
Croatian Operational Research Review 45
CRORR 16:1(2025), 45–51

New results on system of variational inequalities and fixed point
theorem

Ayache Benhadid1,∗, Mahmoud Brahimi1

1 Department of Mathematics, Faculty of Mathematics and Computer Science, Batna 2 University,
Batna, Algeria.

E-mail: ⟨{a.benhadid,m.brahimi}@univ-batna2.dz⟩

Abstract. In (Croat. Oper. Res. Rev, 13(1), 131-135, (2022).) A. Benhadid showed by a counterex-
ample that a number of publications in the research on the variational inequalities system contains
inaccurate results about applying the Lipschitz continuity concept in relation to both the first and sec-
ond variables during the proof of the main theorem on the part of authors. In this paper, We suggest
to applying fixed point theorem to correct the main results of some publications.

Keywords: fixed point problem, relaxed (e1, e2)-cocoercive mappings, variational inequalities system’s
with nonlinear mappings.

Received: May 15, 2024; accepted: October 16, 2024; available online: February 4, 2025

DOI: 10.17535/crorr.2025.0004

Original scientific paper.

1. Introduction

Consider a real Hilbert space H, with its norm and inner product represented by the symbols
∥.∥ and ⟨., .⟩, respectively. Consider a closed convex set K in H. It is commonly known that
a variety of problems with transportation, fluid mechanics, boundary value, and equilibrium
issues (see [2, 6, 8, 9, 11]) reduce to variational inequality situation:

look for a point α ∈ K : ⟨G (α) , v − α⟩ ≥ 0,∀v ∈ K, (1)

where G : H → H is a nonlinear operator on H. Variational inequality also has the benefit of
allowing for the investigation of a variety of topics in the domains of physics, industry, ecology,
social sciences, finance, and economics.
In summary, systems of variational inequalities offer a unified and comprehensive approach
to modeling and solving complex problems with multiple interacting components or agents.
They provide several advantages over individual variational inequalities, including integrated
modeling, efficient solution methods, and robustness to uncertainty, making them valuable tools
in various fields such as engineering, economics, and multi-agent systems.
In recent years (see [3, 4, 10, 13]), several authors have been interested in the field of system of
variational inequalities and they have also used it to create new iterative algorithms for handling
other pertinent problems. The system of variational inequalities that follows was established
by Verma [14] in 2004. It entails determining (α, β) ∈ K2 such that:{

⟨ρG (β, α) + α− β, v − α⟩ ≥ 0,∀v ∈ K, ρ > 0,
⟨ηG (α, β) + β − α, v − β⟩ ≥ 0,∀v ∈ K, η > 0.

(2)
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Huang and Noor [7] then examined and researched the topic of determining (α, β) ∈ K2 such
that : {

⟨ρG1 (β, α) + α− β, v − α⟩ ≥ 0,∀v ∈ K, ρ > 0,
⟨ηG2 (α, β) + β − α, v − β⟩ ≥ 0,∀v ∈ K, η > 0,

(3)

where G,G1, G2 : H −→ H are nonlinear operators. The goal of the current work is to
investigate the existence and uniqueness of solutions for the system (3) and to correct the
previous results of [7] and [14], by employing the definitions corrected by Benhadid in [1]. For
this reason, we think revisiting the following well-known notion.

2. Preliminaries

Definition 1. Let G be an operator from H to H, λ > 0 is a constant with:

∀(a1, a2) ∈ H2 : ∥G (a1)−G (a2)∥ ≤ λ ∥a1 − a2∥ (4)

then G is called λ-Lipschitz.

Remark 1. If λ < 1, then G is said to be a contraction.

Definition 2. Let G be an operator from H ×H to H, λ > 0 is a constant with:

∀v ∈ H,∀(a1, a2) ∈ H2 : ∥G (a1, v)−G (a2, v)∥ ≤ λ ∥a1 − a2∥ (5)

then G is called λ-Lipschitz in the first variable.

Definition 3. Let G be an operator from H to H, r > 0 is a constant with:

∀(a1, a2) ∈ H2 : ⟨G (a1)−G (a2) , a1 − a2⟩ ≥ r ∥a− b∥2 (6)

then G is called r-strongly monotone.

