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Abstract. In this paper, the mathematical analysis for obtaining the equilibrium of the inventory
games under strategic complementarities, the existence of defective items, and quantity discounts have
been analyzed. The inventory system consists of many buyers who order a single type of product from
one supplier. They compete with each other as a player in a non-cooperative game with strategic
complementary. They maximize a supermodular payoff function and take into account some fraction
of defective items from a lot of the arrival products. The concept of supermodular games is used to
obtain the equilibria of these problems. A new existence theorem of Nash equilibrium in a specific
condition has been proved. The optimum analysis has been justified for two conditions, that is the
condition without discount and another without it. The numerical computations are provided using
Python programming. At the end, the numerical result shows that elements of the Nash equilibrium set
can be altered when discounts are considered. A quantity discount policy can be used by the supplier
to prevent players from choosing the least Nash equilibrium.
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1. Introduction

The ordered games characterized by strategic complementarities are extension of the ordinary
game. They are often defined in a lattice structure with specific ordering relations. Then, the
class of games with strategic complementarities is called supermodular games. The study of
these games was initiated by Topkis [21, 22] for submodular games. The properties and the
equilibrium of the supermodular games are further developed by Milgrom and Roberts [17],
Vives [24], and de’ Orey [5]. Moreover, Milgrom and Shannon [18] provided an explanation of
monotone comparative statics in supermodular games. Topkis [23] also completed his previous
result, which was implemented in them. The concepts of supermodular games also have been
applied to economy, stock competitions, and inventory problems, e.g., a study on the kinds of
games using supermodularity by Amir [1]; NTU supermodular games in supermodular form
by Koshevoy, et al. [12]; Stock competition problem using supermdular games by Chen [4],
and some application results in inventory games. Focusing on the recent results in inventory
problems, supermodular game concepts have been successfully implemented in the analysis
of inventory games. For instance, Cachon [2], Cachon and Netessine [3], and Lippman and
McCardle [15] analyzed a multiplayer inventory using this game concept.
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In the real condition of inventory management, some products with a defect will always be
found after the screening process. The defects can be caused by an imperfect production and
shipment processes. Therefore, the lot size that arrives at the buyer often contains defective
items with a certain defective rate. In the deterministic case, the defective rate can be deter-
mined as a fraction of defective items. Based on the result by Jaber and Bonney [8], Jaber, et
al. [9], and Konstantaras et al. [11], the defective rate conforms to a logistic curve. One of the
learning curves used in the application is the S-shaped logistic curve. This value depends on a
parameter representing how much the shipping process is carried out by the vendor. Another
important assumption in inventory management relations is a synchronization policy. Using
these policies, both vendor and the buyers can optimize the cycle time. Some research results
about these issues in inventory management have been proposed by some authors. Hoque [6]
proposed a comprehensive analysis of the synchronization process in the supply chain with a
single manufacturer and multiple buyers under the integrated assumption. Jha and Shanker
[10] analyzed the same topics for defective items under some additional assumptions such as a
controllable lead time and service level constraint. Mandal and Giri [16] presented an analy-
sis of a single vendor-multi-buyer integrated inventory using a synchronization process under
controllable lead time and reduction of defective items. Lin [14] also proposed the analysis of
a multiplayer inventory system using a synchronization process under controllable lead time
and distribution-free demand. From those last three results, it can be concluded that the
synchronization assumption works well in the inventory model for defective items.

One of the famous policies to promote the product in a supply chain coordination is a
quantity discount. One of the results of supply chain analysis with discount policy is presented
by Li and Liu [13]. Moreover, some researchers such as Wee [25] and Huang et. al. [7] have
proposed the analysis of supply chain systems for deteriorating products with discounts. The
handling process for deteriorating products is similar to the handling process for a defective
item in inventory management. Therefore, it can be applied in the supply chain for defective
items. Despite all efforts so far, we still haven’t found any records of the inventory games
application in a supply chain coordination with a discount policy.

