
Croatian Operational Research Review 185
CRORR 15:2(2024), 185–198

A hybrid population-based algorithm for solving the Minimum
Dominating Set Problem

Belkacem Zouilekh1 and Sadek Bouroubi1,∗

1 LIFORCE Laboratory, Department of Operations Research, Faculty of Mathematics, University of
Sciences and Technology Houari Boumediene, P.B. 32 El-Alia, 16111, Bab Ezzouar, Algiers, Algeria.

E-mail: ⟨{bzouilekh, sbouroubi}@usthb.dz⟩

Abstract. The Minimum Dominating Sets (MDS) problem is pivotal across diverse fields like social
networks and ad hoc wireless networks, representing a significant NP-complete challenge in graph
theory. To tackle this, we propose a novel hybrid cuckoo search approach. While cuckoo search is
renowned for its wide search space exploration, we enhance it with intensification methods and genetic
crossover operators for improved performance. Comprehensive experimental evaluations against state-
of-the-art techniques validate our approach’s effectiveness.
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1. Introduction

Given an undirected graph G = (V,E), a subset S of V is named a dominating set of G if
each vertex v ∈ V is either an element of S or is adjacent to an element of S. Such a subset
is called a dominating set of G, and we say S dominates G or G is dominated by S. The
minimum cardinality of a dominating set in G is denoted by γ(G). If S dominates G, such as
|S| = γ(G), then S is called a Minimum Dominating Set, or MDS for short [10]. As an example,
Figure 1 shows a subgraph of Twitter tweets with 85 vertices that spread specific 5G false news
that is linked directly to the COVID-19 pandemic [20], with nodes denoting Twitter users and
edges representing follower relationships. The MDS obtained by our approach is highlighted
in red. The original status of the publisher is represented by the vertices of the dominating
set, which are marked in red. If we assume the simplest scenario: followers, marked in black,
cannot retweet and content cannot spread out of followers, only 2 users could probably spread
misinformation among the other 83 users.

Figure 1: Representations of a real-induced sub-graph from Twitter.
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The minimum dominating sets and their variations, such as the minimum connected dom-
inating set and the minimum weighted dominating set, have pervasive applications in a wide
range of disciplines, besides routing in ad hoc wireless networks [26], sensor networks, and
MANETs [3]. In addition, the MDS can be employed to determine the main subject sentences
for document summary via sentence network design [27]. Furthermore, the MDS may be used
to model and investigate the positive impact of social networks [7]. Moreover, controlling the
spread of epidemics [22] also involves early diagnosis and control of epidemic spreading in var-
ious areas of human society, such as virus spread in computer systems, misinformation (as
shown in Figure1), and content diffusion via social media [30]. In this paper, we address the
minimum dominating set problem by proposing a new Hybrid Cuckoo Search Algorithm, hence-
forth called HCSA-MDS, that combines the cuckoo search algorithm and the genetic crossover
operator with intensification schemes as well as repairing and cleaning to achieve effective ex-
ploration and exploitation.

1.1. Paper structure

The remainder of this paper is partitioned into many sections. In Section 2 that follows, we
present some linked works, including exact algorithms and heuristics, applied to solving the
MDS problem. Section 3 goes into detail about the Cuckoo Search Algorithm. The hybrid
CSA algorithm is then presented and described in Section 4. Section 5 summarizes the results
of the computation. The paper is finally concluded in Section 6.

2. Related works

The MDS problem is an NP-Hard combinatorial problem [8], and it has been thoroughly in-
vestigated using exact (exponential-time) techniques. The best known exact algorithm for the
MDS problem performs in O(1.4864n) time and polynomial space, constructed through the
measure and conquer approach by Y. Iwata [14]. Unfortunately, the exact techniques that
execute at an exponential scale are only possible for limited-size networks, severely limiting
their effective uses. As a result, scientific researchers have mainly concentrated on stochastic
computational heuristics and, lately, metaheuristics. Hence, many heuristic approaches have
been adopted in the state of the art to handle the MDS problem, such as[16, 25, 2, 15]. More-
over, L. A. Sanchis [19] performed experimental research on different heuristic approaches in
this perspective; he thoroughly investigated many greedy methods for the MDS problem. After
that, Ho et al. [13] presented ACO-TS, an improved Ant Colony Optimization metaheuristic
that integrates a technique for stimulating the building of different solutions based on a con-
cept adopted from genetic algorithms called tournament selection. Subsequently, in [11], Hedar
and Ismail presented a hybrid genetic algorithm referred to as HGA-MDS that employs a local
search characterized by three intensification techniques. Furthermore, in [12], Hedar and Ismail
also suggested a SAMDS metaheuristic addressing the MDS problem by employing a Stochastic
Local Search (SLS) algorithm for strengthening a solution by looking for a stronger one in its
near area. The SLS is enhanced by using a simulated annealing process. Recently, Abed and
Rais [1] introduced a hybrid population-based technique known as the Hybrid Bat Algorithm,
which is rooted in microbat bio-sonar characteristics and simulated annealing. The fact that
SA is efficient in exploitation and the bat algorithm has a high capacity for the exploration of
large regions in the search space helps to ensure a good balance between intensification and
diversification in the search methodology.

