
Croatian Operational Research Review 177
CRORR 17:2(2025), 177–190

Inverse cost and revenue efficiency in network processes with
uncontrollable inputs

Fatemeh Gholami Golsefid1, Monireh Jahani Sayyad Noveiri1 and Sohrab
Kordrostami1,∗

1 Department of Mathematics, Lahijan Branch, Islamic Azad University, 1616 Lahijan, Iran
E-mail: ⟨gholami_so@yahoo.com, monirehjahani@yahoo.com, Sohrabkordrostami@gmail.com⟩

Abstract. Inverse data envelopment analysis (IDEA) estimates the inputs/outputs of each decision-
making unit (DMU) based on the perturbations in the outputs/inputs while maintaining relative ef-
ficiency. When the cost of inputs or the price of outputs is available, it is possible to calculate cost,
revenue, and profit efficiencies. This study develops an inverse network DEA that includes uncon-
trollable measures. For this purpose, models are presented for calculating relative, cost, and revenue
efficiencies. Then, an algorithm is proposed to estimate the inputs of the first stage, considering un-
changed technical and cost efficiencies. Also, an algorithm is presented to estimate the outputs of the
second stage, considering unchanged output-oriented technical efficiency and revenue efficiency. Then,
the introduced algorithms are applied to a numerical example and a dataset related to salmon farming,
obtaining logical results. Finally, the proposed method is compared with one of the existing methods,
and their differences are discussed.
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1. Introduction

Data envelopment analysis (DEA), first presented by Charnes et al. [5], is a technique for
the relative efficiency calculation of decision-making units (DMUs). However, the inverse DEA
(IDEA) is an approach to estimate the performance indicators (inputs and outputs) of indi-
vidual units by perturbing other measures (outputs and inputs) while maintaining the unit’s
efficiency [21]. Yan et al. [23] further explored IDEA models by incorporating conic constraints.
Subsequently, Jahanshahloo et al. [13] extended the technique provided by Yan et al. [23], uti-
lizing IDEA to assess the output levels of a DMU under increased inputs or improved efficiency.
Hadi-Vencheh and Foroughi [11] rendered a technique that involved simultaneous increases in
certain inputs (outputs) while decreasing others.

Researchers can analyze the performance of individual units in terms of cost, revenue, or
profit when input and output prices are known. The main models for assessing cost efficiency
(CE) and revenue efficiency (RE) focus on minimizing costs and maximizing revenue. Addi-
tional models have been introduced to calculate maximum profit and determine profit efficiency.
Fare et al. [7] introduced a linear programming model to estimate the cost, revenue, and profit
efficiencies of DMUs. Tone [20] proposed an alternative approach for the cost, revenue, and
profit efficiency evaluation considering different prices for inputs and outputs. Sahoo et al.
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[17] suggested a directional distance function method to evaluate cost, revenue, and profit ef-
ficiencies. Ghiyasi [10] developed an IDEA model for situations where price information was
available, proposing models to estimate inputs and outputs while maintaining technical and cost
(or revenue) efficiencies. Asadi et al. [2] introduced an IDEA approach based on non-convex
cost efficiency. Soleimani Chamkhorami et al. [19] determined the minimum required changes
in inputs for perturbing outputs so that the cost efficiency of the evaluated unit remained un-
changed. In their research, Fathi and Izadikhah [9] and Khoshfetrat and Ghiyasi [15] examined
the issue of resource allocation when non-discretionary inputs were present using radial IDEA
models. Jahani Sayyad Noveiri et al. [12] introduced non-radial DEA-based models to evalu-
ate the efficiency and output variations of Iranian restaurants, incorporating non-discretionary
measures.

