induced_cycle < length(C) > update variable value
10: end if

11: end if

12: end function

13: model.optimize (Cut_Generationl()) > solve the model using cut generation

14: print(longest_induced_cycle)

3.2.2. Tough approach

The second cut generation-based approach is detailed in Algorithm 2. In each iteration, a
subproblem is solved, and if an integer solution is obtained, the algorithm verifies the presence
of any subtours using the DFS algorithm, as described in lines 4 through 5. If any cycles are
detected, a cut is integrated into the model (line 6), and the length of the cycle is updated
if it exceeds the value of the variable longest_induced_cycle (line 8). Although we may cut
the optimal induced cycle, its length (and possibly the cycle itself) is recorded. It is important
to note that in order to further improve the procedure, a constraint is added to the model in
line 10. This constraint ensures that the objective value must be greater than the length of
the largest induced cycle discovered so far. By using this cut generation, the branch-and-cut
indicates the infeasibility of the problem, yet the longest induced cycle length recorded in the
variable longest_induced_cycle.

Algorithm 2 Cut_Generation2

1: Input: model Initialization()

2: longest_induced_cycle < 0

3: function CUT_GENERATION2()

4 if model.status == feasible_integer then > model has integer solution
5: C < DFS(feasible_integer) > find subtour in the solution
6 model.addConstr (18, 24) > add cut (18) or (24) to the model
7 if length(C) > longest_induced_cycle then

8 longest_induced_cycle + length(C)

9: end if

10: model.addConstr(model.0bjVal >= longest_induced_cycle + 1)

11: end if

12: end function

13: model.optimize (Cut_Generation2()) > solve the model using cut generation

14: print(longest_induced_cycle)
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3.3. Longest Isometric Cycle

Lokshtanov’s algorithm, as described in [12], aims to identify the longest isometric cycle within
a graph. In accordance with the definition of an isometric cycle, as discussed in Section 1, if
a given graph G contains an isometric cycle with a length of ¢, then there must also exist an
induced cycle within the graph with a length of m where m > ¢. Consequently, the longest
isometric cycle serves as a benchmark for the longest induced cycle. The algorithm’s objective
is to verify the existence of an isometric cycle with a length of k in a given graph G = (V, E). If
such a cycle exists, the graph G can be employed to construct a new graph G with vertices as
vertex-pairs of G. Namely, V(Gg) = {(u,v) € V : d(u,v) = |k/2]}, where d(u,v) is the length
of the shortest path between u and v, and its edge set given by E(Gg) = {((u,v), (w,z)) :
(u,w) € E(G) A (v,z) € E(G)}.

The method is outlined in Algorithm 3. For a given value of k, the algorithm computes the
graph G} and examines whether there exists a pair of vertices (u,v) and (v, x) within V(Gy)
such that (v,z) belongs to the set My (u,v) := {(u,z) : (u,z) € V(Gg) A (v,2) € E(G)} and
de, [(u,v), (v,x)] = |k/2]. If such a pair is found, it indicates the presence of an isometric cycle
with a length of k.

Algorithm 3 Longest Isometric Cycle

1: LISC + 0

2: forallleV,ieV,jeV do > distance calculation by Floyd algorithm
3: d(i, ) < min{d(s, j),d(i,1) + d(4,1)}

4. end for

5. if G is a tree then > no cycles in tree graph
6: return LISC

7: end if

8 for k=3 —ndo

9 Vi 0 > vertices of Gy,
10: for all u,v € V do

11: if d(u,v) = |k/2]| then

12: Vi < ViU {(u, U)}

13: end if

14: end for

15: E,+ 0 > edges of Gy,
16: for all (u,v), (w,z) € V}, do

17: if (u,w) € EA (v,2) € E then

18: Ey < Ei U {((u,v), (w,z))}

19: end if
20: end for

21: Gk «— (Vk,Ek)
22: for all (u,v,z) € V do

23: if (u,v) € Vi A (v,2) € Mi(v,u) Adg, [(u,v), (v,2)] = | k/2] then
24: LISC < k

25: end if

26: end for

27: end for

28: print (LISC)
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4. Numerical experiments

To demonstrate and evaluate the effectiveness of the proposed methods, we present numerical
results for three models: the LIC model, the ILP.,; model, and the cec model. Furthermore, we
conducted a comparison between our best results and results from [17] on randomly generated
graphs to highlight the efficiency of our approach in comparison to existing methods.