3. Cuckoo Search Algorithm

The Cuckoo Search Algorithm (CSA), based on the fascinating breeding behavior of particular
cuckoo species, such as brood parasitism, is one of the most recently developed metaheuristics
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[9]. To describe the Cuckoo Search for clarity, Yang and Deb use the following three idealized
principles [28]:

1. One egg is laid by each cuckoo at a time, and it deposits it in a nest that is selected at
random.

2. The best nests with the highest quality eggs (solutions with the highest fitness) will be
passed on to future generations.

3. The number of host nests is fixed, and a host has a probability of discovering an alien egg
of Pa ∈ [0, 1]. In this scenario, the host bird can either discard the egg or leave the nest
and create a new one at a different site.

A solution’s fitness can simply be proportional to the objective function’s value. A cuckoo egg
signifies a new solution, and each egg in a nest indicates a solution. The goal is to replace the
poor solutions in the nests with new and maybe improved ones (cuckoos). This approach can
be expanded to a more sophisticated scenario of several eggs representing a set of solutions in
each nest. Therefore, we will take the simplest approach possible, with each nest containing
only one egg. The CSA pseudo-code is shown in Algorithm 1 based on these criteria.

Algorithm 1: Cuckoo Search Algorithm: CSA

Input: Problem instance s
Output: The best possible solution s∗

Initialization:
Initialize the population of m host nests (solutions) s = (s1, . . . , sm);,
maxGen : Maximum number of generations,
t← 0.

1 while t ≤ maxGen do
2 Get a cuckoo (say xi) at random using Lévy flights and evaluate its fitness f(xi);
3 Choose one of n (say yi) nests at random.
4 if f(xi) > f(yi) then
5 Replace the old nest xi by the new one yi;
6 else
7 Continue

8 A portion of the worst nests pa are removed and replaced with new ones.
9 Sort the solutions and choose the best one.

10 Refresh the current best solution.
11 t = t+ 1

12 return s∗

After generating the initial population, CSA generates new solutions xi+1 associated to each
cuckoo i in each iteration t by a random walk via Lévy flight:

xt+1
i = xt

i + α⊕ Lévy(λ) (1)

Lévy flights are a type of random walk named after the French mathematician Paul Lévy [5], in
which α above in the equation denotes the step size, which should correspond to the problem’s
interests (most of the time α = 1), and the term product ⊕ denotes entrywise multiplications.
The step lengths are selected from a probability distribution with a power law tail. Lévy
distributions, or stable distributions, are the names given to these probability distributions.

Lévy ∼ u = lλ, (2)

where 1 < λ ≤ 3 and l is the flight length.
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The initial purpose of CSA and Lévy flights was to solve continuous optimization problems.
Yang and Deb [28] show the outperformance and robustness of CSA over GA and PSO because
of its larger search space exploration capacity and fewer parameters to fine-tune than other
algorithms. Actually, there is just one parameter Pa, separate from the population size N .
CSA has been widely used and shown promising efficiency in a variety of optimization and
computational intelligence applications [29]. On the other hand Boumedine and Bouroubi
proposed a discrete hybrid cuckoo search algorithm to solve the protein folding problem [4].
In this paper, we present a discrete hybrid CS-based method, called Hybrid Cuckoo Search
Algorithm for Minimum Dominating Set (HCSA-MDS), to solve the MDS problem, which is
one of the most difficult combinatorial optimization problems. The suggested discrete HCSA-
MDS employs an adaptive Lévy flight for the MDS problem.