To the date, there are have been no results concerning inventory games that employ strategic
complementarity to tackle a combination problem to defective items and a quantity discount
policy. This study has examined this issue within the framework of a multiplayer inventory
system. The system consists of a single supplier of the product and multiple buyers as a player
in a one-shot game. All the buyers’ concern is on the defective items contained at arrival
products. The existence of the defective items is in form of a fraction of defective items and
follows a learning curve. Some important assumptions in inventory games are included, such as
the synchronization process between one supplier and all buyers, wholesale contracts, buyback
contracts, and quantity discounts. Quantity discounts are offered by the supplier in some pro-
motion periods. Due to the strategic complementarity, NC-supermodular games (NC-SGs) are
applied to solve the inventory games. This research is performed using an analytical method
and a numerical representation using the dominance principle elements applied in Phyton pro-
gramming. The results described in this paper have significance for the development of the
application of the supermodular game theory, especially for inventory problems with defective
items. The rest of the paper is organized as follows: the methodology and data used in this
research are given in Section 2. The analysis of the games including formulation, optimum
analysis, and numerical computations is explained in Section 3. Finally, some conclusions and
remarks are presented in Section 4.

2. Methodology and data

In this research, a systematic literature review method is used to obtain information about
how far the development of supermodular game concepts and their application in real problem-
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solving. The development of the concept of supermodular is still quite limited. Most of them are
referred to in Topkis’ s works [21, 22]. However, it found that the equilibrium existence theory
can still be developed by adding some conditions to ensure the existence of two Nash equilibria.
Moreover, the application of supermodular games in inventory problems is also restrictive for an
inventory model with limited assumptions. Therefore, there is still an opportunity for research
on the application of supermodular games in inventory games with various assumptions. Based
on these literature analyses, the application of supermodular games on inventory games for
defective items has never been researched before. Therefore, mathematical analysis methods
including analytical and numerical approaches are applied to obtain the optimum result of
inventory games for defective items and quantity discounts using supermodular games. For the
analytical approach, some concepts in lattice theory and supermodular games have been used.
The existence theorem of Nash equilibrium using some specific conditions is proposed. Finally,
the appropriate simulation data is used for the numerical test.

3. Results and discussion

3.1. Assumptions and notations

This section presents an inventory system involving multiple buyers who receive a single type
of product from one supplier. The supplier is responsible for producing the products and
managing the shipping process to meet the total demand of all buyers. Each buyer aims to
maximize their profits through non-cooperative game strategies. It is assumed that the game
is delivered under strategic complementarities conditions. The supplier is not directly involved
in the games. However, the supplier controlled the game by issuing some rules and contracts
for the buyers. If all buyers accept these agreements, the game can be started. Three main
contracts will be offered by the supplier. The details of these contracts are presented as follows:

1. Synchronization process. The production cycle of the supplier would be synchronized
with the ordering cycles of the buyers. Such synchronization is useful to reduce the total
related cost for the entire inventory system.

2. Wholesale contract. The supplier charges each buyer the amount price per unit purchased.

3. Buyback contract. The supplier charges the buyers amount of wholesale price but pays
the buyer amount of price per unit remaining at the end of the cycle on each side of the
buyer. The supplier also charges the buyers a standard cost for handling the remaining
product return process.

4. Quantity discounts. In some promotion seasons, the supplier offers a quantity discount
for their products when purchased in greater numbers. However, if this policy is applied,
the supplier will not apply the buyback contract and will not provide a warranty cost for
the defective items found after the inspection period.

When all the buyers accept the contracts from the supplier, the games will be started immedi-
ately. In the discount season, if all the buyers agree to purchase the product with a quantity
discount, they will play the games with discount properties on the payoff function. The buyers
will submit the order quantity q =

∑n
i=1 qi to the supplier before the selling season. The supplier

then produces and delivers these products in a single shipment process. The buyers’ concern is
on the existence of defective items in the form of a fraction of defective items θi from a lot of sizes
of arrival products on each buyer’s s side. Thus, these defective items would be included in the
inventory games scheme. The fraction of defective items follows an S-shaped logistic learning
curve ([9],[11]) for one shipment process, that is ψ (1) = a

g+e1h
, where a = 70.067, g = 819.76,

and h = 0.7932. Without loss of generality, we set the value of the fraction θi to be the same for
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each buyer. After receiving the new arrival products, all buyers run the inspection process with
the inspection rate sxi and period qi

sxi
. All products will be considered non-defective items until

they are detected in the inspection process. Once the inspection process is fully completed, the
defective items will be stored temporarily until the next shipment arrives, resulting in holding
costs. There are two distinct types of holding costs: one for defective items and another for
non-defective items. These defective items are not part of the buyback contract. They will be
returned to the supplier who will only pay the warranty cost ζi per unit of defective items for
each buyer. Before going into any detail, the other mathematical notations are explained in the
following table.