Neglecting the internal structure of processes and treating systems as black boxes can lead
to inaccurate performance evaluations. Internal processes can significantly affect performance,
which is why researchers such as Fare and Grosskopf [6] introduced the concept of network
structure for DMUs in DEA. Subsequent methods, such as those developed by Kao and Hwang
[14] and Wu et al. [22], have sought to assess the efficiency of two-stage networks. Recent
studies, including Lozano’s approach [16], have focused on analyzing the cost efficiency of
two-stage processes considering intermediate factors. Banihashemi and Tohidi [4] used a slacks-
based model to determine the cost, revenue, and profit efficiencies of network structures based
on input and output price vectors, also extending their analysis to supply chain networks [3].
Shiri et al. [18] applied the IDEA concept to calculate cost and revenue efficiencies in two-
stage structures while expanding Ghiyasi’s method for two-stage networks. Despite the efforts
made to estimate performance indicators in the presence of uncontrollable measures, changes in
performance measures related to network processes with uncontrollable indexes and price data
have not been investigated.

Therefore, this study considers each DMU as a two-stage network, which includes uncontrol-
lable inputs in the second stage. Given that the price of inputs of the first stage (initial input)
and outputs of the second stage (final output) are available, models are presented to calculate
the relative and cost efficiencies. Then, the inputs of the first stage are estimated using the
generalized IDEA by perturbing the final outputs so that the technical and cost efficiencies
remain unchanged. Using another presented model by perturbing the inputs of the first stage,
final outputs are estimated while maintaining technical and revenue efficiencies. The proposed
algorithms are then applied to a numerical example and a dataset related to 17 salmon farms
in five western provinces of Iran. Moreover, the proposed method is compared with one of the
existing methods.

Section 2 presents methods to estimate the performance measures of network systems with
uncontrollable inputs and price information. Datasets are presented in Section 3 to demonstrate
the introduced approach. Finally, Section 4 is allocated to the results and suggestions.

2. Inverse cost and revenue efficiencies for networks with uncontrol-
lable inputs

Suppose there are n DMUs, where each unit has a two-stage network structure with uncon-
trollable inputs in the second stage. That is, DMUo is in the form shown in Figure 1: Here,
xio, (i = 1, 2, ...,m) and zko, (k = 1, 2, ..., t) are the inputs of the first stage and the interme-
diate measures, respectively. The index zko is considered the output of the first stage and the
input of the second stage. In the second stage, dlo, (l = 1, 2, ..., g) and yro, (r = 1, 2, ..., s) show
uncontrollable inputs and the final outputs, respectively.
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Figure 1: The two-stage network structure.

Accordingly, the technical efficiency can be obtained from the following model:

θ = min θo

s.t.
∑n

j=1 λjxij ≤ θoxio, i = 1, . . . ,m,∑n
j=1(λj − µj)zkj ≥ 0, k = 1, . . . , t,∑n
j=1 µjdlj = dlo, l = 1, . . . , g,∑n
j=1 µjyrj ≥ yro, r = 1, . . . , s,

λj , µj ≥ 0, j = 1, . . . , n.

(1)

Suppose (θ∗, λ∗, µ∗) is the optimal solution for model (1), with θ∗ indicating the technical
efficiency of DMUo. If θ∗ = 1, then DMUo is efficient; otherwise, it is inefficient. If the cost or
price of the inputs of the first stage is available, the cost efficiency for DMUo can be obtained.
Let c ∈ Rm be the cost or price of the inputs of the first stage. The minimum cost related to
DMUo is calculated using the following model:

min

m∑
i=1

cixi

s.t.
∑n

j=1 λjxij ≤ xi, i = 1, . . . ,m,∑n
j=1(λj − µj)zkj ≥ 0, k = 1, . . . , t,∑n
j=1 µjdlj = dlo, l = 1, . . . , g,∑n
j=1 µjyrj ≥ yro, r = 1, . . . , s,

λj , µj ≥ 0, j = 1, . . . , n,

xi ≥ 0, i = 1, . . . ,m.

(2)

Definition 1. Suppose (x
∗
, λ∗, µ∗) is the optimal solution of model (2). The cost efficiency

is defined as the ratio of the minimum cost (ctx∗) to the actual cost of DMUo (ctxo), i.e.,

CEo =
ctx∗

ctxo
=

∑m
i=1 cix

∗
i∑m

i=1 cixio
(3)