4. Hybrid CSA for the MDS problem

We describe our approach to tackling the MDS problem in the following section. Our algorithm
takes as input a problem instance G = (V,E), in which G is an undirected, connected graph, V
is a set of vertices, and E is a set of edges. The HCSA-MDS pseudo-code shown in Algorithm 4
combines the cuckoo search algorithm with the genetic crossover operator and the cleaning with
repair technique to exploit the solutions. Lévy flight, with its ability to explore new regions in
the search space, is a particularly useful strategy in the diversification phase. The goal of this
hybridization is to establish a proper balance between exploration and exploitation. The main
structure is shown in Figure 2.

Figure 2: HCSA-MDS flowchart.

We first discuss the HCSA-MDS components before fully stating pseudo-code 4.

4.1. Solution and population representation

The HCSA-MDS algorithm starts with a population P that contains a set ofm nests (solutions),
some of which are non-feasible. As a result, a 0−1 vector with a dimension equal to the number
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of nodes in the graph G = (V,E) represents a solution x in P . The i-th node in G is part of
the dominating set if the vector’s i-th element has a value of 1. While the i-th vector’s item
has a value of 0, this indicates that a node is not part of the dominant set. Table 1 illustrates
the binary representation of the solution to Example 1 presented in Section 1.

1 2 3 · · · 13 14 15 · · · 85

0 1 0 · · · 0 1 0 · · · 0

Table 1: Binary representation of the best found MDS.

4.2. A new cuckoo egg’s production using the crossover operator
The crossover operator is one of the genetic operators that applies to two parents (solutions)
and then chooses at random any of the crossover points ph, h ∈ {0, 1, ..., n − 1} [23]. Two
offspring (new solutions) are created by joining the parents at the crossover point for the next
generation. However, for any solution from population P that we consider the first parent, we
choose a second parent in a random way from the current population. Then, the one point
crossover operation is used to generate two offspring. In the proposed algorithm, only the best
offspring is chosen for the next stage; see the example in the following Table 2:

Parent Binary representation Offspring Binary representation
First 1010|10110 ⇒ First 1010|10010
Second 1111|10010 Second 1111|10110

Table 2: An illustrative example of a crossover operator with a single point-crossover.

In the previous example, two offspring were produced randomly by combining the first
and second parents at the fourth position. The crossover operation in this example results in
two novel solutions, where the first offspring exhibits superior performance in the minimum
dominating set problem compared to both its parents and sibling.

4.3. Filtering and Reparation procedures

HCSA-MDS employs a filtering mechanism to enhance the MDS solutions by removing redun-
dant nodes, thereby limiting the size of the dominating set while preserving its coverage [11].
This filtering procedure is detailed in Algorithm 2. Complementing this, the reparation proce-
dure addresses solutions S that fail to cover all nodes. It begins by verifying if the solution is
not a dominating set. Subsequently, the next vertex added to the set of dominators is chosen
from the non-dominating vertices with the highest degree. This reparation process continues
until S constitutes a valid dominating set, as illustrated in Algorithm 3.

Algorithm 2: Filtering procedure

Input: Solution S.
Output: Filtered solution.

1 for each node x in S do
2 if x = 1 then
3 Set x = 0
4 Compute the new fitness value of the solution S
5 if the new fitness value is increased then
6 Update the solution S and set x = 0
7 else
8 Reset x = 1

9 return S
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Algorithm 3: Repairing procedure

Input: Solution S.
Output: Repaired solution.

1 if There are non-covered nodes in the solution S then
2 Select a node x with maximum degree in non-covered nodes set;
3 Set x = 1 and update the solution S;
4 Remove x from non-covered nodes and its neighbours;

5 return S

4.4. Construction of a new solution via Lévy flights

Due to its unique step-length characteristics, the Lévy flight strategy efficiently explores search
spaces. To apply this technique to the Minimum Dominating Set (MDS) problem, we relate the
step length, representing the length of the subset, to the values generated by Lévy flights. For
instance, if S S is an n-dimensional solution, we partition the interval [0, 1] into m subintervals
and define the step length (steplength) as follows:

θ
[
0, 1

m

] [
1
m , 2

m

]
...

[
m−1
m , 1

]
steplength

[
1, maxl

m

] [
maxl

m , 2maxl

m

]
...

