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Abstract. Regularization machine learning (ML) methods have been increasingly applied in account-
ing research, offering new possibilities in predictive modeling. Their forte lies in the effective regu-
larization methods for resolving the biggest concern of generalization, which is the risk of overfitting
the training data. While these sophisticated methods are known to outperform traditional regression
approaches in large and balanced datasets, this may not be the case when facing imbalanced and
small datasets. Moreover, model validation is also challenging in such settings because traditional
performance measures, such as prediction accuracy, may be misleading. We address this problem by
comparing two traditional and five regularization-based methods in predicting going concern uncer-
tainty (GCU) on the sample of listed companies in Croatia. We take caution when evaluating the
models due to class-imbalanced problems and include different classification performance measures, as
well as calibration of the models to account for their uncertainty. As expected, no model performs
best across all evaluation criteria, but regularization methods are better calibrated. Given our results,
we suggest that model selection should consider the results of the model calibration, a combination of
different performance metrics, and the economic impact of the statistical performance of the model, if
feasible.
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1. Introduction

Going concern (GC) is the key assumption in financial reporting, which assumes that manage-
ment has no intention nor will be forced to terminate operations and liquidate a company’s
assets at least within the next 12 months. However, when there is substantial uncertainty
about a company’s ability to continue as a GC, an auditor should emphasize this in the audit
report. Therefore, GC emphasis in the auditor report is the result of an auditor’s prediction of
a GCU for a given company, taking into account all available information for the near future.
The auditor’s GC emphasis should be understood as an early warning sign of the potential
inability of the company to continue as a GC and not as an absolute and ongoing assurance of
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the company’s ability to withstand future shocks. Since GCU is a complex and highly judg-
mental decision with widespread consequences [8], it is interesting from the aspect of predictive
modeling.

One of the major problems when predicting GCUs (and many other interesting accounting
events, such as fraud, accounting restatement, or bankruptcy) is that they occur infrequently.
Consequently, researchers face rather imbalanced datasets and relatively small sample sizes
compared to the number of potential predictors. Building a predictive model in such circum-
stances can be a significant challenge both from the aspect of selecting important variables
and from the aspect of model evaluation and selection (i.e. choosing the final model among
a set of models). Over the years, logistic regression (LR) has become the most widely used
method to predict discrete outcomes in accounting research [20]. Likewise, LR is the most
frequently used statistical method to predict auditors’ GCU decisions [5], [21], [8]. While LR
has many attractive properties, a potential limitation from the aspect of predictive modeling is
related to variable selection. Namely, traditional variable selection methods like stepwise selec-
tion may lead to overfitting. Also, due to pre-testing bias, they may overlook some important
but insignificant predictors, leading to the loss of predictive information [16]. This limitation
is strongly emphasized when dealing with small and imbalanced datasets and when it is not
apparent whether a variable should be included in the model or not.

Recent advancements in statistical and ML algorithms offer new opportunities for variable
or feature selection and prediction problems. Shrinkage methods such as lasso (the least abso-
lute shrinkage and selection operator) are known to address some of these challenges through
regularization techniques. The attractiveness of shrinkage methods in predictive learning mod-
els is majorly based on the bias-variance tradeoff, following the general idea that prediction
accuracy can be improved by shrinking the values of the regression coefficients or setting some
coefficients to zero [16], [17]. However, the shrinkage does not necessarily lead to better pre-
dictive performance, particularly with small sample sizes. Moreover, when the sample size is
small, it may be even advisable not to build a prediction model [28]. Given these concerns, we
question if sophisticated statistical and ML algorithms that have been increasingly applied in
accounting research [6], [14], [20] can outperform traditional statistical methods in predictive
modeling of rare classes.

To answer this question, we illustratively use auditors’ GCU predictions from a sample
of companies listed in Croatia over ten years. Our dataset can be described as small and
moderately imbalanced. In order to build competing models, we define 25 plausible covariates.
We focus on predictors that can be easily calculated from publicly available financial statements
and are commonly used to evaluate a GCU (see for example Cyhe Koh et al., 2004; Martens et
al., 2008; Yeh et al., 2014; Goo et al., 2016 studies [9], [21], [31], [15]). In addition to financial
indicators, we use three audit-related indicators: type of auditor (Big Four auditors or others),
type of audit opinion (unmodified audit opinion or modified audit opinion), and change of
auditor (a company has changed auditor or not). Since they do not apply any regularization,
we use conventional LR with stepwise variable selection (LRsw) and a full set of predictors
(LRfull) as the reference methods. Finally, we compare the predictive performance of standard
LR models with five regularization-based models (lasso, adaptive lasso, plugin lasso, ridge, and
elastic net) to assess the predictive performance of the models. Given that our sample size is
relatively small and that some covariates are highly correlated, there is a substantial chance of
overfitting.