Notations Explananation

D Cumulative demand.
ri Retail price per unit product.
pi Purchasing cost per unit product (as wholesale price).
Ai Ordering cost per unit product.
Fi Freight cost per unit remaining product.
bi Buyback cost per unit of remaining product at the end of the cycle.
h1i Holding cost per non-defective item per unit of time.
h2i Holding cost per defective item per unit of time.
I1i Inventory level for non-defective items.
I2i Inventory level for defective items.
Ti Transfer payment.

uji (qi) Per unit material cost (IDR) as a function of qi; j is the number of price breaks.
Φi The buyer i’ s payoff function.
q Decision variable, a positive integer. Order quantity q =

∑n
i=1 qi.

P Production rate.
w The supplier’s sales price per unit product.
hv The supplier’s holding cost per unit product per unit time for the supplier.
Iv The supplier’s inventory level for the supplier.
Av The supplier’s setup cost.
cv The supplier’s standard cost for a returning process.
Φv The supplier’s payoff function.

Table 1: Mathematical Notations.

The following sections will provide an analysis of inventory games without discounts as the
initial discussion. This will be followed by an examination of games that include quantity
discounts. Finally, a comparison of the results from these two analyses will be presented.

3.2. Game formulation

First, it assumed that every buyer plays as a player in the non-cooperative games using strategic
complementarities and no quantity discount offered by the supplier. From this section onward,
the buyer(s) is called by a player(s). The supplier as the coordinator will also use the results
of these games as a basis for taking optimal decisions. Suppose that the feasible strategic
space Si ⊆ R, i ∈ {1, . . . , n} is a lattice with the usual ordering ≤ and join operation x

′

i ∨
x”i = max{x′

i, x
”
i } and meet operation x

′

i ∧ x”i = min{x′

i, x
”
i }, x

′

i, x
”
i ∈ Si, such that the joint

feasible strategic space for all players is formulated by S = S1 × S2 × · · · × Sn, which simply
denoted by S = ×n

i=1Si. Set S is also a lattice with the component-wise order ≤ such that

x
′ ∨ x

′′
=

(
x

′

1 ∨ x”1, . . . , x
′

n ∨ x”n
)
and x

′ ∧ x
′′
=

(
x

′

1 ∧ x”1, . . . , x
′

n ∧ x”n
)
, x

′
,x” ∈ S. Suppose
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Φi : S ⊂ Rn → R is payoff function for each buyer. When a selective joint strategy x ∈ S
is played, then each player-i obtain their payoff Φi(x). For any selective joint strategy x =
(x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ S, x ≤ y whenever Φi(x) ≤ Φi(y). Furthermore,
Φi : S → R is supermodular if for all x,y ∈ S,

Φi(x) + Φi(y) ≤ Φi(x ∧ y) + Φi(x ∨ y). (1)

Let vector (yi, x−i) denotes the joint strategy vector with the strategy xi of player i replaced
by yi in x and other components of x left unchanged. This notations also can be replaced by
(qi, q−i) with the same meaning. All the buyers have one real valued payoff function Φi. These
payoff is formed from two kinds of function, a reward function gi : S → R, and a profit function
fi : S → R, such that Φi : S → R, where Φi(qi, q−i) = gi(qi, q−i) · fi(qi, q−i). To elaborate on
the explanation for a profit function, the inventory process in the supplier and the buyers will
be explained as well as its respective costs.