[
(m−1)maxl

m ,maxl

]
where θ is the Lévy flight value acquired and maxl =

n
h , h ∈ {1, 2, 3, . . . , n} is the maximum

subset we are able to invert. Let i be the length of the subset chosen at random from the
interval generated by Lévy’s flight value. Then, from the n-dimensional solution, we choose a
random position between 1 and n− i, from which the i-inversion begins.

5. Experimental results

HCSA-MDS effectiveness is evaluated against a collection of well-known efficient algorithms
for the Minimum Dominating Set problem that have been reported in the literature. The
rest of this section will be as follows: First, all benchmarks used are presented. Then, we
compare the results obtained by the proposed algorithm with state-of-the-art approaches. We
use Wilcoxon’s signed-rank test to compare the HCSA-MDS method with other approaches.
This nonparametric test is suitable for matched-pair data and detects substantial performance
differences. We also use Critical Difference (CD) diagrams to visualize results, as described in
[6]. First, a Friedman test checks for significant performance differences among algorithms. If
significant, post-hoc analysis follows. CD diagrams rank algorithms on a horizontal axis, with
the best near 1. Statistically similar algorithms are connected by bars. For more details, visit
this link: https://mirkobunse.github.io/CriticalDifferenceDiagrams.jl/stable.

5.1. Data Sets

The Minimum Dominating Set (MDS) problem commonly uses two benchmark datasets. The
first includes 42 random geometric graphs with up to 400 nodes, as outlined in [12]. These
networks are generated by randomly placing n nodes within an M × M area, following specific
instructions detailed in [13]. Multiple graph instances are created per network based on specified
range parameters. The second dataset comprises 20 graphs with 400 and 800 vertices sourced
from [12], where optimal dominating sets are known. These graphs are generated using a
methodology detailed in [19]. For additional benchmark details, please refer to Table 3.

https://mirkobunse.github.io/CriticalDifferenceDiagrams.jl/stable
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Network Id No of nodes (n) Range Area (A) No of instances

N1nA 80 60-120 400×400 7

N2nA 100 80-120 600×600 5

N3nA 200 70-120 700×700 6

N4nA 200 100-160 1000×1000 7

N5nA 250 130-160 1500×1500 4

N6nA 300 180-220 2000×2000 5

N7nA 350 200-230 2500×2500 4

N8nA 400 210-240 3000×3000 4

(a) First benchmark.

Network n p d No of instances

N400
d,0.1 400 0.1 8, 11, 14, 18, 23 5

N400
d,0.3 400 0.3 3, 5, 8, 11, 14 5

N400
d,0.5 400 0.5 3, 5, 8, 11 4

N800
d,0.1 800 0.1 11, 14, 22 3

N800
d,0.3 800 0.3 3, 5 2

N800
d,0.5 800 0.5 3, 6 2

(b) Second benchmark.

Table 3: Benchmark data sets.

5.2. Tuning algorithm parameters

To conduct our experiment, we set the cuckoo search parameters according to the commonly
used values in the literature for various optimization problems [28]. For a fair comparison, we
selected the population size N and the number of generations maxGen based on previous works
addressing similar problem. The population size N was set to 40, the number of generations
maxGen to 100, the probability of the host bird discovering a cuckoo egg Pa to 0.25, and the
cuckoo’s step length parameters γ and α to 1.5 and 1 respectively.

Algorithm 4: HCSA-MDS Algorithm

Input: A graph G = (V,E).
Output: Dominating Set.
Initialization:
Generate an initial population P of m feasible solutions, S = (xi, . . . , xm),
maxGen : Maximum number of generations,
Gen← 0.

1 while Gen ≤ maxGen do
2 i = 1
3 while i ≤ m do
4 Filter the repaired solution to improve its quality
5 Select a random solution xj from P as second parent
6 Produce a new cuckoo egg yj using the crossover operator for the selected

parents xi and xj

7 if f(yj) ≥ f(xi) then
8 Replace xi by the new produced solution yj

9 i = i+ 1

10 Gen = Gen+ 1

11 The worst solutions are removed from P , and new ones are generated via Lévy flight
proportional to Pa ∈ [0, 1]

12 Rank the solutions from the best to the worst and find the best one
13 Update the global optimal solution
14 return Dominating Set

5.3. The numerical performance

Each benchmark was performed 20 times on the first benchmark and 10 times on the second to
ensure a fair comparison. Our HCSA-MDS algorithm was implemented in Python. All testing
was conducted on a system with 16 GB of RAM and a 2.6 GHz Intel Core i5 CPU. The source
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code and datasets for reproducing the experiments are available at https://github.com/elkacem/
HCSA MDS .