An additional problem arises when evaluating models with unequally distributed dichoto-
mous outcomes. Commonly used model evaluation metrics such as prediction accuracy, an
overall error rate, or a proportion of correctly (miss)classified samples might be misleading as
they favor classifiers that accurately predict the majority class [7]. On the other hand, class
balancing by applying different sampling techniques to overcome imbalanced data structure is
problematic because it makes the number of minority and majority classes predetermined and
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not random [7]. To overcome this problem, we use a wide range of classification metrics and
calibration belts to evaluate the competing models’ predictive power comprehensively.

In a way, our research extends Bertomeu’s (2020) and Krupa and Minutti-Mezza’s (2022)
studies ([6], [20]), which provide guidance on conducting accounting-related research involv-
ing models that predict discrete outcomes using traditional and ML algorithms. However, we
focus on methodological challenges related to prediction modeling and valuation when facing
imbalanced and small datasets. Our results indicate that while nowadays it is fashionable to
construct different models using sophisticated statistical and ML methods to predict impor-
tant accounting outcomes, more effort should be put into discussing how and why such models
work or what underlying issues they address [29]. Different research design choices (variables
selection, splitting methods, sampling strategies, model evaluation metrics, etc.) may obscure
the comparison between the alternative prediction models. For example, when evaluating GCU
predictive models, researchers usually report only a few classification measures, mainly predic-
tion accuracy, ROC area, Type I and Type II errors, precision and recall rates [9], [21], [31],
[15], [18], [23], [24]. Krupa and Minutti-Mezza [20] report similar findings for other mainstream
accounting research on predictive modeling. In addition, studies that predict dichotomous ac-
counting events rarely (if any) assess the calibration of the outcome models. We find this
important as our results indicate that when predicting infrequent outcomes, no model performs
best across all evaluation criteria, or moreover, several models perform about equally well using
different algorithms and selecting different variables. Consequently, we may easily select the
poorly calibrated model even when considering class-imbalance-adjusted performance measures.

The paper proceeds as follows. Section 2 compares traditional classification methods vs.
regularization-based ML methods. Section 3 describes research procedures and the sample
characteristics, while section 4 presents research findings. Section 5 concludes with a discussion
of the results, limitations of our approach, and potential implications for future research.

2. Traditional vs. regularization methods

2.1. Variable selection

Over the years, LR has become a popular prediction model in accounting because it produces
a linear combination of the variables with weights and confidence intervals for the weights that
clearly show how the predictors affect the outcome variable. However, when the sample size is
small or imbalanced, traditional classification methods could produce overfitted and unstable
models, making model selection problematic. Namely, a stepwise regression approach to variable
selection suffers from overfitting and pretesting biases [1], [16].

Therefore, regularization has become the cornerstone of modern statistics. The major benefit
of regularization or shrinkage methods is that they can accommodate large predictor models
(usually under the assumption of sparsity) and rely on tuning parameters. Regularization
methods solve an optimization problem using two terms: fit measure (e.g. deviance ratio
as a value of loss function) and penalty term (regularization parameter), also called tuning
parameter. The term is included to penalize the complexity of the model. The lasso algorithm
penalizes the absolute size of coefficients (L1 or lasso regularization), the ridge penalizes the
sum of squared coefficients (L1 or ridge regularization), while the elastic net applies a mix of
lasso and ridge-type penalties [1]. Therefore, contrary to the lasso which yields sparse solutions
by setting some coefficient estimates precisely equal to zero, the ridge method preserves all
predictors in the model [2]. Lasso commonly selects penalty term through cross-validation
(CV), the adaptive and plugin methods. Adaptive lasso uses adaptive penalty weights for the
lasso penalty term (L1) to achieve the oracle properties of the estimators [32]. Plugin lasso
iteratively calculates the smallest penalty term that is large enough to dominate the estimation
error in the coefficients. While plugin includes covariates in the model that best approximates
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the data, it risks missing some covariates with large coefficients and finding only some with small
coefficients [3], [4]. Since the estimates’ magnitudes are somewhat restricted, the regularized
regression estimator will tend to have a smaller variance than traditional regression methods.
Consequently, they may deliver an overall more accurate prediction, particularly in the presence
of small samples [27]. Regularization methods also include nonlinear terms and interactions
among the predictors without explicitly specifying them [20]. Furthermore, due to their low
variance, they are immune to multicollinearity and robust to high-dimensional settings (i.e. the
course of dimensionality).