The supplier carries out the production to fulfill the average demand from all buyers by
following the synchronization process and under a finite production rate P (P > D). There-
fore, the average demand rate for each player i Di is formulated by Di =

qiD
q , where qi is a

replenishment quantity delivered to the player i every qi
Di

time units. The quantity of lot size
from another player is denoted by q−i which satisfies q−i = q − qi. The players place the same
number of orders per unit of time and their order quantity lot size should be in proportion
to their demand for shipment lot size. The shipment cycle time of the vendor is equal to the
player’s average ordering cycle time. The supplier makes one shipment process for all players
simultaneously. Each buyer sells a single type of product in the selling season. After receiving
the product and carrying out the inspection process, each player i will sell the non-defective
product in the selling season. Each buyer knows well the information of their selling function.
It is assumed that the selling function Li : Si → R is real-valued. It is assumed that all buy-
ers make a profit. The costs incurred as a result of the buyers’ activities for the inventory
management process comprise fixed ordering costs, fixed transportation costs, holding costs for
non-defective items, holding costs for defective items, and transfer payment. The calculation
of holding cost depends on the inventory level at the buyer’s place. It takes a while until the
product is sold, so the buyers need a budget for holding costs. There are two holding costs,
holding costs for defective items and non-defective items. The holding cost term in the payoff
function and the left inventory are calculated based on the on-hand inventory until the end of
the cycle. On-hand inventory is explained in the following diagram (Figure 1)

Figure 1: Inventory Level.
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All incoming products are considered non-defective until any defects are identified at the
conclusion of the inspection period. Suppose that there are qiθi defective items in an arriving lot
size qi. Based on Figure 1, the average inventory level for defective items can be approximated
by subtracting the accumulated defective items found during inspection time from the defective
items throughout the cycle. Therefore, the average inventory level for defective items is

I2i =

(
q2i (1− θi)θi

Di
− q2i θi

2sxi

)
. (2)

The average inventory level per cycle for non-defective items is obtained from the sum of the
average inventory level for non-defective items along the cycle and the defective items which
are not detected yet before the end of the inspection time. Therefore, the average inventory
level for non-defective items is

I1i =
qi(1− θi)

D

(
q2i θi
2sxi

Di

qi(1− θi)
+
qi(1− θi)

2

)
. (3)

The last component of the profit function is a transfer payment for the left inventory at
the end of the cycle in each buyer’ s side. According to [19], the supplier should not make a
profit from the remaining inventory in a news-vendor type problem. Therefore, the wholesale
price per unit product must be greater than buyback cost per remaining unit, i.e.,bi ≤ pi. The
transfer payment process is applied to the left product of non-defective items at the end of the
cycle, i.e., I1i − Li(qi). The unit cost for these transfer payment is h1i + wi − bi. It is assumed
that the sales revenue is less than or equal to the inventory level for non-defective items, i.e.
Li(qi) ≤ Ri(qi). To make a profit function, the revenue from selling season will be reduced by
the costs. Therefore, the profit function is

fi(qi, q−i) =
D

q(1−θi)

((
pi − h1i − wi

)
Ri(qi)−

(
h2i + wi − ζi

)
q2i θi

(
1−θi
Di

− 1
2sxi

))

− D
q(1−θi)

(
(Ai + Fi) qi +

(
h1i + wi − bi

) ( q2i (1−θi)
D

(
Diθi

2six(1−θi)
+ 1−θi

2

)
− Li(qi)

))
. (4)

Now, we explain the second component of the payoff function, that is reward function. The
reward is given by the supplier to all buyers. These reward is calculated based on the other
players’ left inventory for non-defective items in the end of the cycle and multiplied by some
unit cost ε such that g(qi, q−i) = ε

(
I1i − Li(qi)

)
(q−i). Hence, the payoff function for each

player is

Φi(qi, q−i) = ε
(
I1i − Li(qi)

)
D

q(1−θi)

((
pi − h1i − wi

)
Li(qi)−

(
h2i + wi − ζi

)
q2i θi

(
1−θi
Di

− 1
2sxi

))
.

−ε
(
I1i − Li(qi)

)
(q−i)

D
q(1−θi)

(
(Ai + Fi) qi +

(
h1i + wi − bi

) ( q2i (1−θi)
D

(
Diθi

2six(1−θi)
+ 1−θi

2

)
− Li(qi)(qi)

))
.