4.1. Computational environment and datasets

The algorithms detailed in Section 3 were implemented in Julia 1.7.0, utilizing the JuMP
package version 0.22.1. We employed Gurobi 9.5.0 as the solver for all experiments. Each run
was constrained to a one-hour time limit and a single thread. For the longest isometric cycle
algorithm, we implemented it using Python 3.8 with a 24-hour time limit. These computations
were performed on a computer with an Intel Core i7-4600U CPU, 8GB of RAM, and running
the Windows 10 operating system.

To verify the efficacy of our methods, we employed two sets of network datasets. The first
is the RWC set, comprising 19 real-world networks that encompass communication and social
networks within companies, networks of book characters, as well as transportation, biological,
and engineering networks, as described in [14]. Additionally, we utilized the Movie Galaxy
(MG) set, consisting of 773 graphs that represent social networks among movie characters, as
detailed in [10]. For further information about these instances, the reader is referred to the
following link: http://tcs.uos.de/research/lip.

To perform a comparison with the results presented in [17], we conducted experiments on
random graphs with varying values of n ranging from 50 to 100, considering both 10% and 30%
density, as in [17]. For every case, 10 graphs were generated. Every run was restricted to a
maximum duration of one hour, with no restrictions on the number of threads, and with an
initial solution set to 4, as described in [17]. Regarding the hardware comparison, we utilized
the information available in [16] to collect the details of the CPU utilized in all experiments, as
outlined in Table 1. It is evident that the computer used in [17] is more powerful than ours. To
ensure a fair comparison, we normalized the execution times in all cases. The ratio between the
single-thread ratings gives a good approximation of the relative speed. Therefore, we calculated
this ratio in the last row of Table 1. The run time was then modified by multiplying it by the
obtained ratio.

Benchmarks ‘ Intel Core i7-4600U ‘ Intel Xeon W-3223 [17]
Clock Speed (GHz) 2.1 3.5
Turbo Speed (GHz) Up to 3.3 Up to 4.0 GHz
Number of Physical Cores | 2 (Threads: 4) 8 (Threads: 16)
Single Thread Rating 1641 2480
Ratio | 0.66 | 1

Table 1: CPU performance comparison between the CPU used in this paper and in [17].

4.2. Computational results

Table 2 presents the computational experiments conducted on the RWC instances. The second
column displays the optimal solutions for each instance (opt). In the third column, we find
the length of the longest isometric cycle (LISC), if possible. The fourth and fifth columns
respectively indicate the number of vertices (V) and edges (M) of the corresponding graph.
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Columns six through eleven show the time in seconds required to identify the optimal solution
using the various methods employed in this study. Specifically, ILP.,;:2 and cec2 refer to the
methods outlined in Algorithm 2. For all these methods, we also initiated the search using
the LISC value, incorporating the constraint 0bjVal > LISC. These methods are indicated in
every second row corresponding to each graph. Instances that resulted in timeouts are denoted
by the symbol €D.

graph opt LISC N M LIC LIC2  ILPiyt  ILPeyy2 cec  cec2
hghteh 10 539U oo g 00 Y5 i om
Karate 6 5 M T8 0 0% 03 029 o024 o017
mesiean 13785 T oG (50 00 0y oa0 020
sawmill 6 5 36 62 oo 0 ﬁ ot ﬁ o1
tailorS1 12 7 39 158 f:gg (1):;; 1:% 1:32 8:3? 8:22
chesspeake 15 5 3 10 g g ool g oss o
wio2 1258923 o Tuo 3T 4e oss ons
attiro 2950 1M g gm0 ogs 028 041
e s 7o s 0h TR 00 8 08
dolphins 20T € 19 0G0 100 2% 2o 014 180
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smjuanswr 35 117w oo Ba 08 Vo 00 g
jean Toos o PO e 159 1s0 23 ol
w0 a wom Ao smo s om o
I R S N e
st R S T 7 S v
. 5 138 493 9075 5211 1060 2365 137 L71
otbus e 191 sse 10848 12677 2713 33.09 273 210
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5152 59.70 5.75 545 0.9 0.92

Table 2: Running times on RWC instances, time is given in seconds.



210

Ahmad T. Anaqgreh, Boglarka G.-T6th and Tamdés Vinké

The various methods exhibit diverse performance characteristics in terms of execution time
and the number of instances solved optimally. Key observations from Table 2 are as follows:

cec2 outperforms cec in 13 cases, ILP .y, ILP 2, LIC and LIC?2 in all the cases.
ILP.,:2 was faster than LIC?2 for 15 cases and LIC for all instances.
LIC?2 outperforms LIC in 14 cases.