On the other hand, regularization methods trade-off between estimator bias and variance
so that they may underestimate, to some extent, the population parameters and fail to capture
essential regularities in the training data. Another problem could arise if regularization is
applied to domains in which sparsity is not a plausible assumption, and this is particularly
questionable when the sample size is small relative to the number of the model’s parameters
[13]. While ridge regression shrinks the coefficients of correlated predictors towards each other,
lasso tends to select one of them somewhat arbitrarily, so one may erroneously conclude that
the selected covariate is essential, even though other more important covariate may be left out.

The recent success of some overparametrized models (e.g. neural networks) also indicated
that in some cases, very complex models predict better [11] [13] [30]. However, such complex
models are hard to interpret and tend to be unstable, so simple, easily interpretable models like
LR might often perform just as efficiently as complex ML models [13]. Most importantly, when
using regularization methods to develop prediction models on small samples or when having
a larger number of potential predictors relative to the number of minority classes, researchers
advise more caution and call for more research investigating the impact of specific combinations
of shrinkage and tuning methods [26], [28].

2.2. Evaluation of the prediction models’ performance

Successful ML training approaches often rely on sufficiently large and balanced data. However,
many important real-world events generate only imbalanced, small data sets and pose problems
for both traditional and sophisticated statistical or ML algorithms. Commonly used model
evaluation criteria such as accuracy, ROC, or ROC AUC metrics can be misleading in this case
since statistical and ML models are generally designed around the assumption of balanced class
distribution. The high accuracy of such models might reveal more about the underlying dis-
tribution of classes than about actual model performance. In a situation like GCU prediction,
where false negatives (FN) incur greater cost than false positives (FP), imbalance may lead
to adverse consequences. Nevertheless, adding a specific cost-sensitive model to the training
data may induce bias in the model if the true error cost of the minority class differs from that
of the training data [29]. Also, frequently used sampling techniques (matched sample designs,
oversampling the minority class or undersampling the majority class) on training samples are
not a preferable solution to the class imbalance problem as they alter the relationship between
majority and minority classes, which may affect the incidence [7], [21]. Therefore, the critical
issue when evaluating alternative prediction models is the choice of an appropriate performance
measure. However, finding the most appropriate and meaningful evaluation metrics for im-
balanced data is not achievable without having accurate cost information which could utilize
cost-sensitive learning to produce an accurate classifier [29].

To overcome this problem, we use different discrimination and classification metrics to se-
lect the model that yields good results over a wide variety of assumptions. In addition to the
ROC curve that is commonly used to evaluate the performance of prediction models, we use
the precision-recall curve that is better suited for imbalanced datasets [10], as well as different
metrics derived from the confusion matrix. Using the confusion matrix, we calculate typical
performance measures (accuracy, recall or sensitivity, specificity, precision or positive predicted
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values and negative predicted value) and several imbalance-adjusted measures (Balanced ac-
curacy, F-measure, Geometric mean and Matthew’s Correlation Coefficient). However, even
when the model has good discrimination, the estimated risks can be unreliable if the model is
poorly calibrated [28]. Therefore, we use calibration belts to examine the relationship between
estimated probabilities and observed outcome rates.

3. Procedure and sample description

To address our research question, we use hand-collected data from financial statements and
related audit reports of Croatian listed companies, excluding companies in the financial sector.
The sample period covers ten years, from 2009 to 2018. After controlling for the missing
data, the initial sample of 929 company-year observations is reduced to 891 company-year
observations. For this analysis, we use all years affected by the GCU as our positive classes, so
the proportion of positive classes (GCUs) is 18.52%. We define 22 financial and three audit-
related variables as possible and commonly used GCU predictors (see Appendix A for variable
description and descriptive statistics, available at: Appendix.pdf ). We use Stata 18 software
for our analyses.

