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Aspects of blocking on time-varying tandem queueing network
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Abstract. Most real-world service systems are susceptible to queue capacity constraints, leading to
a blockage of entities. Several blocking mechanisms can be implemented when capacity constraints
influence the flow of entities through the system. This study investigates the comparative performance
of blocking-after-service (BAS) and blocking-before-service (BBS) mechanisms by modelling a hospital
emergency department with a finite capacity queue. The model is based on a two-station tandem net-
work with finite capacity on the intermediate queue, and we developed transient performance measures
for the system in both mechanisms. Using a numerical approach, we highlight how these mechanisms
influence the time-varying number of patients and the virtual workload in the system. Our results
demonstrate that the BAS mechanism slightly outperforms the BBS mechanism in reducing unwanted
congestion.
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1. Introduction

In queueing theory, capacity restriction on waiting line is a crucial aspect to study and it is
common for real-world service systems to have queues of finite capacity. In such systems, the
flow of customers from the source node will be blocked if the waiting room at the destination
node is full. There are mainly two blocking mechanisms, i.e. blocking-after-service (BAS) and
blocking-before-service (BBS) that describe different scenarios when there are restrictions on
waiting rooms. BAS occurs when an entity after service from a node finds that waiting room of
the next station is full (saturated). So, they are being blocked before entering the waiting room
of the next node. They must have to wait until the space becomes available. In BBS system,
before starting service at current node, entities are blocked if there is no available space in the
waiting room of next station. Once the space is available at the destination node, the blocked
entity resumes service at the source node.

Tandem queueing networks with finite capacity are useful for modelling healthcare, com-
munication, and manufacturing systems [6, 13, 14, 10]. A BAS mechanism is also known as
manufacturing blocking. In manufacturing and production lines, items move through the work-
stations which can only process a limited number of items at a time. If the next workstation is
full, it is not possible to move the items that have been processed from the current workstation,
leading to a blockage. In [2], a steady-state analysis was performed under the BAS mechanism
with two single-server queues connected in tandem. In [1], the same model is extended to
a k-station tandem network with general arrival times, deterministic service times and finite
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waiting room between stations. Transient behaviour of a two station tandem network with no
restriction on first station and no queue allowed for second station was investigated in [11].
Zychlinski et. al [18] developed time-varying fluid models for tandem network with a general
time-varying arrival rate, a finite waiting room before first station and no intermediate waiting
room. The BBS mechanism, which is also known as communication blocking, is commonly
used in telecommunication networks [15, 8]. A detailed description of the different types of
BBS mechanisms is presented in [5]. In communication networks, data packets move through a
series of nodes/router, where each node processes the packets and forward it to the next node.
If the buffer of the next node is full, the current node cannot forward the packet causing the
packet to be blocked before the current node. Healthcare systems can also use the BBS mech-
anism in short medical procedures, such as cataract surgery, laparoscopic surgery and cardiac
catheterization. These procedures can only begin when the room is available in the recovery
area. Avi-Itzhak and Levy[4] introduced a k-stage blocking scheme as a generalisation of the
results presented in [2, 1]. In [3], they analyzed the steady-state performance measures of a
single-server network of k stations with no intermediate queue and an unlimited buffer prior
to the first station under both BAS and BBS mechanisms. Fluid limits for tandem model of
time-varying multi-server queues with finite buffers before the first station and between sta-
tions under BBS mechanism is considered in [19]. To facilitate comparison, they also developed
steady-state closed-form expressions for system performance measures under the BAS and BBS
mechanisms.

There has been extensive research conducted on tandem networks with finite capacity
queues. However, there is limited research on time-varying tandem queues with blocking. In
this study, we provide an analytical comparison between BBS and BAS in time-varying tandem
queues, with special reference to a case of healthcare system. We develop a stochastic model for
a two station finite capacity tandem network under different blocking mechanisms. In the sec-
ond section, explicit expressions for transient performance measures such as number of patients
and average virtual workload at time t under BAS and BBS mechanisms are discussed. We also
conducted a numerical study with the blocking mechanisms under different traffic intensity and
queue capacity.