(5)
All players play non-cooperative game using strategic complementarities performed in the su-

permodular game. These game can be notated as Gm = (ρ, {Si}i∈ρ, {Φi}i∈ρ), where ρ = {1, . . . , n}
is number of players. A set of pure x∗ ∈ S is called the Nash equilibrium of Gm if for each
player i, the following condition is satisfied

Φi

(
x∗1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
n

)
≤ Φi

(
x∗1, . . . , x

∗
i−1, x

∗
i , x

∗
i+1, . . . , x

∗
n

)
. (6)

To guarantee the existence of the equilibrium solutions of the games, it must be assumed that
Si is a nonempty compact lattice, Φi, i = {1, . . . , n} is the supermodular function, and also
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upper-semicontinuous in yi on Si (x−i). After all the buyers make their optimum decision,
the supplier will use these values as a reference to make the optimal decision. Using the
synchronization assumption, the optimal decision is applied to run the production process,
shipment, and inventory management. The supplier’s profit is obtained from the purchase
revenue subtracted from several costs, covering setup costs, holding costs, internal shipment
costs, and transfer costs. The setup and internal shipment costs are fixed, whereas the holding
cost and the transfer cost depend on the supplier’s inventory level and the left product on each
supplier’s side, respectively. The supplier’s inventory level can be approximated by subtracting
all players’ accumulated inventory levels from the accumulated supplier inventory level as Iv =
q2

2P . Hence, the objective function of the supplier is

Φv (qi) =
(
wq +

∑n
i=1 (pi − bi)

(
I1 − Li (qi)

))
−

(
Av + Fv + hv

(
∑n

i=1 qi)
2

2P +
∑n

i=1 qiθiζi

)
. (7)

The second modeling is addressed to the condition of whether all players agree to purchase the
product with a quantity discount offered by the supplier. According to Wee [25], an all-units
quantity discount is assumed, and the material cost can be defined as follows

uji (q
j
i ) =

u1i , for m1
i < q1i ≤ m2

i

u2i , for m2
i < q2i ≤ m3

i

u3i , for mn
i < qni .

(8)

The discounted prices for each player follow the established relationships ui1 > ui2 · · · > uin
and m1,m2, . . . ,mn stands for boundaries of the incremental quantities at state 1 to n. If all
players choose to purchase an all-units quantity discount offered by the supplier, then the payoff
function for all players will be changed. The unit material cost will be added to Equation (5).
According to the contract offered by the supplier, if this policy is applied, the supplier will
not apply the buyback contract and will not provide a warranty cost for the defective items
after the inspection period. The reward function component given by the supplier is preserved.
Hence, the player’s payoff function for the discount condition is

Φi (qi, q−i) = ε
(
I1i − Li(qi)

)
(q−i)

D
q(1−θi)

((
ri − h1i − pi

)
uij (qi)Li (qi)−

(
h2i + pi

)
q2i θi

(
1−θi
Di

− 1
2sxi

))
−ε

(
I1i − Li(qi)

)
(q−i)

D
q(1−θi)

(
(Ai + Fi) qi +

(
h1i + pi

) ( q2i (1−θi)
D

(
Diθi

2six(1−θi)
+ 1−θi

2

)
− Li (qi)

))
. (9)

3.3. Optimum analysis and numerical examples

In this section, the optimum analysis has been analyzed using the standard optimization
method. This analysis is focuses on how the conditions that ensure the existence of the Nash
equilibrium of Gm. The Nash equilibrium is determined by the supermodular game theory pre-
sented by Topkis [23]. Furthermore, the Nash equilibrium of Gm also exists if some conditions
of the player’s strategic space and payoff function are held. These conditions are presented in
the following main theorem:

Theorem 1. Given a non-cooperative supermodular game Gm = (ρ, {Si}i∈ρ , {ϕi}i∈ ρ) such
that Si ⊂ Rn, i = 1, . . . , n is a nonempty compact lattice. If ϕi (yi, x−i) , i = {1, . . . , n} is
continuous in yi for each x−i ∈ S−i, and ϕi (x) can be formulated as yi ·H (x−i), Si, i = 1, . . . , n
is a real bounded interval, then the equilibrium set x∗ = (x∗i , . . . , x