Since our main objective is to compare the performance of traditional LR and regularization
prediction models when classes are not equally represented in the dataset, we do not use a pre-
specified model nor focus on any specific variable as a potential determinant of GCU by trying
to answer whether it reflects an independent mechanism of the outcome. Rather, we focus on
assessing the performance of example models when variable selection is used to specify a model
using a variety of classification measures and calibrations. Namely, we apply different types of
regularization (lasso, adaptive lasso, plugin lasso, elastic net, and ridge regression) to develop
prediction models. We use penalized coefficients estimated on the training dataset to make
predictions for regularization methods and unpenalized coefficients estimated on the training
dataset to make predictions for traditional LR models. Traditional LR models are developed
using stepwise selection (LRsw) and a full set of predictors (LRfull) to understand better the
risk of overfitting on model performance. Because there is a certain trade-off between using
fewer data to train (i.e. parameters will have greater variance) and using fewer data to test
models (i.e. performance statistics will have greater variance), researchers can use different
sample split strategies (for example see Kalinic Milicevic and Marasovic [19]). Therefore, we
first assign 2/3 of the sample to the training and 1/3 to the test sample (67:33% sample split).
Alternatively, we use an 80:20% sample split as a robustness check. We also set the random-
number seed option so that we can reproduce our results.

In the case of ML algorithms, the training sample also uses sample split referred to as the
"k-fold cross-validation" where the dataset is divided into k equally sized subsets. One subset
is chosen to be the validation set and the remaining k-1 folds are used to train the model. The
validation set is then evaluated with a performance metric such as the deviance ratio. This
method is repeated k times so that each subset acts as a validation set exactly once. The
performance metric is then averaged across all k iterations to give an estimated performance
for the model [12]. Table 1 presents the list of predictors selected by shrinkage methods.

As expected, the results from Table 1 show that the plugin produces the most parsimonious
model (only four predictors). The most important variables selected by the plugin are profit/loss
indicator (x17 ), working capital ratio (x04 ), return on equity (x15 ), and leverage ratio (x05 ).
Lasso selected ten predictors; adaptive lasso selected nine, and elastic net selected 13 predictors,
which is the same number of predictors selected by the stepwise method (LRsw) (untabulated).

The results of an alternative sample split can be found in Appendix B (available at: Ap-
pendix.pdf).
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Variable lasso adaptive plugin elastic net ridge
cons x x x x x
x17 x x x x x
x04 x x x x x
x24 x x x x
x15 x x x x x
x12 x x x x
x05 x x x x x
x21 x x x x
x18 x x x x
x16 x x x x
x10 x x x
x14 x x
x13 x x
x19 x x
x20 x
x07 x
x23 x
x02 x
x11 x
x01 x
x25 x
x03 x
x09 x
x06 x
x22 x
x08 x

Table 1: Standardized coefficients sorted

4. Results

We evaluate the performance of the two traditional LR and five regularization-based GCU
prediction models on the hold-out sample using several metrics. We start our analysis by
comparing deviance (D) and deviance ratio (D2) goodness-of-fit statistics, principally used for
generalized linear models (GLM). Smaller D and larger D2 indicate a better model (Table 2).

When looking at the test sample results, D2 shows that ridge regression performs as the best
model and as the most robust model relative to the alternative sample split strategy. We can
notice that a simpler model with stepwise selection (LRsw) performs better on the test sample
data than the model without variable selection (LRfull).We can also notice that traditional LR
models generally perform better than regularization models on the training sample. In contrast,
regularization models perform as effectively or slightly better than traditional LR models on
the test samples. This is expected since traditional estimation methods are based on optimizing
the estimated model’s in-sample fit without any regularization to optimize the out-of-sample
fit. However, plugin lasso performs as the worst model. As already explained, the plugin is
a rigorous lasso that tends to favor very parsimonious models by selecting the covariates that
best approximate the data but also runs the risk of missing some important covariates.

Given that in the test sample deviance ratio is the same or similar for alternative models
(e.g. LRsw and adaptive lasso or lasso and elastic net), we can conclude that the importance
of selected predictors can vary between the models having about the same D2.
While we can opt for a simpler prediction model in this case, the question remains whether
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Model Sample Deviance Deviance ratio
LRSW 1 0.639 0.340

LRFULL 1 0.614 0.365
lasso 1 0.693 0.284

adaptive 1 0.656 0.322
plugin 1 0.826 0.147

elastic net 1 0.696 0.281
ridge 1 0.715 0.261

LRSW 2 0.712 0.241
LRFULL 2 0.747 0.204

lasso 2 0.707 0.247
adaptive 2 0.712 0.241
plugin 2 0.795 0.153

elastic net 2 0.706 0.247
ridge 2 0.702 0.251

Table 2: Goodness of fit (Deviance ratio)

Notes: Sample 1 is a training sample n=594 and Sample 2 is a test sample n=297. The
highest D2 values in the test sample are in bold.

those models are equally good in prediction accuracy and stability.
In order to evaluate the classification performance of alternative models, we use results

obtained from a confusion matrix. Confusion matrix commonly uses a 50% decision threshold
so that all values equal or greater than the threshold are assigned to one class and all other
values to another. Using the information provided by the confusion matrix, we calculate some
commonly used and several imbalance-adjusted classification metrics (Appendix C provides a
detailed description of each measure used, available at: Appendix.pdf).