2. Two station Tandem Model with finite queue capacity

We consider a health care system, such as a hospital emergency department with a triage system
where patients arrive according to a non-homogeneous Poisson process. The model considered
here is a tandem network with two stations. Patients are first assessed by a triage nurse to
determine their level of need for medical assistance. Subsequently, the patients are sent to the
consultation room, where medical professionals provide the necessary treatment. There is an
unlimited waiting room for triage and finite waiting room for treatment. Suppose that only a
limited number of patients can wait in the treatment area due to space and resource constraints.
In the above situation, there are two ways to manage heavy traffic of patients. In BAS, if the
waiting space of treatment room is full (saturated), patients cannot join the queue for treatment
after the triage process, causing a blockage. In BBS, even though the triage nurse is present, the
treatment waiting room is full (saturated), preventing patients from being triaged and causing
them to be blocked. In this section, we establish transient performance measures for the two-
station tandem queueing network model, under the two blocking mechanisms. Ramesh and
Manoharan [12] derived explicit expressions for time-varying measures, such as queue length
and virtual workload, for a time-varying tandem queueing network of k stations. Building on
that work, this paper extends these measures by incorporating the effects of blocking within
the context of an outpatient clinic to facilitate meaningful comparisons.
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2.1. Blocking After Service (BAS)

Initially, we model a healthcare system with a two-station tandem queueing network with finite
queue capacity in second station. In the first-come-first-served (FCFS) model illustrated in
Figure 1, patients arrive according to non-homogeneous Poisson process and the time-dependent
service time following an exponential distribution, i.e. triage node is M(t)/M(t)/1/∞ and
treatment node is M(t)/M(t)/1/K. Following are the parameters that characterise the model.

Figure 1: A BAS two station tandem queueing network model

1. {A1(t), t ≥ 0} is the external arrival process to the triage node with arrival rate λ1(t).

2. {V (t), t ≥ 0} is the service requirement of the patient, i.e., the total amount of service
(in terms of time) that a patient requires. V1(t) is the service requirement of a patient
arriving at the triage at time t. Similarly, V2(t) is the service requirement of a patient
arriving at the treatment area at time t. µi(t), i = 1, 2 is the service processing rate at
time t.

3. After triage process, patients move to the treatment area with probability p and leave the
system with probability 1− p and at a rate of (1− p)µ1(t).

4. {A2(t), t ≥ 0} denote the arrival of patients to the treatment area after triage process.
Therefore, the arrival rate is λ2(t) = pµ1(t).

The instantaneous traffic intensity at the triage node, ρ1(t) is defined as,

ρ1(t) = λ1(t)/µ1(t).

Thus, the two arrival rate functions are related as λ2(t) = p λ1(t)/ρ1(t).

5. In this study, the instantaneous traffic intensity, ρ(t) = λ(t)/µ(t), which measures the
utilisation of a service system is chosen to be invariant of time. This adaptation is made
to choose service rate function properly in order to adjust with the arrival rate and traffic
intensity.

We use the principle of rate-matching control, as discussed in [16], to determine the service
rate function. In rate-matching control, the service rate is set to be proportional to the
arrival rate for a fixed traffic intensity ρ. Thus, for a constant traffic intensity ρi, the
time-dependent service rate function, µi(t) can be written as,

µi(t) ≡ λi(t)/ρi, i = 1, 2 t ≥ 0. (1)

6. There is an infinite waiting room at the triage node and a finite waiting room at the
treatment node with a maximum capacity of K. If the finite buffer at treatment node is
full, patients will be blocked. When the capacity of the waiting room of treatment node
is K − 1, blocked patients will join the queue for consultation.

193



CRORR 16:2 (2025), 191–203 Ramesh and Manoharan: Aspects of blocking on time-varying tandem...