∗
n) is a nonempty complete

lattice. Furthermore, if xb−i is a greatest lower bound of the set of feasible strategies of all other
players such that H

(
xb−i

)
= 0, which H(x−i) is a real valued function defined in real bounded

interval, then there is exists the greatest Nash equilibrium x∗′ and the least Nash equilibrium
x∗′′.
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Proof. By following the proof by Topkis [23], it can be verified that Gm has two equilibria, the
largest Nash equilibrium and the smallest Nash equilibrium. Because of Si ⊂ Rn , i = 1, . . . , n
is a nonempty compact lattice, then S = S1 × · · · × Sn is a nonempty compact lattice. For
each i = 1, . . . , n, ϕi (., x−i) is both upper semicontinuous and lower semicontinuous at the
same time. There exist yi ∈ Si (x−i) such that ϕi (., x−i) hits a maximum at yi such that
yi = argmaxyi∈Si(x−i)ϕ(yi, x−i). Moreover, there is y

i
such that ϕi (., x−i) reaches a minimum

point at y
i
such that y

i
= argminyi∈Si(x−i)ϕ(yi, x−i). Since Gm is supermodular game it holds

that ϕi(yi, x−i), i = 1, . . . , n is supermodular in yi on Si for each x−i ∈ S−i and ϕ(yi, x−i) have
an increasing differences in (yi, x−i) for each i = 1, . . . n. Furthermore, for each x−i ≤ x′−i and
y′i,

ϕi
(
yi, x

′
−i

)
− ϕi (yi, x−i) ≤ ϕi

(
y′i, x

′
−i

)
− ϕi (y

′
i, x−i) . (10)

Based on Inequality (10), if other players can obtain a higher payoff according to their choice
of strategy, then player i can obtain a higher payoff accordingly. If all opposing players (n− 1
player) of player i do not choose a strategy x−i = xbi , or there exist at most l opposing players
(l < n − 2) which play strategy x−i = xb−i, then player i will choose yi = xai , xi ≤ xai , xi ∈ Si

as an optimum response to obtain the higher payoff. Hence,
(
xai , x

a
−i

)
is the greatest Nash

equilibrium.

The form ϕi (yi, x−i) = yi · H (x−i) is an important condition to ensure that two Nash equi-
librium exist or may the least equilibrium not exist. The term H (x−i) must be presented in
a single form of strategy without involving any constant terms. Since Si, i = 1, . . . , n is a real
bounded interval, i.e. Si ⊂ R, then the upper bound and the lower bound of Si is the greatest
and the least Nash equilibrium of Gm, respectively.

All known direct numerical methods to obtain the Nash equilibrium focus on the games
with two-player only. Although some of them have been tried to apply in a game with three
players, it is not easy to apply to every case and algorithm. One of the famous methods in
a non-cooperative game is the dominance principle of the elements of the payoff matrix. It is
designed for a noncooperative game with two players. Although has been developed for three
players, it is still hard to compute. Accordingly, the numerical example is presented based on
the games with two players (buyers) only. Because all players apply the strategy with comple-
mentarity properties, then the component-wise ordering, which is not a complete ordering, is
still appropriate with the steps of the algorithms of the principle dominance. Although there
exist pairs of strategies that can not be compared using component-wise ordering, e.g., (2,3)
and (2,4), they can be ignored using the complementarity properties in a supermodular game.
In these cases, if a pair of strategies (q1, q2) = (2, 3) is being chosen, so a pair of strategies (2,4)
will not be selected.