5.3.1. Comparative analysis of HCSA-MDS against the state-of-the-art approaches
on the first benchmark

We test the suggested HCSA-MDS on the first benchmark against HGA-MDS [11], SAMDS
[12], and HBA [1] for the purpose of proving the performance of the HCSA-MDS approach.
Check Table 4. The performance of HCSA-MDS is evaluated using the following metrics for
each instance:

1. Best: The smallest dominating set found across all runs for each graph instance.

2. Avg.(Std.): The average and standard deviation of the best solution values from indi-
vidual runs for each graph instance.

3. Worst: The worst solution found in 10 runs for each graph instance (only for HCSA-
MDS).

4. Rea.: The number of runs where the optimal solution (domination number) was achieved.

The following assessment can be drawn from the previous experiments (see Table 4):

• HCSA-MDS is able to improve the best-known solution in 27 out of 42 graph instances
and match the best-known solution for the rest of the 14 instances. And only in one instance
(N52501500, 160) did HBA provide a better solution. For the larger graphs, the differences between
HCSA-MDS and the other algorithms begin to grow. For example, in instances with 300, 350,
and 400 vertices, HCSA-MDS provided better solutions in all graph instances, with a substan-
tial difference, as shown in Figure 4, which simulates the results of a best-solution comparison
between HCSA-MDS and the other approaches. In addition, we used the critical difference
diagram in Figure 3a to verify these results, showing that HCSA-MDS beats all other algo-
rithms, followed by HBA, SAMDS, and HGA-MDS, which is the worst. Summarizing, we can
assert that HCSA-MDS beats the state of the art in terms of solution quality by a large margin.

• Concerning the worst solution obtained over 20 runs, in 17 out of 42 graph instances,
HCSA-MDS is able to outperform the currently best solution produced in the state-of-the-art
approaches. Furthermore, HCSA-MDS’s worst solution matches the best solution provided by
other approaches in 19 instances, and in only 6 cases, the best solution provided by the other
approaches is better than the worst solution by HCSA-MDS. Table 6 displays Wilcoxon’s test
statistics, which show that there is a significant difference between HCSA-MDS and other ap-
proaches. Finally, Figure 3b shows the critical difference plot, where clearly HCSA-MDS exceeds
the state of the art in terms of the worst solution when compared to the best solution yielded
by literature approaches.

• The results of the standard deviation Table 4 demonstrates that HCSA-MDS outperforms
HBA in terms of stability, as it produced stable dominating set values in 12 out of 42 instances,
whereas HBA only provided stable values in 6 out of 42 instances. Additionally, the standard
deviation for HCSA-MDS in the other cases is negligible, indicating high stability. In compari-
son, SAMDS performs better than HGA-MDS, which is the least effective, particularly in dense
graphs. These findings are supported by the mean ranks presented in the critical difference
plots shown in Figure 3c, which confirm that HCSA-MDS is statistically superior to the other
algorithms.

https://github.com/elkacem/ HCSA_MDS
https://github.com/elkacem/ HCSA_MDS
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Graph Id HGA-MDS SAMDS HBA HCSA-MDS
Range Best Avg.(Std.) Best Avg.(Std.) Best Avg.(Std.) Best Avg.(Std.) Worst
N180400 60 15 15.95(0.39) 15 16.35(0.67) 16 16(0) 15 15(0) 15

70 13 14(0.73) 12 14.40(1.14) 13 13.30(0.48) 12 12(0) 12
80 10 10.85(0.59) 10 12(1.03) 10 10.60(0.52) 9 9(0) 9
90 8 8.40(0.50) 8 9.60(1.27) 9 9.60(0.52) 8 8(0) 8

100 7 8.20(0.52) 7 9.10(0.97) 8 8.40(0.52) 7 7(0) 7
110 6 6.05(0.22) 6 7.55(0.69) 6 6.90(0.32) 6 6(0) 6
120 5 5.95(0.39) 5 7(1.08) 6 6.70(0.48) 5 5.10(0.30) 6