The following are the formulations of some transient performance measures associated with the
model under consideration.

1. {W1(t), t ≥ 0} is the waiting time of a patient who arrives at triage node at time t. An ex-
plicit expression for the probability distribution of waiting time W (t) for M(t)/M(t)/1/∞
is derived by Whitt[16]. If a patient who arrives at time s is still waiting for service in the
queue at time t, then we can express the probability that the waiting time of the patient
who arrives at time s, is larger than t− s, for 0 ≤ s ≤ t as,

P (W1(s) > t− s) = ρ1e
−((1−ρ2)Λt,1(s))/ρ1 , (2)

where Λt,1(s) = Λ1(t)− Λ1(s), Λ(.) is the cumulative arrival rate function defined as,

Λ1(u) =

∫ u

0

λ1(r) dr, r ≥ 0 (3)

and Λt,1(u) need to be strictly increasing and continuous, see [16].

2. {W2(t), t ≥ 0} is the waiting time of a patient who joins the queue of treatment area at
time t. Since the queue capacity is finite, i.e. M(t)/M(t)/1/K, here we derive a closed
form expression for probability distribution of waiting time.

Let Pn be the probability that there are n patients in the queue in front of treatment
area, see [9].

Pn =
(1− ρ2) ρ

n
2

1− ρK+1
2

,

where ρ2 and K are the traffic intensity and queue capacity of the treatment area. Let Qn

be the probability of the arrival point, that is, the probability that there are n patients in
the queue at the time of arrival, for n < K. This is derived in Gross and Harris[9] using
Baye’s theorem.

Qn =
Pn

1− PK+1
. (4)

Then the probability distribution of waiting time for the stationary M/M/1/K system
can be obtained by reducing the expression for multi-server system in [9] to single server,
i.e.,

P{W > t} =

K−1∑
n=1

Qn

n−1∑
i=0

(µt)i e−µt

i!

=

K−1∑
n=1

Qn

n−1∑
i=0

(λt/ρ)i e−(λt/ρ)

i!
. (5)

The parameter µ is replaced by λ/ρ. "From this, the waiting time distribution for a non-
stationary system can be derived using Corollary 5.1 from Whitt [16]. Specifically, under
the assumptions of a non-stationary system, λt in equation (5) becomes the cumulative
arrival rate function Λ(t).

For the non-stationary system M(t)/M(t)/1/K, let P (W2(s) > t− s) denote the proba-
bility that the waiting time of a patient joining the queue of the treatment node at time
s exceeds t− s, for 0 ≤ s ≤ t,

P (W2(s) > t− s) =

K−1∑
n=1

Qn

n−1∑
i=0

(
Λt,2(s)

ρ2
)i e

(
Λt,2(s)

ρ2

)
i!

. (6)
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The cumulative rate function Λt,2(s) = Λ2(t)− Λ2(s) with

Λ2(u) =

∫ u

0

λ2(r) dr, r ≥ 0. (7)

This gives the waiting time distribution for an M(t)/M(t)/1/K system under constant
traffic intensity.

3. To account for the effects of blocking, we incorporate a blocking probability into the
formulation of transient performance measures, i.e. the probability that a patient arriving
at time s is blocked after triage at time t. In other words, probability that the blocking
time of a patient who arrive at time s is greater than t-s, P{B(s) > t− s}.

4. L1(t) represents the number of patients present at the triage node. These patients arrived
during the interval [0, t] and have not yet completed their service. Mathematically, this
corresponds to the arrivals {A1(s), 0 ≤ s ≤ t}, i.e.,

L1(t) =

∫ t

0

(I{W1(s)>t−s}) dA1(s),

where I{W1(s)>t−s)} denotes the number of patients who entered the queue in front of the
triage node at time s and are still waiting for service at time t, 0 ≤ s ≤ t.