Definition 4. Let G be an operator from H to H, e1 > 0, e2 > 0 are two constants with:

∀(a1, a2) ∈ H2 : ⟨G (a1)−G (a2) , a1 − a2⟩ ≥ −e1 ∥G (a1)−G (a2)∥2 + e2 ∥a1 − a2∥2 (7)

then G is called relaxed (e1, e2)-cocoercive.

Proposition 1. [5]. Given an element a ∈ H, b ∈ K, where K ⊂ H is a convex closed set.
then the inequality

⟨b− a, x− b⟩ ≥ 0,∀x ∈ K (8)

is equivalent to
b = PK (a) , (9)

where PK is a projection of H into K and satisfies:

∥PK (a)− PK (b)∥ ≤ ∥a− b∥ ,∀a, b ∈ H.

Theorem 1. [12] Let F be a contraction on H. Then F has a unique fixed point a ∈ H, i.e
F (a) = a.

Finding the solution (α, β) ∈ K2 of (3) is identical to finding (α, β) ∈ K2 such that:
α =

1

2
(α+ PK [β − ρG1 (β, α)])

β =
1

2
(β + PK [α− ηG2 (α, β)])

(10)
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as we can readily demonstrate using Proposition 1, which is similar to the operator’s fixed point
problem F : H2 → H2 define by:

(u, v) →
(
1

2
(u+ PK [v − ρG1 (v, u)]) ,

1

2
(v + PK [u− ηG2 (u, v)])

)
(11)

Proof. We have, ∀v ∈ K, ρ > 0, η > 0{
⟨ρG1 (β, α) + α− β, v − α⟩ ≥ 0
⟨ηG2 (α, β) + β − α, v − β⟩ ≥ 0

⇔
{
⟨α− (β − ρG1 (β, α)), v − α⟩ ≥ 0
⟨β − (α− ηG2 (α, β)), v − β⟩ ≥ 0

By using Proposition 1, we get:{
⟨α− (β − ρG1 (β, α)), v − α⟩ ≥ 0
⟨β − (α− ηG2 (α, β)), v − β⟩ ≥ 0

⇔
{
α = PK [β − ρG1 (β, α)]
β = PK [α− ηG2 (α, β)]

⇔


α =

1

2
(α+ PK [β − ρG1 (β, α)])

β =
1

2
(β + PK [α− ηG2 (α, β)])

(12)

which means that:
(α, β) = F (α, β) □

3. Main result

In this section, we’ll show the existence and uniqueness of solution for the problem (3).

Theorem 2. Let G1 : H2 → H be relaxed (γ1, r1)−cocoercive in the first variable, µ1-
Lipschitzian in the first variable and λ1-Lipschitz in the second variable. Let G2 : H2 → H
be relaxed (γ2, r2)−cocoercive in the first variable, µ2 Lipschitzian in the first variable and
λ2-Lipschitz in the second variable. If

r1 − γ1µ
2
1 > µ1,

r1 − γ1µ
2
1 +

√
(r1 − γ1µ2

1)
2 − µ2

1

µ2
1

< ρ <
r1 − γ1µ

2
1 +

√
(r1 − γ1µ2

1)
2 − 3

4
µ2
1

µ2
1

, ρ <
1

2λ1

(13)


r2 − γ2µ

2
2 > µ2,

r2 − γ2µ
2
2 +

√
(r2 − γ2µ2

2)
2 − µ2

2

µ2
2

< η <
r2 − γ2µ

2
2 +

√
(r2 − γ2µ2

2)
2 − 3

4
µ2
2

µ2
2

, η <
1

2λ2

(14)

then there existe a unique solution of the system (3).

Proof. To check the result, we need to assess ∥F (x, y)− F (z, t)∥ where (x, y) , (z, t) ∈ H2 and
∥(x, y)∥H2 = ∥x∥H + ∥y∥H .