N2100600 80 19 19.55(0.85) 18 20.55(1.23) 19 19(0) 18 18(0) 18
90 16 17.20(0.95) 15 17.65(1.73) 18 18(0) 15 15(0) 15

100 14 14.85(0.49) 13 14.95(1.05) 14 14.40(0.52) 13 13.15(0.36) 14
110 11 12.15(0.67) 11 12.85(1.23) 12 12.30(0.48) 11 11(0) 11
120 10 10.15(0.37) 9 12(1.49) 11 11(0) 9 9.25(0.43) 10

N3200700 70 37 45.65(10.83) 35 39.95(2.09) 34 35.40(0.84) 32 32.45(0.59) 34
80 31 33.05(1.32) 29 33.50(1.73) 28 28.20(0.42) 26 27.45(0.59) 28
90 26 28.75(2.67) 25 29, 25(1.94) 25 26(0.67) 23 23.50(0.50) 24

100 21 24.70(4.94) 20 24.20(1.70) 21 21.80(0.42) 18 18.15(0.36) 19
110 19 19.95(0.51) 18 21.40(1.93) 17 17.70(0.48) 16 16.65(0.48) 17
120 17 17.30(0.47) 15 19.55(1.43) 15 16.20(0.79) 14 14(0) 14

N42001000 100 39 45.25(5.57) 38 41.35(1.87) 36 36.70(0.48) 35 36.15(1.01) 38
110 35 37.35(2.06) 33 37.20(2.44) 30 30.80(0.42) 30 30.35(0.48) 31
120 27 28.90(1.77) 26 30.10(1.45) 26 26.30(0.48) 23 23.30(0.46) 24
130 26 27.30(1.13) 25 28.15(1.42) 23 24.20(0.63) 23 23(0.59) 23
140 23 24.35(1.35) 22 25.70(1.84) 22 23(0.67) 20 20.95(0.59) 22
150 21 21.45(0.76) 20 23.55(1.43) 19 20.30(0.82) 17 17.95(0.74) 19
160 20 21.60(0.94) 19 21.30(1.30) 18 18(0) 17 17(0) 17

N52501500 130 55 75.45(24.01) 51 56.05(2.68) 49 50(0.67) 47 47.20(0.40) 48
140 48 59.75(12.78) 46 48.65(1.35) 42 42.60(0.70) 40 40.85(0.36) 41
150 44 48.30(3.34) 41 44.75(1.71) 37 37.90(0.32) 37 37.50(0.50) 38
160 38 41.65(3.42) 37 40.90(1.92) 31 32.60(1.71) 34 34.15(0.36) 35

N63002000 180 54 61.20(6.64) 47 52.35(2.41) 44 45.70(0.95) 43 43.45(0.50) 44
190 48 55.55(6.35) 46 50.20(2.24) 44 44.40(0.52) 40 41.25(0.83) 43
200 41 47.90(5.07) 40 45.25(2.55) 41 41.10(0.32) 36 36.50(0.67) 38
210 40 48.60(7.99) 39 43.60(1.70) 37 37.70(0.82) 34 34.40(0.58) 36
220 36 39.90(4.34) 36 40.65(1.90) 33 34.10(0.57) 31 31.70(0.46) 32

N73502500 200 67 93.45(23.58) 61 66.35(2.13) 58 58.90(0.32) 54 55.85(0.85) 58
210 63 91.20(26.70) 58 61.85(2.18) 53 55(1.05) 48 49.70(0.78) 51
220 55 76.85(30.55) 49 55.05(2.31) 51 51.80(0.63) 44 45.25(0.70) 47
230 51 67(21.02) 48 54.05(2.42) 45 47.10(1.37) 43 43.90(0.83) 45

N84003000 210 79 115.55(41.21) 75 80.15(3.10) 72 73.30(0.95) 68 69.45(0.74) 71
220 77 110.45(39.76) 73 79.25(3.18) 70 71(0.82) 63 64.50(0.92) 66
230 73 111.55(38.94) 71 74.10(2.22) 64 64(0) 60 60.85(0.57) 62
240 70 103.15(32.02) 63 68.80(2.98) 58 59.30(0.67) 56 56.95(0.74) 58

Table 4: Performance comparison of various algorithms for the first benchmark sets.

1 2 3 4

HCSA-MDS

HBA SAMDS

HGA-MDS

(a) Comparison of the best solutions (Best).