By using Campbell–Mecke formula in [7] for taking expectations of stochastic integrals,
we get the average number of patients present at the triage node at time t, i.e.,

E(L1(t)) =

∫ t

0

(P{W1(s) > t− s}) λ1(s) ds, (8)

where E(I{W1(s)>t−s}) = P{W1(s) > t− s} and E(dA1(s)) = λ1(s) ds.

5. L2(t) denotes the number of patients at treatment area, including those in the blocking
space. These patients completed their service at triage node and moved to treatment area
during the interval [0, t]. They are either waiting to join the queue in front of the treatment
area or already in the queue. This corresponds to the arrivals {A2(s), 0 ≤ s ≤ t}, i.e.,

L2(t) =

∫ t

0

(I{W2(s)>t−s} + I{B(s)>t−s}) dA2(s),

where I{W2(s)>t−s)} represents the number of patients who entered the queue of the treat-
ment area at time s and are still waiting for service at time t, 0 ≤ s ≤ t. Similarly,
I{B(s)>t−s} denotes the number of patients who entered the blocking space in front of
the treatment area at time s and are still waiting to join the queue of treatment area at
time t.

While applying expectations on both sides, Campbell–Mecke formula together with addi-
tive property of expectation we get E(I{W2(s)>t−s} + I{B(s)>t−s}) = P{W2(s) > t− s}+
P{B(s) > t− s}. Therefore,

E(L2(t)) =

∫ t

0

(
P{W2(s) > t− s}+ P{B(s) > t− s}

)
p µ1(s) ds. (9)

This represents the average number of patients present in both the blocking space and
the queue of the treatment area at time t.
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6. Z1(t) represents the time required to triage all patients who arrived at first node up to
time t, i.e.

Z1(t) =

∫ t

0

I{W1(s)>t−s} V1(s) dA1(s) +

∫ t

0

V1(s)
2

2
dA1(s).

While applying expectations on both sides, Campbell–Mecke formula, we get,

E(Z1(t)) =

∫ t

0

P{W1(s) > t− s} E(V1(s)) E(A1(s)) ds+

∫ t

0

E(V1(s)
2)

2
E(A1(s))ds.

Introducing another term, squared coefficient of variation c2 = V ar(V (s))/E(V (s))2.
Using the formula of variance, this can be rewritten as,

c2 = E(V (s)2) (E(V (s)))2 − 1 =
E(V (s)2)

µ(s)2
− 1. (10)

Therefore the average workload at the triage node at time t can be represented as,

E(Z1(t)) =

∫ t

0

P{W1(s) > t− s} λ1(s)

µ1(s)
ds+

∫ t

0

c21 + 1

2

λ1(s)

µ1(s)2
ds, (11)

where c21 is the squared coefficient of variation or relative variability in service times at
triage node.

7. Z2(t) denotes the time required to complete the consultation of patients who arrived up
to time t after triage, taking into account the queue and blocking space, i.e.

Z2(t) =

∫ t

0

(
I{W2(s)>t−s} + I{B(s)>t−s}

)
V2(s) dA2(s) +

∫ t

0

V2(s)
2

2
dA2(s).

By using campell-Mecke formula and additive property of expectation, E(Z2(t)) can be
written as,

E(Z2(t)) =

∫ t

0

(
P{W2(s) > t− s}+ P{B(s) > t− s}

)
E(V2(s))E(A2(s))ds+∫ t

0

E(V2(s)
2)

2
E(A2(s))ds.

Let c22 be the squared coefficient of variation of service times in treatment node and
applying equation (10),

E(Z2(t)) =

∫ t

0

(
P{W2(s) > t− s}+ P{B(s) > t− s}

) λ2(s)

µ2(s)
ds+

∫ t

0

c22 + 1

2

λ2(s)

µ2(s)2
ds

(12)
This represents the average workload at the treatment node, taking into account the
patients in the blocking space and the queue at time t.