F (x, y)− F (z, t) =

(
1

2
(x+ PK [y − ρG1 (y, x)]) ,

1

2
(y + PK [x− ηG2 (x, y)])

)
(15)

−
(
1

2
(z + PK [t− ρG1 (t, z)]) ,

1

2
(t+ PK [z − ηG2 (z, t)])

)
(16)

= (A,B) (17)

First we need to evaluate:

∥A∥ =
1

2
∥x+ PK [y − ρG1 (y, x)]− (z + PK [t− ρG1 (t, z)])∥ (18)
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So,

2 ∥A∥ = ∥(x− z) + [PK [y − ρG1 (y, x)]− PK [t− ρG1 (t, z)]]∥ (19)

≤ ∥x− z∥+ ∥[PK [y − ρG1 (y, x)]− PK [t− ρG1 (t, z)]]∥ (20)

≤ ∥x− z∥+ ∥[y − ρG1 (y, x)]− [t− ρG1 (t, z)]∥ (21)

≤ ∥x− z∥+ ∥y − t− ρ [G1 (y, x)−G1 (t, z)]∥ (22)

≤ ∥y − t− ρ [G1 (y, x)−G1 (t, x) +G1 (t, x)−G1 (t, z)]∥ (23)

+ ∥x− z∥ (24)

≤ ∥x− z∥+ ∥y − t− ρ [G1 (y, x)−G1 (t, x)]∥ (25)

+ ρ ∥G1 (t, x)−G1 (t, z)∥ (26)

From the relaxed (γ1, r1)−cocoercive for the first variable on G1, we have

∥y − t− ρ [G1 (y, x)−G1 (t, x)]∥2 = ∥y − t∥2 − 2ρ⟨G1 (y, x)−G1 (t, x) , y − t⟩ (27)

+ ρ2 ∥G1 (y, x)−G1 (t, x)∥2 (28)

≤ −2ρ
[
−γ1 ∥G1 (y, x)−G1 (t, x)∥2 + r1 ∥y − t∥2

]
(29)

+ ∥y − t∥2 + ρ2 ∥G1 (y, x)−G1 (t, x)∥2 (30)

= 2ργ1 ∥G1 (y, x)−G1 (t, x)∥2 − 2ρr1 ∥y − t∥2 (31)

+ ∥y − t∥2 + ρ2 ∥G1 (y, x)−G1 (t, x)∥2 (32)

From the µ1-Lipschitzian definition for the first variable on G1, we have:

∥y − t− ρ [G1 (y, x)−G1 (t, x)]∥2 ≤
[
1 + 2ργ1µ

2
1 − 2ρr1 + ρ2µ2

1

]
∥y − t∥2 (33)

From the λ1-Lipschitzian definition for the second variable on G1, we have:

∥G1 (t, x)−G1 (t, z)∥ ≤ λ1 ∥x− z∥ (34)

As a result, we have:

∥A∥ ≤ 1

2
(∥x− z∥+ θ1 ∥y − t∥+ ρλ1 ∥x− z∥) (35)

where,

θ1 =
[
1 + 2ργ1µ

2
1 − 2ρr1 + ρ2µ2

1

] 1
2 (36)

Similary we have:

∥B∥ ≤ 1

2
(∥y − t∥+ θ2 ∥x− z∥+ ηλ2 ∥y − t∥) , (37)

where,

∥B∥ =
1

2
∥y + PK [x− ηG1 (x, y)]− (t+ PK [z − ηG1 (z, t)])∥ (38)

and

θ2 =
[
1 + 2ηγ2µ

2
2 − 2ηr2 + η2µ2

2

] 1
2 . (39)

The conditions (13) and (14) make it evident that,
θ1 <

1

2
,

ηλ2 <
1

2
,
and


θ2 <

1

2
,

ρλ1 <
1

2
.

(40)
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So,
θ1 + ηλ2 < 1 and θ2 + ρλ1 < 1. (41)

Then from (35) and (37),

∥A∥+ ∥B∥ ≤1

2
(∥x− z∥+ θ1 ∥y − t∥+ ρλ1 ∥x− z∥)

+
1

2
(∥y − t∥+ θ2 ∥x− z∥+ ηλ2 ∥y − t∥)

≤1

2
[∥x− z∥+ ∥y − t∥] + σ

1

2
[∥x− z∥+ ∥y − t∥]

≤1 + σ

2
[∥x− z∥+ ∥y − t∥]

(42)

where, σ = max (θ1 + ηλ2, θ2 + ρλ1) < 1.
So,

∥F (x, y)− F (z, t)∥H×H = ∥A∥+ ∥B∥ (43)