Next, some numerical illustrations of Gm for two players’ cases are presented. Numerically,
the Nash equilibrium for a class of non-cooperative games can be obtained using the domi-
nance property principle of the payoff matrix. As explained in the previous section, the payoff
method is commonly available for two-player cases only. This was also explained in detail by
[20]. Furthermore, an algorithm can be developed in Python based on the pseudocode con-
struction presented by [20]. Overall, the pseudocode uses a brute-force approach to find the
Nash equilibrium points. Each combination of player strategies is examined to ensure that no
player can improve their payoff by changing strategies. This method works well for games with
a limited number of strategies; however, it becomes inefficient when players have numerous
strategies due to the considerable computational time required. In our research, we developed
an algorithm in Python based on the pseudocode by [20], as we found it suitable for the case
we are discussing. The following is the algorithm in Python.
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1 import numpy as np

2

3 # Define the bounds of the strategic space for Player I and Player II

4 player_I_strategies = np.array([1, 2, 3]) # Example strategies for Player I

5 player_II_strategies = np.array([1, 2, 3]) # Example strategies for Player II

6

7 # Payoff matrices for each player

8 payoff_player_I = np.zeros((len(player_I_strategies), len(player_II_strategies))

)

9 payoff_player_II = np.zeros((len(player_I_strategies), len(player_II_strategies)

))

10

11 # Input payoffs for each combination of strategies

12 for i, strategy_I in enumerate(player_I_strategies):

13 for j, strategy_II in enumerate(player_II_strategies):

14 # Manual input or using a function

15 payoff_player_I[i, j] = int(input(f"Enter payoff for Player I at

strategy ({ strategy_I}, {strategy_II }): "))

16 payoff_player_II[i, j] = int(input(f"Enter payoff for Player II at

strategy ({ strategy_I}, {strategy_II }): "))

17

18 # Determine Nash Equilibrium

19 nash_equilibrium = []

20

21 for i in range(len(player_I_strategies)):

22 for j in range(len(player_II_strategies)):

23 # Check if Player I gets the maximum payoff for the current strategy of

Player II

24 player_I_best_response = np.max(payoff_player_I [:, j]) ==

payoff_player_I[i, j]

25 # Check if Player II gets the maximum payoff for the current strategy of

Player I

26 player_II_best_response = np.max(payoff_player_II[i, :]) ==

payoff_player_II[i, j]

27

28 # If neither player can improve their payoff

29 if player_I_best_response and player_II_best_response:

30 nash_equilibrium.append (( player_I_strategies[i],

player_II_strategies[j]))

31

32 # Print the Nash Equilibrium results

33 if nash_equilibrium:

34 print("Nash Equilibrium found at strategies:")

35 for eq in nash_equilibrium:

36 print(f"Player I: {eq[0]}, Player II: {eq[1]}")

37 else:

38 print("No Nash Equilibrium found.")

Listing 1: Python code to find Nash Equilibrium.

Suppose that each player agrees to the following joint strategy space.

S = {x|q1 = q2, q2 ∈ [1, 3)} ∪ ([3, 40]× [3, 40]) . (11)

The sales function for the first and second buyers is defined by Li : Si → R, i ∈ {1, 2},
where L1(q1) = K

(
3
16q

2
1 +

1
8q1

)
, and L2(q2) = K

(
3
16q

2
2 +

1
10q2

)
, K = 1

D

(
Diθi
sxi

+ (1− θi)
2
)
.

For numerical test, we consider the following the data: D1 = 45, D2 = 35, sx1 = 100 unit
product per unit time, sx2 = 95 unit product per unit time, p1 = 400, p2 = 450, A1 =
A2 = 0.003, F1 = F2 = 0.001, h11 = h12 = 1.5, h21 = h22 = 2, w1 = w2 = 45, ζ1 = ζ2 = 1,
b1 = b2 = 15, and ε = 0.5. The fraction of the defective items for all buyers is the same
value and expressed using an S-shaped logistic learning curve for one shipment process, i.e.
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θi = ψ(1) = 70.067
819.76+e1.0.7932 = 0.085, i = 1, 2. First, if one of the player play a strategy

qi ∈ [1, 3), then the other player must choose the same strategy. Therefore, a set [1, 3) gen-
erate the Nash equilibrium of which (1, 1) is the least Nash equilibrium. Suppose all buy-
ers play a strategy contained in interval [3, 40], then each player can be free to choose their
strategy. The dominance principle of the payoff matrix is applied to determine the Nash
equilibrium of Gm. For the numerical test, it takes 38 possible strategies for each player,
e.g.,qi = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, and 40. Therefore, the payoff matrix with 1444 elements is ob-
tained. Using these data, we obtain the Nash equilibrium (q∗1 , q