2.2. Blocking Before Service (BBS)
Here, we examine the application of the BBS mechanism in a hospital emergency department
by modelling it with a two-station tandem queueing network. This model, illustrated in Figure
2, is built under the non-stationary Markovian assumption, and patients are served according
to the FCFS discipline.
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Figure 2: A BBS two station tandem queueing network model

Similar to the BAS tandem model, {Ai(t), t ≥ 0}, i = 1, 2 is the arrival process with arrival
rates λ1(t) and λ2(t) = p µ1(t). p represents the probability of moving to treatment after triage,
while patients leave the system with probability 1 − p. {Vi(t), t ≥ 0}, i = 1, 2 is the service
requirement of a patient arriving at the triage node and treatment node at time t with service
processing rate at time t, µi(t), i = 1, 2. An infinite waiting room is available for patients at the
triage node, whereas the treatment node has a finite waiting room with a maximum capacity
of K.

Before providing service from triage node, nurse checks whether the waiting room in front
of treatment area is saturated or not. If it contains less than K patients, triage continues. If
the waiting room has attained maximum K patients (saturated), stops service at triage node
until the next waiting room can accommodate a new patient.

The following are the formulations of some transient performance measures related to the
BBS tandem model considered here.

1. {W1(t), t ≥ 0} is the waiting time of a patient who arrives at triage node at time t. Since
the queue capacity is infinite, the probability distribution of waiting time is defined similar
to BAS system, i.e.,

P (W1(s) > t− s) = ρ1e
−((1−ρ1)Λt,1(s))/ρ1 ,

where Λt,1(s) = Λ1(t)− Λ1(s) and Λ1(.) is defined in (3).

2. {W2(t), t ≥ 0} is the waiting time of a patient who arrives at the queue of treatment area
at time t. Since the queue capacity is finite, i.e., M(t)/M(t)/1/K, the probability that
the waiting time of the patient who arrives at time s, is larger than t− s, for 0 ≤ s ≤ t is,

P (W2(s) > t− s) =

K−1∑
n=1

Qn

n−1∑
1=0

(
Λt,2(s)

ρ2
)i e

(
Λt,2(s)

ρ2

)
i!

,

where Λt,2(s) = Λ2(t)− Λ2(s) and Λ1(.) is defined in (7).

3. L1(t) represents the number of patients present at the triage node, including those blocked
before service. These patients arrived during the interval [0, t], i.e., {A1(s), 0 ≤ s ≤ t}
and have not yet completed their service. They have not completed their service at the
triage node, either because they are in the queue or are blocked due to capacity constraints
at the treatment node. Therefore,

L1(t) =

∫ t

0

(I{W1(s)>t−s} + I{B(s)>t−s}) dA1(s),

where I{W1(s)>t−s)} represents the number of patients who entered the queue of the triage
node at time s and are still waiting for service at time t, 0 ≤ s ≤ t. Similarly, I{B(s)>t−s}
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denotes the number of patients who entered the blocking space in front of the triage node
at time s and are still waiting for triage at time t. When taking expectations,

E(L1(t)) =

∫ t

0

(
P{W1(s) > t− s}+ P{B(s) > t− s}

)
λ1(s) ds. (13)

This represents the average number of patients present at the triage node at time t,
including those blocked before service.

4. L2(t) represents the number of patients present at treatment node at time t. These
patients moved after triage to treatment node during the interval [0, t] and have not yet
completed their service. Mathematically, this corresponds to the arrivals {A1(s), 0 ≤
s ≤ t}, i.e.,

L2(t) =

∫ t

0

(I{W2(s)>t−s}) dA2(s),

where I{W2(s)>t−s)} represents the number of patients who entered the queue of the treat-
ment area at time s and are still waiting for service at time t, 0 ≤ s ≤ t. Then the average
number of patients present in the queue of the treatment area at time t is,

E(L2(t)) =

∫ t

0

(
P{W2(s) > t− s}

)
p µ1(s) ds. (14)

5. Z1(t) represents the time required to triage all patients who arrived at first node up to
time t, including those blocked patients, i.e.,

Z1(t) =

∫ t

0

(
I{W1(s)>t−s} + I{B(s)>t−s}

)
V1(s) dA1(s) +

∫ t

0

V1(s)
2

2
dA1(s).