For some instances in ILP.,; and cec, the graphs and results are indicated by boldface
and underlined in Table 2. This is to emphasize that these graphs contain multiple longest
induced cycles of the same length, and the procedures described in Algorithm 1 cut the
cycle if its length is less than or equal to the longest induced cycle found so far. Thus,
for these graphs, all the longest cycles are found by the method.

Using LISC as an initial solution does not contribute significantly to improving the exe-
cution time in the majority of cases.

The results emphasize the correlation between graph density and execution time. Graph
density is defined as the ratio of the edges present in a graph to the maximum number
of edges it can hold. This relationship is particularly evident for dense graphs like huck,
jean, and david, especially in the case of LIC' and LIC2 models. However, it is not the
case for cec and cec2 models as their running times show less sensitivity to the graph’s
density.

nr. of edges ‘ nr. of instances ‘ LIC LIC2 ILP., ILP.,;2 cec cec2

1-49 107 0.14 0.14 0.12 0.18 0.09  0.08
50-74 135 0.37 0.29 0.2 0.3 0.17  0.12
75-99 151 0.7 0.58 0.32 0.39 0.22  0.17

100-124 121 1.74 1.32 0.51 0.65 029 0.24
125-149 90 4.5 3.67 0.82 0.99 0.37  0.34
150-199 89 10.45 7.48 1.49 1.7 0.56  0.49
200-629 80 169.38 110.49  13.28 16.39 2.41 1.9

average 157.23 126.35  44.73 57.28  26.84 22.01

Table 3: Running times on MG instances, time is given in seconds.

The results for the MG instances, organized into groups based on the number of edges, are
presented in Table 3. Unlike LIC and LIC?2, where the running times increase proportionally

with

the instance size, the results indicate that cec and cec2 are more reliable, with running

times showing less sensitivity to the graph’s size.

The results for the random graphs are presented in Table 4, where we compare cec2 against
the top three algorithms introduced in [17]. The runtime represents the average duration on the
ten graphs in each case. Notably, cec2 outperforms these algorithms in all cases, even before
normalizing the execution times with the ratio listed in Table 1. Moreover, cec2 successfully
solved the instance with 100 vertices and 30% density, a scenario where none of the algorithms
in [17] succeeded.
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Randomly generated graphs: 10% density

n cec2 BC1 BC2 BC3
50 0.32 (0.49) 0.33 0.3 0.39
60 0.79 (1.2) 1.19 1.2 1.34
70 4.17 (6.32) 5.57 4.93 5.58
80 20.5 (31.1) 37.15 26.9 27.34
90 93.93 (142.32) 160.1 155.82 168.02
100 518.75 (785.99)  1321.41 1129.47 1094.8
average 106.41 254.29  219.77  216.25
Randomly generated graphs: 30% density
n cec2 BC1 BC2 BC3
50 4.15 (6.28) 8.21 9.6 8.78
60 26.14 (39.6) 39.82 46.18 51.9
70 90.11 (136.52) 234.45  206.36  283.28
80 203.81 (308.8) 935.78  676.52 1139.55
90 544.88 (825.58)  2072.16 1874.91 3011.17
100 1810.49 (2743.17)
average 446.6 658.08 562.71 898.94

Table 4: Running times on random instances for cec2, BC1, BC2, and BC3, time is given in
seconds. Values in brackets show the original execution time of cec2.

5. Conclusion

Considering that the longest induced cycle problem is NP-hard, it is essential to find an effi-
cient approach that can yield optimal solutions within a reasonable time. In this regard, we
introduced three integer linear programs, some of which are extensions of models originally for-
mulated for solving the longest induced path problem. These newly proposed programs showed
differing execution times and success rates in terms of achieving optimal solutions, outperform-
ing the models presented in the literature. We have found that the cec2 formulation with tough
cut generation yields the most efficient method. For future work, heuristic or metaheuristic
approaches can be used as initial solutions for the MILP, potentially increasing the efficiency
of solving the problem. Designing more sophisticated MILP formulations with constraints that
can more effectively prune the search space is another possibility. Additionally, exploring ex-
act methods like branch-and-price algorithms, which combine branch-and-bound with column
generation, could be effective in handling large and complex instances.
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