2.1. Minimum inverse cost for two-stage networks with uncontrollable
inputs

If the prices of the inputs related to the first stage are available, they can also be used in IDEA
models. Now suppose that in two-stage networks, where uncontrollable inputs are presented
in the second stage, the final outputs of the second stage are perturbed from the level yo to
yo + ho. The following multi-objective model is proposed to estimate the inputs of the first
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stage for this perturbation, considering unchanged technical and cost efficiencies:

min

m∑
i=1

cix̄i

min (α1, α2, . . . , αm)

s.t.
∑n

j=1 λjxij ≤ x̄i, i = 1, . . . ,m (4.1),∑n
j=1 λjxij ≤ θ∗oαi, i = 1, . . . ,m (4.2),∑n
j=1(λj − µj)zkj ≥ 0, k = 1, . . . , t (4.3),∑n
j=1 µjdlj = dlo, l = 1, . . . , g (4.4),∑n
j=1 µjyrj ≥ yro + hro, r = 1, . . . , s (4.5),∑m
i=1 cix̄i = CEo

∑m
i=1 ciαi (4.6),

λj , µj ≥ 0, j = 1, . . . , n,

x̄i, αi ≥ 0, i = 1, . . . ,m.

(4)

According to the statement (4.6), we have:

min

m∑
i=1

cixi = minCEo

m∑
i=1

ciαi

Because the cost efficiency CEo calculated using equation (3) is a numerical value, it is sufficient
to calculate min

∑m
i=1 ciαi. In this way, the multi-objective model (4) becomes as the following

linear programming (LP) model:

min

m∑
i=1

ciαi

s.t.
∑n

j=1 λjxij ≤ x̄i, i = 1, . . . ,m (5.1)∑n
j=1 λjxij ≤ θ∗oαi, i = 1, . . . ,m (5.2)∑n
j=1(λj − µj)zkj ≥ 0, k = 1, . . . , t (5.3)∑n
j=1 µjdlj = dlo, l = 1, . . . , g (5.4)∑n
j=1 µjyrj ≥ yro + hro, r = 1, . . . , s (5.5)∑m
i=1 cix̄i = CEo

∑m
i=1 ciαi (5.6)

λj , µj ≥ 0, j = 1, . . . , n

x̄i, αi ≥ 0, i = 1, . . . ,m

(5)

Here, CEo is the cost efficiency calculated using Eq. (3).
Definition 2. Let (λ, µ, α, x) is a feasible solution for model (5). (λ, µ, α, x) is a weak

efficient solution of model (5) if there is no feasible solution (λ′, µ′, α′, x′) such that α′
i ≤ αi (∀i).

Theorem 1. Suppose DMUo is a two-stage network with uncontrollable inputs in the second
stage. Let θ∗o be the optimal objective of model (1). If (λ, µ, α, x) is the weak efficiency solution
for model (5), then the technical and cost efficiencies of DMUo remain unchanged.
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Proof. Consider the following problem:

min θ̄

s.t.
∑n

j=1 λjxij ≤ θ̄αi, i = 1, . . . ,m∑n
j=1(λj − µj)zkj ≥ 0, k = 1, . . . , t∑n
j=1 µjdlj = dlo, l = 1, . . . , g∑n
j=1 µjyrj ≥ yro + hro, r = 1, . . . , s

λj , µj ≥ 0, j = 1, . . . , n

(6)

Suppose θ
∗

is the optimal objective value of model (6), It is necessary to show that θ
∗
= θ∗o .

Because (λ, µ, α, x) is a weak efficiency solution for model (5), it applies to all constraints of
model (5), including the following conditions:∑n

j=1 λjxij ≤ θ∗oαi, ∀i,∑n
j=1(λj − µj)zkj ≥ 0, ∀k,∑n
j=1 µjdlj = dlo, ∀l,∑n
j=1 µjyrj ≥ yro + hro, ∀r.

As a result, (λ , µ , θ∗o) is a feasible solution to problem (6), so θ
∗ ≤ θ∗o (Eqs. (5.1) and (5.6)

of model (5) are also established). Now it is enough to show that θ
∗ ≮ θ∗o . Suppose θ

∗
< θ∗o ,

then it can be assumed θ
∗
= kθ∗o that 0 < k < 1. Thus, according to the first constraint of

problem (6), we have: ∑n
j=1 λjxij ≤ kθ∗oαi, ∀i,∑n
j=1(λj − µj)zkj ≥ 0, ∀k,∑n
j=1 µjdlj = dlo, ∀l,∑n
j=1 µjyrj ≥ yro + hro, ∀r.