Then the average workload at the triage node, taking into account the patients in the
blocking space and the queue at time t can be represented as,

E(Z1(t)) =

∫ t

0

(
P{W1(s) > t− s}+ P{B(s) > t− s}

) λ1(s)

µ1(s)
ds+

∫ t

0

c21 + 1

2

λ1(s)

µ1(s)2
ds.

(15)

6. Z2(t) denotes the time required to complete the consultation of patients who arrived up
to time t after triage, i.e.,

Z2(t) =

∫ t

0

(I{W2(s)>t−s}) V2(s) dA2(s) +

∫ t

0

V2(s)
2

2
dA2(s).

Then the average workload at the treatment node at time t can be represented as,

E(Z2(t)) =

∫ t

0

P{W2(s) > t− s} λ2(s)

µ2(s)
ds+

∫ t

0

c22 + 1

2

λ2(s)

µ2(s)2
ds, (16)

where c2i , i = 1, 2 is the coefficient of variation of service process in station i.

3. Numerical Study

We consider a two-station tandem network with non-stationary Markovian queues, in which first
station has infinite queue capacity and second station has finite queue capacity. We compare
BAS system and BBS system by computing the transient performance measures. First, we
outline the prerequisites for conducting the numerical study.
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1. A more realistic choice for the arrival rate function would be a sinusoidal or periodic
function, which is useful for modelling daily or weekly fluctuations in patient arrivals.
However, for simplicity, we choose the identity function as the external arrival rate.

Let the time-dependent arrival rate of patients to the triage node (external arrival rate),
λ1(t) be the identity function, t, t ≥ 0.

2. Transition rate or arrival rate of patients from triage station to treatment station, λ2(t)
is,

λ2(t) = p µ1(t) = p λ1(t)/ρ1 (17)

where p is the transition probability from station 1 to 2. Here we take p = 0.75.

3. The squared coefficient of variation of service time (c2i ), i = 1, 2 appears in expressions
of virtual workload. Since we are considering a Markovian queueing model, c2i is assumed
to be 1.

4. In the BAS system, blocking occurs only if a customer completes service at the triage node
and attempts to move towards treatment node, but finds the queue is full. Therefore, the
probability depends on the queue capacity and traffic intensity of the treatment area.

For a BAS system, the blocking probability is defined by,

P (BBAS) =
(1− ρ2)ρ

K
2

1− ρK+1
2

, (18)

where K is the queue capacity and ρ2 is the traffic intensity of the treatment area. Gross
and Haris [9] and Ziya [17] developed formulations for blocking probability.

Now we present an approximation for the blocking probability in the BBS system. In the
BBS system, blocking occurs before the triage starts based on the availability of space in
queue of treatment area. This means all patients might be blocked regardless of whether
they would have moved for treatment or left the system after triage. As a result blocking
probability is inflated.

Since P (BBAS) is applying only to transitioning customers, we can approximate P (BBBS)
by scaling P (BBAS) with the proportion of transition, p. Here we assume that patient’s
decision to leave the system after triage or transition is independent of the congestion
in the treatment area, so it only depends on the service at triage. P (BBAS) is already
calculated on transitioned patients, while formulating P (BBBS), we need to undo this
effect by dividing the proportion of transition, i.e.,

P (BBBS) ≈
P (BBAS)

p
=

(1− ρ2)ρ
K
2

(1− ρK+1
2 ) p

. (19)

In this study, we have chosen a constant queue capacity and a constant traffic intensity
using the rate-matching control principle. Consequently, the parameters in the above
expressions are time-invariant, making them applicable to a non-stationary model.

The Figure 3 illustrates the relationship between the queue capacity and traffic intensity
and how their combined variation influences the blocking probabilities.
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(a) BAS (b) BBS

Figure 3: Blocking probability for queue capacity K = 0 to 10 and traffic intensity ρ = 0 to 1.