≤ k ∥(x, y)− (z, t)∥H×H (44)

where k =
σ + 1

2
< 1 ,

which implies that the map F defined by (11) is a contraction, using Theorem 1 then F has a
unique fixed point. □

Remark 2. Through this note, we explain and illustrate more about the two conditions (13)
and (14): We set, {

P1(ρ) = µ2
1ρ

2 + 2(γ1µ
2
1 − r1)ρ+ 1

P2(ρ) = µ2
1ρ

2 + 2(γ1µ
2
1 − r1)ρ+

3
4

(45)

Clearly, P1 and P2 are two polynomials of order 2 with{
∆′

P1
= (γ1µ

2
1 − r1)

2 − µ2
1

∆′
P2

= (γ1µ
2
1 − r1)

2 − 3

4
µ2
1

(46)

1. About the condition r1 − γ1µ
2
1 > µ1.

We have

r1 − γ1µ
2
1 > µ1 >

√
3

2
µ1 ⇒

{
(r1 − γ1µ

2
1)

2 >
3

4
µ2
1,

(r1 − γ1µ
2
1)

2 > µ2
1,

⇒
{
∆′

P1
> 0,

∆′
P2

> 0.

(47)

Which means that P1 and P2 have two different roots

ρp1
=

r1 − γ1µ
2
1 −

√
(r1 − γ1µ2

1)
2 − µ2

1

µ2
1

,

ρ′p1
=

r1 − γ1µ
2
1 +

√
(r1 − γ1µ2

1)
2 − µ2

1

µ2
1

,

ρp2
=

r1 − γ1µ
2
1 −

√
(r1 − γ1µ2

1)
2 − 3

4
µ2
1

µ2
1

,

ρ′p2
=

r1 − γ1µ
2
1 +

√
(r1 − γ1µ2

1)
2 − 3

4
µ2
1

µ2
1

.

(48)
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With:
0 < ρp1

< ρp2
< ρ′p1

< ρ′p2
(49)

2. About the condition:
r1 − γ1µ

2
1 +

√
(r1 − γ1µ2

1)
2 − µ2

1

µ2
1

< ρ <
r1 − γ1µ

2
1 +

√
(r1 − γ1µ2

1)
2 − 3

4
µ2
1

µ2
1

.

We have :

ρ′p1
< ρ < ρ′p2

⇒
{

ρp2
< ρ < ρ′p2

0 < ρp1
< ρ′p1

< ρ

⇒
{
P2(ρ) < 0
P1(ρ) > 0

⇒
{
µ2
1ρ

2 + 2(γ1µ
2
1 − r1)ρ+

3
4 < 0

µ2
1ρ

2 + 2(γ1µ
2
1 − r1)ρ+ 1 > 0

⇒ 0 < µ2
1ρ

2 + 2(γ1µ
2
1 − r1)ρ+ 1 < 1

4

⇒ θ21 <
1

4

⇒ θ1 <
1

2

(50)

The same explanation with θ2 and η.

Remark 3. From the preceding proof, we can replace conditions (13) and (14) by a weaker

condition

{
µ2
1ρ

2 + 2(γ1µ
2
1 − r1)ρ+ 1 > 0

θ1 + ηλ2 < 1
and

{
µ2
2η

2 + 2(γ2µ
2
1 − r2)η + 1 > 0

θ2 + ρλ1 < 1
.

Remark 4. We obtain an approximation of (α, β) via the fixed point Algorithm Xn+1 = F (Xn)
i.e: 

xn+1 =
1

2
(xn + PK [yn − ρG1 (yn, xn)])

yn+1 =
1

2
(yn + PK [xn − ηG2 (xn, yn) .])

(51)

For any given initial points x0, y0 ∈ H.

4. Conclusion

In this work, we introduced and described a novel system of variational inequalities using two
different operators. We suggested and presented the correct Lipschitz definition concerning the
first and/or second variable in order to solve this system of variational inequalities (see [1]) via
the fixed point technique. This result corrected the main result of [7], and since this new system
includes the system of variational inequalities using the single operator as a special case, it also
corrected the main result of [14].
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