4321

HCSA-MDS

HBA SAMDS

HGA-MDS

(b) HCSA-MDS worst solutions (Worst) compared to HBA,SAMDS,
and HGA-MDS best solutions.

1 2 3 4

HCSA-MDS

HBA HGA-MDS

SAMDS

(c) Standard deviation (std.)

Figure 3: Critical Difference plots evaluating HCSA-MDS, HBA, SAMDS, and HGA-MDS for
the first benchmark.
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Figure 4: Best solution analysis of various approaches.

5.3.2. Numerical results for the HCSA-MDS and various approaches on the second
benchmark

We discuss the effectiveness of the suggested HCSA-MDS on the second test case benchmark. Our
method’s results are evaluated against those of state-of-the-art algorithms. Hence, we compare HCSA-
MDS against a variety of greedy algorithms from [19], where Sanshis L described and studied many
greedy heuristics designated Greedy, GreedyRev, GreedyRan, GreedyVote, and GreedyVoteGr, which
is an updated variant of GreedyVote. According to the evaluations, GreedyVoteGr beats other greedy
heuristics when employing the local search process. Similarly, we compare HCSA-MDS with the Hybrid
Genetic Algorithm abbreviated HGA-MDS from [11], as well as Simulated Annealing (SAMDS) from the
paper [12], which shows better performance than HGA-MDS and the greedy heuristics. The numerical
values are presented in Table 5. For each graph instance, the results of various approaches are presented
in terms of the average solution (Avg.) obtained in 10 runs in each table and how many runs out of 10,
the Minimum Dominating Set was reached, which is represented in the column labeled ”Rea.”. Three
alternative graph densities are taken: from dense to sparse, 0.5, 0.3, and 0.1. The experiments in Table
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Criteria Algorithm Z Sig. (p value)

Optimal Reached HGA-MDS vs. GrVoteGr -3.306 0.001

(Opt.) SAMDS vs. HGA-MDS -2.364 0.018

HCSA-MDS vs. HGA-MDS -3.026 0.002

HCSA-MDS vs. SAMDS -2.555 0.011

Average HGA-MDS vs. GrVoteGr -3.351 0.001

(Avg.) SAMDS vs. HGA-MDS -1.601 0.109

HCSA-MDS vs. HGA-MDS -3.051 0.002

HCSA-MDS vs. SAMDS -2.677 0.007

Worst of HCSA-MDS HCSA-MDS vs HBA -3.304 0

VS HCSA-MDS vs SAMDS -4.634 0

Best of Others HCSA-MDS vs HGA-MDS -5.108 0

Table 6: Comparison of statistical test results for different algorithms.

5 shows that HCSA-MDS is the highest-performing algorithm, with absolute distinctions in terms of
average solution and reaching the optimal solution. Moreover,almost all instances reached the optimal
in all 10 runs except two instances (N400

0.3,3,N
800
0.5,33) optimal reached 8, 9 times respectively out of

10. To determine the relevance of the differences between the approaches results and HCSA-MDS, we
used Wilcoxon’s signed-rank test. It only makes sense to consider only the GreedyVoteGr, HGA-MDS,
and SAMDS approaches, as they outperform the other greedy algorithms; moreover, the results of the
rest of the greedy methods are too similar. The test statistics presented in Table 6 show that there
is a significant difference between HGA-MDS and the best-performing algorithm in the Greedy series
from [19], which is GreedyVoteGr, in terms of both criteria. Furthermore, HGA-MDS could perform
equally well as SAMDS in terms of the mean of the solutions found, although SAMDS outperforms
HGA-MDS in terms of the attainment rate of reaching the Minimum Dominating Set. Finally, HCSA-
MDS outperforms SAMDS, HGA-MDS, and GreedyVoteGr since it is outperformed by HGA-MDS. To
conclude, we can state that HCSA-MDS outperforms state-of-the-art approaches in terms of robustness
and stability.