Evaluation metrics LRSW LRFULL Lasso Adaptive Plugin Elastic Net Ridge
Accuracy (%) 87.2 86.5 86.2 87.2 82.5 86.2 86.2
Recall (%) 43.4 47.2 30.2 45.3 3.8 30.2 28.3
Specificity (%) 96.7 95.1 98.4 96.3 99.6 98.4 98.8
Precision (%) 74.2 67.6 80.0 72.7 66.7 80.0 83.3
NPV (%) 88.7 89.2 86.6 89.0 82.7 86.6 86.4
F-measure 0.55 0.56 0.44 0.56 0.07 0.44 0.42
F-adjusted 0.65 0.62 0.60 0.65 0.15 0.60 0.60
BA 0.70 0.71 0.64 0.71 0.52 0.64 0.64
MCC 0.50 0.49 0.44 0.51 0.13 0.44 0.43
GM 0.65 0.67 0.54 0.66 0.19 0.54 0.53

Table 3: Confusion matrix (test sample results)

Notes: The highest values of each evaluation metric are in bold.

Table 3 shows that all models achieve overall accuracy above 82.5 % (the bottom value is for
the plugin) but not higher than 87.2% (LRsw and adaptive). Although no model outperforms
other models across all metrics when looking at the overall number of the highest values of
specified evaluation metrics, LRfull, and adaptive lasso seem to perform as the best models. All
classifiers perform quite similarly concerning accuracy, specificity, and negative predicted value
(NPV).

The difference between classifiers is more pronounced when observing precision or positive
predicted value (PPV) and recall or true predicted value (TPR). Those metrics are commonly
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used to improve the process of model evaluation when dealing with imbalanced data. However,
there is an inevitable trade-off between those two measures. As the ability of a model to find all
GCU classes increases, the ability of a model to identify only GCUs decreases. We can notice
that TPRs are relatively small for all models, never greater than 50%, and extremely low for
plugin lasso (3.8%). This also means that false negative rates (FNRs) or type II errors are
high (FNR=1-Recall). While traditional LRfull (47.2 %) and adaptive lasso (45.3%) have the
highest recall, ridge regression has the greatest precision (83.7%).

However, when looking at selected imbalance-adjusted metrics (F-measure, Balanced accu-
racy, Geometric mean and Matthew’s Correlation Coefficient), adaptive lasso performs slightly
better than LRfull. Therefore, based on calculated classification metrics, regularization models
have no clear advantage over traditional LR models.

Beside classification metrics based on nominal class prediction using a given threshold (in
our case, standard 50%) threshold), we use two probabilistic classification metrics (ROC and
precision-recall curve) that plot values for all possible thresholds. ROC analysis and AUC ROC
are most commonly used to evaluate predictive performance [10]. ROC visualizes a nonlinear
trade-off between TPR (recall or sensitivity) and FPR (1-specificity) values, and AUC summa-
rizes this information into a single number, which facilitates model comparison when there is not
a dominating ROC [30]. Table 4 shows the results of the ROC/AUC analysis for the test sample.

Model AUC SE 95%-CI Lower 95%-CI Upper
LRSW 0.8370 0.0317 0.7749 0.8991
LRFULL 0.8378 0.0314 0.7763 0.8994
lasso 0.8337 0.0314 0.7722 0.8952
adaptive 0.8422 0.0309 0.7816 0.9028
plugin 0.8166 0.0326 0.7527 0.8804
elastic net 0.8349 0.0313 0.7735 0.8963
ridge 0.8398 0.0326 0.7760 0.9037
Ha: At least one classifier has a different AUC value
χ2 = 4.60, p = 0.5961

Table 4: Area under the ROC

Notes: The highest values of AUC ROC are in bold.

The results again favor the adaptive lasso. Adaptive lasso has the highest AUC value (84%),
while plugin lasso, again, has the lowest value (82%). However, the difference between the AUC
values of the models in the test sample is not statistically significant (Table 4).