As a result, (λ, µ, kα, x) is a feasible solution for model (5) that 0 < k < 1, which contradicts
the weak efficient solution of (λ, µ, α, x) for model (5). Hence, θ

∗ ≮ θ∗o leads to θ
∗
= θ∗o . That

is, technical efficiency does not change.
For cost efficiency, according to the constraint (5.6) of model (5), we have

∑m
i=1 cixi =

CEo

∑m
i=1 ciαi that leads to

∑m
i=1 cixi∑m
i=1 ciαi

= CEo, where CEo is the cost efficiency related to
DMUo. By perturbing the final output from the level of yro to yro + hro, inputs can also
change from the level of xio to αi = xio + ∆xio. Considering

∑m
i=1 cixi as the minimum cost

after perturbing the final outputs,
∑m

i=1 ciαi is the actual cost of the unit after perturbation.
In other words,

∑m
i=1 cixi∑m
i=1 ciαi

is the cost efficiency of the new DMUo with the changed inputs and
outputs of (xo+∆xo, yo+ho), which is equal to the cost efficiency of the initial DMUo (equal
to CEo). As a consequence, cost efficiency will not change.

According to IDEA models, when inputs/outputs are perturbed, the outputs/inputs may
also change. In two-stage networks with uncontrollable inputs in the second stage, the mini-
mum value of the network’s initial inputs by perturbing the outputs is estimated while keeping
technical and cost efficiencies unchanged. For this purpose, the following algorithm (cost al-
gorithm) is presented using models (2), (3), and (5). The steps of the proposed algorithm are
shown in Figure 2.
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Figure 2: The proposed algorithm for the input estimation of the initial stage with uncontrollable
inputs.

2.2. Output-oriented technical and revenue efficiencies for two-stage
networks with uncontrollable inputs

Suppose there are n DMUs in the frame of two-stage networks with uncontrollable inputs as
shown in Figure (1). The output-oriented efficiency of DMUo is calculated using the following
model:

φ = max φo

s.t.
∑n

j=1 λjxij ≤ xio, i = 1, . . . ,m,∑n
j=1(λj − µj)zkj ≥ 0, k = 1, . . . , t,∑n
j=1 µjdlj = dlo, l = 1, . . . , g,∑n
j=1 µjyrj ≥ φoyro, r = 1, . . . , s,

λj , µj ≥ 0, j = 1, . . . , n.

(7)

Let (φ∗, λ∗, µ∗) be the optimal solution for model (7), with φ∗ indicating the output-oriented
technical efficiency of DMUo. If φ∗ = 1, then DMUo is efficient; otherwise, it is inefficient.

If the output prices of the second stage are available, the revenue efficiency for DMUo can
be obtained. Let p ∈ Rs be the output price of the second stage. The maximum revenue of
DMUo is calculated using the following model:

max

s∑
r=1

pryr

s.t.
∑n

j=1 λjxij ≤ xio, i = 1, . . . ,m∑n
j=1(λj − µj)zkj ≥ 0, k = 1, . . . , t∑n
j=1 µjdlj = dlo, l = 1, . . . , g∑n
j=1 µjyrj ≥ yr, r = 1, . . . , s

λj , µj ≥ 0, j = 1, . . . , n

yr ≥ 0, r = 1, . . . , s.

(8)

Definition 3. Let (y
∗
, λ∗, µ∗) are the optimal solution for model (8). The ratio of real

revenue (ptyo) to the maximum revenue of DMUo (pty∗) shows the revenue efficiency.