Greedy GreedyRev GreedyRan GreedyVote GreedyVoteGr HGA-MDS SAMDS HCSA-MDS
Graph d Avg(Rea.) Avg(Rea.) Avg(Rea.) Avg(Rea.) Avg(Rea.) Avg(Rea.) Avg(Rea.) Avg(Rea.) Time(s)
N400

0.1,d8 14.2(0) 16.1(4) 30.9(0) 9.2(4) 8(10) 8(10) 8(10) 8(10) 0.09

11 22.1(0) 25.2(0) 33.2(0) 16.8(0) 15.6(5) 11.1(9) 11.1(9) 11(10) 0.07
14 24(0) 25.6(0) 35.2(0) 19(1) 18.6(3) 14.4(6) 14.2(9) 14(10) 0.07
18 27.3(0) 27.3(0) 38.5(0) 21.8(0) 20.4(4) 18.4(6) 18(10) 18(10) 0.11
23 31.3(0) 28.8(0) 41.8(0) 24.9(0) 24.8(0) 24.2(4) 23(10) 23(10) 0.13

N400
0.3,d3 6.8(0) 9.9(0) 10.9(0) 6.8(4) 6(4) 3(10) 3.8(8) 3.2(8) 0.81

5 9(0) 10.6(0) 11.7(0) 8.7(0) 8.7(0) 5.3(7) 5.2(8) 5(10) 0.15
8 10.9(0) 11.6(0) 13.3(0) 9.3(0) 9.2(0) 8.1(9) 9(8) 8(10) 0.12

11 14(0) 12.6(0) 15.6(0) 11.1(9) 11(10) 11(10) 11(10) 11(10) 0.10
14 16.1(0) 14.2(0) 18.2(0) 14(10) 14(10) 14(10) 14(10) 14(10) 0.10

N400
0.5,d3 5(0) 6.3(0) 6.4(0) 5(0) 5(0) 3.1(9) 3.1(9) 3(10) 0.48

8 8.8(3) 8.2(8) 9(0) 8.1(9) 8(10) 8(10) 8(10) 8(10) 0.11
11 11.9(3) 11(10) 11.9(4) 11(10) 11(10) 11(10) 11(10) 11(10) 0.06

N800
0.1,d11 26.3(0) 30.5(0) 40.3(0) 23.7(0) 22.8(1) 11.3(7) 11.3(7) 11(10) 0.45

14 28.1(0) 31.4(0) 41.9(0) 23.5(0) 22.4(2) 14(10) 14(10) 14(10) 0.45
22 34.9(0) 33.1(0) 48.3(0) 27.3(0) 27.3(0) 22.5(5) 22(10) 22(10) 0.60

N800
0.3,d3 8.7(0) 12.1(0) 12.5(0) 9(0) 8.8(1) 7.9(6) 7.3(6) 3(10) 88.3

5 9.7(0) 12.2(0) 13.3(0) 9.4(0) 9.4(0) 6.8(5) 5(10) 5(10) 1.89
N800

0.5,d3 6(0) 7.3(0) 7(0) 6(0) 6(0) 4.4(5) 3.4(8) 3.2(9) 3.25

6 7.4(2) 7.8(0) 8.3(0) 6.3(7) 6.2(8) 6.5(8) 6(10) 6(10) 2.41

Table 5: Numerical results for various approaches on the second benchmark.

5.4. Runtime analysis and computational complexity

Our method’s execution time, relative to instance size, follows a polynomial function C(n) = P(n). By
conducting polynomial regression on the first benchmark’s runtime, we derived an empirical complexity
function: P(n) = 0.01791n2 − 0.4981n + 6.206. This polynomial function adequately represents the
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execution time of the best solution found so far. Our approach demonstrates polynomial complexity
for the considered instances. The algorithm’s theoretical complexity mainly depends on the repair and
crossover functions, both with O(V 2 + V E) complexity, ensuring efficiency and scalability for larger
instances (see Figure 5).

6. Conclusion

In this study, we tackled the Minimum Dominating Set problem, a challenging NP-hard problem in
graph theory, by proposing a Hybrid Cuckoo Search Algorithm (HCSA-MDS). Our algorithm outper-
formed state-of-the-art techniques in experimental evaluations on multiple benchmark sets, demon-
strating superior performance in best, average, and worst solution comparisons. HCSA-MDS combines
the efficient exploration of the cuckoo search algorithm using Lévy flights with intensification schemes
and a genetic crossover operator for solution exploitation. As a future perspective, we plan to explore
hybridizing with single-solution metaheuristics to further enhance the effectiveness and efficiency of our
approach.

Figure 5: HCSA-MDS execution time and polynomial fit.
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patterns. Human Ecology, 35, 129-138. Springer. doi: 10.1007/s10745-006-9083-4
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