5. In this study, we consider four cases, A, B, C, and D, by taking arbitrary values for
traffic intensities and queue capacity of the second station, as shown in the Table 1. The
blocking probabilities corresponding to each case are calculated and included in the table.
The stations with traffic intensity close to 1 are considered bottleneck stations.

cases ρ1 ρ2 K P (BBAS) P (BBBS)

A 0.80 0.60 4 0.056 0.074
B 0.70 0.90 8 0.070 0.093
C 0.90 0.90 6 0.101 0.136
D 0.90 0.90 10 0.050 0.067

Table 1: Four cases of traffic intensities, queue capacity and corresponding blocking
probabilities.

The probability of blocking is observed to be relatively high in cases where the traffic inten-
sity at the second station increases significantly and the queue capacity decreases. Among the
cases considered, cases A and D exhibit the lowest blocking probabilities. In contrast, Cases
B and C show comparatively higher probabilities of blocking due to the combination of high
traffic intensity and low queue capacity. Therefore, we have focused on presenting numerical
illustrations for these two cases to obtain critical observations.

Figure 4 illustrates the number of patients at both nodes under the two mechanisms. Block-
ing after service occurs at the treatment node, while blocking before service occurs at the triage
node. As a result, the number of patients increases at the corresponding nodes with time.
When the traffic intensity at a node is high, it leads to a significant increase in the number of
patients. A similar trend is observed in the average workload, as shown in Figure 5. Bottleneck
nodes exhibit a relatively higher workload compared to others. In both cases, the treatment
node experiences a higher workload under the BAS and BBS mechanisms, as it serves as a
bottleneck.

Figure 6 illustrates the average number of patients in the system over time. This analysis
considers the four cases discussed in Table 1. In all cases, the total number of patients is
consistently higher in the BBS system.
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(a) case B (Triage node) (b) case B (Treatment node)

(c) case C (Triage node) (d) case C (Treatment node)

Figure 4: Average number of patients under BAS and BBS mechanisms for cases B and C.

(a) case B (Triage node) (b) case B (Treatment node)

(c) case C (Triage node) (d) case C (Treatment node)

Figure 5: Average workload under BAS and BBS mechanisms for cases B and C.
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(a) case A (b) case B

(c) case C (d) case D

Figure 6: Average number of patients in the system (including both stations) for the four cases
considered in this study.

4. Conclusion

Finite capacity queues are a realistic and common feature of many real-world service systems,
such as hospitals, call centres, and manufacturing units, due to physical and budgetary con-
straints. However, in most of the theoretical studies of queues, infinite capacity is often assumed
to simplify the analysis and results. In this study, we examined various blocking mechanisms
that can be applied in queueing systems with capacity restrictions. Most commonly, BAS and
BBS blocking mechanisms are used in such systems. Here, we have modelled a time-dependent
hospital emergency department using a tandem network of two stations and derived transient
performance measures based on these mechanisms. These measures enable an effective com-
parison of the BAS and BBS mechanisms through numerical study. The results highlight the
impact of capacity restrictions on both mechanisms, demonstrating how they influence the
time-varying number of patients and the virtual workload in the system. In our model, patients
who do not need immediate emergency treatment can leave after triage. But in the BBS sys-
tem, these patients also get blocked, causing unwanted congestion in the system. So, BAS is
slightly better than BBS in the above scenario. Generally, BAS is preferred when intermediate
congestion can be managed, whereas BBS is preferred when smooth flow of entities through the
system is more important. This study examined a two-station tandem network of single-server
queues with capacity restriction on the intermediate queue. This framework can be generalised
to a k-station tandem network, and the single-server queues can be extended to multi-server
systems. Deriving more rigorous mathematical expressions for performance measures under
both blocking mechanisms would enable a more extensive study of these systems. These are
some directions for future research.
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