REo =
ptyo
pty∗

=

∑s
r=1 pryro∑s
r=1 pry

∗
r

(9)
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2.3. Maximum inverse revenue for two-stage networks with uncontrol-
lable inputs

Given the availability of the output prices of the second stage, this information can also be used
in IDEA models. Suppose that in a two-stage network with uncontrollable inputs in the second
stage, the inputs of the first stage are perturbed from the level xo to xo + bo. The following
multi-objective model is proposed to estimate the outputs of the second stage while keeping
the output-oriented technical and revenue efficiencies unchanged:

max

s∑
r=1

prȳr

max (β1, β2, . . . , βs)

s.t.
∑n

j=1 λjxij ≤ xio + bio, i = 1, . . . ,m (10.1)∑n
j=1(λj − µj)zkj ≥ 0, k = 1, . . . , t (10.2)∑n
j=1 µjdlj = dlo, l = 1, . . . , g (10.3)∑n
j=1 µjyrj ≥ ȳr, r = 1, . . . , s (10.4)∑n
j=1 µjyrj ≥ φ∗

oβr, r = 1, . . . , s (10.5)∑s
r=1 prȳr =

∑s
r=1 prβr

REo
(10.6)

λj , µj ≥ 0, j = 1, . . . , n

ȳr, βr ≥ 0, r = 1, . . . , s

(10)

According to the statement (10.6), we have:

max

s∑
r=1

pryr = max

∑s
r=1 prβr

REo

Here, 1
REo

is the inverse of the revenue efficiency calculated by equation (9), representing
a numerical value. Therefore, it is enough to calculate max

∑s
r=1 prβr. In this way, the

multi-objective model (10) becomes the following LP model:

max

s∑
r=1

prβr

s.t.
∑n

j=1 λjxij ≤ xio + bio, i = 1, . . . ,m,∑n
j=1(λj − µj)zkj ≥ 0, k = 1, . . . , t,∑n
j=1 µjdlj = dlo, l = 1, . . . , g,∑n
j=1 µjyrj ≥ ȳr, r = 1, . . . , s,∑n
j=1 µjyrj ≥ φ∗

oβr, r = 1, . . . , s,∑s
r=1 prȳr =

∑s
r=1 prβr

REo
,

λj , µj ≥ 0, j = 1, . . . , n,

ȳr, βr ≥ 0, r = 1, . . . , s.

(11)

Here, REo is the revenue efficiency calculated using equation (9).
Definition 4. Let (λ, µ, β, y) is a feasible solution for model (11). Then, (λ, µ, β, y) is a

weak efficient solution for model (11) provided that there is no feasible solution (λ′, µ′, β′, y′)
such that β′

r ≥ βr (∀r).
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Theorem 2. Suppose DMUo is a two-stage network with uncontrollable inputs in the second
stage. Let φ∗

o is the optimal objective of model (7). If (λ, µ, β, y) is the weak efficiency so-
lution for model (11), the output-oriented technical and revenue efficiencies of DMUo remain
unchanged.

Proof. The proof is similar to Theorem 1.
In network structures with uncontrollable inputs in the second stage, perturbing the inputs

of the first stage can change the final outputs. The following proposed (revenue) algorithm is
used to estimate the maximum output of the second stage of the network while keeping both
output-oriented and the revenue efficiencies unchanged.
Algorithm 2: Inverse revenue algorithm for networks with uncontrollable inputs
Step 1) Calculate the output-oriented efficiency of the units using model (7).
Step 2) Calculate the maximum revenue using model (8) and then calculate the revenue effi-
ciency using equation (9).
Step 3) Apply model (11) to estimate the maximum value of the final outputs by perturbing
the inputs of the first.

2.4. Numerical Example

Consider 10 DMUs with a two-stage network structure shown below:

Figure 3: The two-stage network structure.

The inputs and outputs of these 10 units are given in Table 1.

x1 x2 z1 d1 y1 y2
DMU1 6.2 62.4 58 8.1 51.1 1.64
DMU2 4.1 47.4 88 8.1 33.3 1.74
DMU3 10.0 100.0 99 6.3 100.0 9.99
DMU4 2.8 44.9 25 10.0 31.4 2.69
DMU5 5.5 51.9 13 8.1 37.5 2.27
DMU6 5.0 60.6 48 8.1 45.8 4.18
DMU7 3.1 39.6 73 9.1 34.9 0.15
DMU8 3.0 35.4 67 10.0 26.3 1.25
DMU9 2.9 38.0 86 8.1 29.1 1.43
DMU10 6.1 70.8 48 6.3 72.4 6.02