While AUC ROC is a popular metric, it can be inflated in the presence of class skew. There-
fore, we compare the models’ area under the precision-recall curve. In addition, this metric may
be preferable if we are more concerned about the number of false negatives [10], which is the case
for GCU prediction. Table 5 shows the values of precision-recall (PR) AUC. The results show
that PR AUC values in test samples for different classifiers and under different sample split
strategies (see Appendix B, available at: Appendix.pdf) are approximately the same. Again,
there is no straightforward evidence that simpler or penalized models perform noticeably better
than traditional unpenalized and overparametrized models.

Finally, we use calibration belts to examine the relationship between test sample estimated
probabilities and observed GCU rates. Calibration gives insight into model uncertainty by
adjusting the probability distribution to better match the expected distribution observed in the
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Model PR AUC
LRsw 0.5988
LRFULL 0.5805
lasso 0.5771
adaptive 0.5932
plugin 0.5623
elastic net 0.5789
ridge 0.6014

Table 5: Area under the Precision-recall curve

Notes: The highest values of AUC ROC are in bold.

Figure 1: LRsw Figure 2: LRfull

data. Calibrated predictions imply that among those observations assigned a predicted rate of,
for example, 0.10 for a GCU, the actual GCU does occur at a 10% rate. We present calibration
belts using “calibrationbelt” command in Stata, which implements the calibration belt and its
associated test (see: Nattino et al., 2017 [22]). Figures from 1 to 7 show calibration belts for
estimated models on the test sample and corresponding test statistics of the deviations from
the line of perfect calibration.

As can be noticed from Figures 1-7, only a few models (lasso, elastic net and ridge regression)
showed satisfactory external calibration in the test sample. Because they are well-calibrated,
the predictions of those models have greater economic significance.
Overall, our results indicate that, without considering calibration results, we would not see
a clear cut between the traditional and sophisticated regularization models’ performance and
might choose an unstable predictive model. For example, while classification metrics favor
adaptive lasso and LRfull GCU models, even after taking into account imbalance-adjusted

Figure 3: LASSO CV Figure 4: ADAPTIVE LASSO

173



CRORR 16:2 (2025), 165–176 Vuko et al.: Going concern prediction – A horse race between...

Figure 5: PLUGIN LASSO Figure 6: ELASTIC NET

Figure 7: RIDGE REGRESSION

classification metrics, they may significantly underestimate small risks and/or overestimate
high risks. In this regard, calibration aims to prevent predicted risks from being too extreme
and makes the predictive model more relevant. Finally, we used an alternative sample split
(80:20%) to train the models with more data. Our results are robust to alternative sample split
decisions (see Appendix B, available at:Appendix.pdf).

5. Summary and Conclusion

Although research on different default prediction models has been around for quite a long time,
new technologies and big data have opened the door for the implementation of more advanced
and powerful prediction models. However, choosing the proper risk prediction model based on
imbalanced datasets is rather challenging, even for sophisticated ML methods. Such datasets
can cause traditional, as well as sophisticated classification algorithms to have a biased decision
boundary. Our results show that the traditional, unregularized, and likely overfitted models
(LRsw and LRfull) may perform as well as sophisticated regularization models (lasso, adaptive
lasso, plugin lasso, elastic net and ridge regression) in terms of their classification properties
when facing imbalanced datasets. However, we find that the models with the highest per-
formance accuracy (adaptive and LRfull) are not well-calibrated by default, therefore lacking
sufficient confidence in their GCU predictions. This implies that predictive model evaluation
should be carried out carefully, preferably over the range of classification and calibration metrics
and, if possible, taking into account the costs of prediction errors. While previous studies on
GCU prediction have investigated a wide variety of financial and non-financial predictors using
different approaches to variable selection, different sample splitting and selection methodologies,
different model evaluation criteria, little or no attention, to the authors’ best knowledge, has
been given on assessing models’ uncertainty. Our results show that the final decision in model
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selection should consider the model calibration results and a combination of different classifica-
tion performance metrics. Further efforts could be made to explore potential heterogeneity and
more profoundly investigate the generalizability of model performance. For example, instead of
focusing on undersampling, oversampling or different sample matching techniques, researchers
using sample sizes that are large enough (which is our limitation) could instead focus on poten-
tially interesting subdomains (e.g. companies with indications of poor financial performance)
without trying to remove imbalance via sampling methods artificially.
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