∗
2) = (40, 40). Hence, the highest

and the least Nash equilibrium is (q∗1 , q
∗
2) = (1, 1) and (q∗1 , q

∗
2) = (40, 40), respectively. If (q1, q2)

selected by all players, the first and second buyers earn Φ1 (40, 40) = 3713.033 in 1000 IDR and
Φ2 (40, 40) = 4057.583 in 1000 IDR as the payoff, respectively. The existence of the defective
items still preserved the ordering relation in the strategic space. The supplier investigates the
optimal decision by applying the synchronization principle. It means that the supplier takes
(q∗1 , q

∗
2) = (40, 40) as the reference to determine his optimal decision, q∗ = 40+ 40 = 80. Given

the following data for the supplier (all values are in 1000 IDR): Av = 20, Fv = 1, hv = 3, and
P = 100, then the largest and smallest profits for the supplier is Φv (1, 1) = 69.1 in 1000 IDR,
and Φv (40, 40) = 3872.29 in 1000 IDR. Next, the numerical test is considered in the case when
an all-units quantity discount is assumed. First, the unit material cost for each player is given
by

uj1(q
j
1) =

u11 = 400 in 1000IDR, for 0 < q11 ≤ 15
u21 = 300 in 1000IDR, for 15 < q21 ≤ 30
u31 = 200 in 1000IDR, for 30 < q31 .

(12)

and

uj2(q
j
1) =

u12 = 450 in 1000IDR, for 0 < q12 ≤ 15
u22 = 350 in 1000IDR, for 15 < q22 ≤ 30
u32 = 250 in 1000IDR, for 30 < q32 .

(13)

The other parameters are used to illustrate the analytical results: D1 = 45, D2 = 35, sx1 = 100
unit product per unit time, sx2 = 95 unit product per unit time, r1 = 400, r2 = 450, A1 = A2 =
0.003, F1 = F2 = 0.001, h11 = h12 = 1.5, h21 = h22 = 2, p1 = p2 = 45, ζ1 = ζ2 = 1, and ε = 0.5.
When a quantity discount is applied, both Player 1 and Player 2 will not choose (q1, q2) = (1, 1)
as a strategy profile. In otherwords, a strategy (q1, q2) = (1, 1) is not Nash equilibrium. Based
on the form of the payoff function in Equation (9), the higher the unit material cost, the greater
payoff obtained by each player. Due to the use of strategic complementarity and the form of
the unit material cost offered by the supplier for each player, then all players will purchase the
product which is the third unit material cost, i.e.u31 for Player 1 and u32 for Player 2. Based
on joint strategy space in Equation (11), (q∗1 , q

∗
2) = (40, 40) is selected as the Nash equilibrium.

Hence, only a single Nash equilibrium would be obtained when a quantity discount is offered
by the supplier. Each player will not purchase the product in a small number. Furthermore, it
can be used as a new justification that the composition of Nash equilibrium of supermodular
games can be altered using appropriate policy. In that case, a quantity discount policy can be
applied by the supplier to prevent the players from choosing the least Nash equilibrium.

4. Conclusion

In this research, a new application of supermodular games for inventory games with strategic
complementarities due to the existence of defective items has been proposed. All players are
concerned about the existence of defective items which follow the logistic learning curve. Ac-
cording to analytical and numerical results, the concept of supermodular games can be used
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to obtain the optimum value of inventory games when the players use the strategic comple-
mentary, concerned about the existence of the defective item. To guarantee the presence of
both the highest and lowest equilibrium, the reward function, which is based on the remaining
inventory of the other players, can be utilized as a component of the buyers’ payoff function.
This result is also appropriate with our main existence theorem of the equilibrium. According
to the numerical results, a quantity discount policy can be used by the supplier to prevent
players from choosing the least Nash equilibrium. For further research, the same research can
be conducted for inventory games with more complex assumptions and other policies.
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