Table 1: Inputs and outputs of 10 networks

According to the cost algorithm, we first obtain the technical efficiency of the units using
model (1) and then calculate the cost efficiency considering the input prices (c1 = 2 and c2 = 3),
model (2), and equation (3). Then, we estimate the minimum amount of inputs using model (5)
by perturbing the first output by 10% and the second output by 20%. The estimation results
of the inputs related to the first stage and the percentage of changes are given in Table 2.
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New x1 Percentage of
changes x1

New x2 Percentage of
changes x2

DMU1 5.62 -8.8% 73.61 17.9%
DMU2 3.62 -11.1% 47.4 -0.1%
DMU3 9.61 -4.1% 125.93 25.9%
DMU4 3.46 25.1% 45.35 1%
DMU5 5.19 -6% 68.04 31.2%
DMU6 5.77 14.6% 75.63 24.8%
DMU7 3.02 -3.3% 39.6 -0.1%
DMU8 2.7 -11.5% 35.4 0.1%
DMU9 2.9 1.2% 38 0.1%
DMU10 7.14 17.8% 93.61 32.2%
Table 2: Estimated inputs of the first stage and their percentage of changes

According to Table 2, the first input decreases for units 1, 2, 3, 5, 7, and 8 and increases
for other units. The largest decrease in the first input is related to DMU 8, with an 11.5%
decrease, and the largest increase in this input is observed in DMU 4 by about 25%. Also, the
second input of DMUs 2 and 7 decreases by approximately 0.1% but increases for other units.
The largest increase in this input is related to unit 10 by about 32%.

We use the method presented by Shiri et al. [18] to compare the proposed method with
existing studies, highlighting the following differences between the proposed technique and Shiri
et al.’s model:

• Shiri et al. [18] use four models to solve such problems. They first calculate technical
efficiency and cost efficiency using two models, then use two other models (the first has
three and the second has four types of constraints) to estimate the minimum input while
maintaining technical efficiency and cost efficiency. After calculating technical and cost
efficiencies, the proposed model would reach the same results using a model with only
one additional constraint. Accordingly, results confirm that the proposed method would
reduce the number of computational operations and the time required for calculations.

• Another difference is that there are uncontrollable inputs in the proposed network, which
have not been taken into account by Shiri et al.’s method.

For comparisons, we consider the uncontrollable input index in Shiri et al.’s method, adding
the third constraint of model (11) to the models of Shiri et al. [18]. The results are presented
in Table 3.

According to Table 3, the first input decreases for units 1, 2, 3, 5, and 8 and increases for
other units. The largest decrease is 8.8%, associated with DMU 1, and the largest increase is
30.5%, related to DMU 4. Also, the second input values of all units increase, with the smallest
and largest increase reported for units 4 and 10, respectively. A comparison of Tables 2 and
3 reveals that the inputs of some units decrease in the proposed method but increase in the
method of Shiri et al. (such as the first input of DMU 7 and the second input of units 2 and
7). The changes in some units are the same in both methods.

2.5. Case Study

The data are related to the performance of 17 salmon farms in five western provinces of Iran
in 2018 (Abdali [1]). The framework under examination of fish farms is shown in Fig. 4,
considering each salmon farm as a two-stage network system. The first stage is the baby fish’s
production pool, and the second stage is the adult fish’s breeding pool. First, all the fish are
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New x1 Percentage
of changes
x1

New x2 Percentage
of changes
x2

DMU1 5.62 -8.8% 73.61 17.9%
DMU2 3.98 -2.3% 52.14 9.9%
DMU3 9.61 -4.1% 125.93 25.9%
DMU4 3.61 30.5% 47.25 5.2%
DMU5 5.19 -6% 68.04 31.2%
DMU6 5.77 14.6% 75.63 24.8%
DMU7 3.32 6.3% 43.56 9.9%
DMU8 2.97 -2.6% 38.94 10.1%
DMU9 3.19 11.4% 41.8 10.1%
DMU10 7.14 17.8% 93.61 32.2%

Table 3: Results of Shiri et al.’s method considering the uncontrollable input

kept in the first pool for spawning, and then the baby fish are sent to the second pool to grow
up. The final output is the adult fish for human consumption. The cost of ecosystem damage
is the uncontrollable input in the second pool, where the young fish are placed to grow up. The
terms used are defined as follows:

xi: Value of fish brought into the first pool and kept in that pool for spawning (unit of
1000 kg).

dl: Costs of ecosystem damage in the second pool of the salmon farm (unit of one million
Tomans)

zk: The number of baby fish sent to the second pool to grow up (unit of 1000 pieces).

yr: Value of mature fish for people’s food consumption (unit of 1000 kg).

Figure 4: The two-stage process related to fish farms.

Table 4 shows the inputs and outputs of 17 salmon farms in five western provinces of Iran.
Given the cost algorithm and the price of the inputs of the first stage (c=5), the cost efficiency

of the units is determined using model (2) and Expression (3) after determining the technical
efficiency (using model (1)). Then, the output of the second stage (amount of mature fish for
consumption) is perturbed by 10% to estimate the minimum amount of fish for spawning after
this perturbation using model (5) so that technical and cost efficiencies remain unchanged. The
results of the amount of fish for spawning, the percentage of changes, the technical efficiency,
and the cost efficiency of the units are given in Table 5.
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Stage 1 Stage 2
DMU j xi zk dl yr
DMU1 656 98.541 56 3564
DMU2 5356 32.654 29 2145
DMU3 354 82.365 67 3698
DMU4 542 24.563 45 5246
DMU5 652 98.543 19 7145
DMU6 752 54.263 45 3369
DMU7 326 65.478 36 5214
DMU8 542 36.985 68 5369
DMU9 632 45.638 45 5412
DMU10 623 96.353 36 2148
DMU11 354 65.878 45 4532
DMU12 654 36.546 42 4521
DMU13 423 54.692 25 3678
DMU14 362 24.578 42 4213
DMU15 452 36.925 36 2846
DMU16 325 57.892 24 6532
DMU17 542 65.245 45 4215

Table 4: Inputs and outputs of 17 salmon farms

DMU j New xi Percentage
of
changes

Technical
efficiency

Cost effi-
ciency

DMU1 656 0% 0.1996 0.1996
DMU2 5357.23 0.02% 0.0127 0.0127
DMU3 354 0% 0.4424 0.4424
DMU4 680.85 25.62% 0.1948 0.1948
DMU5 778.25 19.36% 0.6496 0.6496
DMU6 752.24 0.03% 0.1399 0.1399
DMU7 390.01 19.63% 0.4199 0.4199
DMU8 542.41 0.08% 0.2933 0.2933
DMU9 786.51 24.45% 0.1806 0.1806
DMU10 623 0% 0.1351 0.1351
DMU11 354.34 0.1% 0.2978 0.2978
DMU12 680.87 4.11% 0.1505 0.1505
DMU13 504.83 19.35% 0.2317 0.2317
DMU14 362.34 0.09% 0.2718 0.2718
DMU15 452.34 0.08% 0.1862 0.1862
DMU16 422.93 30.13% 0.7656 0.7656
DMU17 542.48 0.09% 0.1944 0.1944

Table 5: Findings of performance

According to the results of Table 5, the amount of fish for spawning has not changed in
units 1, 3, and 10 (0% change), while the amount of fish for spawning has a slight change in
units 2, 6, 8, 11, 14, 15, and 17 (increased by less than one-tenth percent). Units 16, 4, and 9
have undergone the greatest changes, by about 30%, 26%, and 24% increase, respectively.

The fourth and fifth columns of Table 5 show the technical and cost efficiencies of the units,
respectively. Notice that each unit has only one input and one output, leading to the equivalence
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of technical and cost efficiencies [20].
Using the revenue algorithm, we first obtain the output-oriented technical efficiency and

the revenue efficiency of the units using models (7) and (8) and the relation (9) (we consider
the output price p=10). Then, the amount of fish for spawning is perturbed by 10%, and
the maximum amount of final output is estimated for this perturbation using model (11) so
that the output-oriented technical and revenue efficiencies remain unchanged. The new output
results, the percentage of their changes, the output-oriented technical efficiency, and the revenue
efficiency of the units are given in Table 6.

DMU j New yr Percentage
of
changes

Output-
oriented
efficiency

Revenue
effi-
ciency

DMU1 3692.12 3.59% 4.4609 0.2242
DMU2 2145 0% 5.0842 0.1967
DMU3 3916.37 5.91% 3.1445 0.3180
DMU4 5437.96 3.66% 2.4600 0.4065
DMU5 7145 0% 1.0000 1.0000
DMU6 3518.8 4.45% 4.3736 0.2286
DMU7 5585.2 7.12% 1.7035 0.5870
DMU8 5736.81 6.85% 2.8583 0.3499
DMU9 5629.69 4.02% 2.5294 0.3954
DMU10 2245.37 4.53% 5.5746 0.1794
DMU11 4841.19 6.82% 2.2208 0.4503
DMU12 4714.18 4.27% 2.9496 0.3390
DMU13 3842.67 4.48% 2.2380 0.4468
DMU14 4508.62 7.02% 2.3752 0.4210
DMU15 2952.9 3.76% 3.6839 0.2715
DMU16 6789.04 3.94% 1.1016 0.9078
DMU17 4369.23 3.66% 3.0617 0.3266

Table 6: Efficiencies, new outputs, and changes

According to Table 6, the amount of adult fish has not changed in units 2 and 5 (0%
changes), and the amount of adult fish has changed by 7.12%, 7.02%, and 6.85% in units 7, 14,
and 8, respectively. Unit 11 shows the highest increase by 6.82%. Output-oriented technical
and revenue efficiencies are provided in the fourth and fifth columns, revealing that unit 5 has
both output-oriented technical and revenue efficiencies.

Uncontrollable indicators in network structures are important and effective in finding ac-
curate results. Using the proposed models, it is possible to examine the changes of indicators
in network processes with uncontrollable inputs while the prices of some indicators are known.
For more explanation, the methodology employed allows for the efficiency evaluation of DMUs
and performance measures estimation within a two-stage network framework. By distinguishing
between the controllable inputs in the first stage and the uncontrollable inputs in the second
stage, we can gain deeper insights into overall performance. Businesses can utilize the inverse
network models to estimate the necessary adjustments to inputs and outputs without altering
cost/revenue and technical efficiencies. This allows managers to develop targeted strategies.
Understanding the efficiency metrics can guide decision-makers in resource reallocation within
the network with uncontrollable inputs. Regularly process assessment and recalibration based
on efficiency metrics enables businesses to adapt to changing conditions and maintain compet-
itive advantage.

In summary, the results of our study provide a robust framework for organizations to di-
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agnose inefficiencies, implement targeted improvements, and ultimately enhance their business
processes.

3. Conclusions

DEA evaluates the relative efficiency of a set of DMUs using mathematical programming models.
In IDEA, the required inputs (outputs) are estimated by perturbing outputs (inputs) while
maintaining the efficiency value. On the other hand, if input or output prices are available, the
cost or revenue efficiencies of DMUs can be obtained using DEA. This paper has considered
each DMU a two-stage network with uncontrollable inputs in the second stage. First, according
to the availability of the input cost of the first and the output price of the second stage, models
have been proposed to calculate the relative, cost, and revenue efficiencies of the desired network
structures. Then, using the introduced inverse network models, inputs/outputs are estimated,
while the cost/revenue efficiency remains unchanged in addition to the technical efficiency.
Finally, the proposed algorithms are applied to a numerical example and data related to the
performance information of 17 salmon farms in five western provinces of Iran. Also, the proposed
method is compared with one of the existing methods, confirming that it is useful and practical
for estimating performance indicators in network systems with uncontrollable inputs.

While the presented approach effectively addresses two-stage systems with precise data, it is
important to acknowledge several key limitations. Our method assumes that data are precise,
which may not always be the case in real-world applications. Future research could explore
the robustness of our approach when dealing with imprecise or uncertain data, potentially
incorporating techniques from fuzzy logic or stochastic modeling. Furthermore, the current
method is tailored to specific network structures. Developing adaptive techniques that can
cater to a wider variety of network configurations would enhance the versatility of our approach.
Future work could focus on generalizing our method to accommodate different types of networks,
including dynamic structures.
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