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Abstract. This paper considers a linear relaxation of the cut-based integer programming
formulation for the group Steiner tree problem (FGST). We combine the approach of Koufo-
giannakis and Young (2013) with the nearly-linear time approximation scheme for the min-
imum cut problem of Christiano et. al (2011) in order to develop a fully polynomial time
approximation scheme for FGST problem. Our algorithm returns the solution to FGST
where the objective function value is a maximum of 1+6ε times the optimal, for ε ∈ ⟨0, 1/6],
in Õ(mk(m + n4/3ε−16/3)/ε2) time, where n, m and k are the numbers of vertices, edges
and groups in the group Steiner tree instance, respectively. This algorithm has a better
worst-case running time than algorithm by Garg and Khandekar (2002) where the number
of groups is sufficiently large.
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1. Introduction

Problem definition. The group Steiner tree (GST) problem was introduced by
Reich and Widmayer [24], motivated by the problem of wire routing using multiport
terminals in a physical VLSI design. We are given an undirected graph G = (V,E),
|V | = n, |E| = m, with edge-weight function w : E → R+, and a family of subsets
of V , G = {G1, . . . , Gk}, k ∈ N, Gi ̸= ∅ which are called groups. The problem is to
find a subtree T such that ∑

e∈E(T )

w(e)

is minimized and V (T )∩Gi ̸= ∅ for each i ∈ [k]. An instance of the group Steiner tree
problem is denoted by (G,G, w). We consider the algorithm for the rooted version
where the pre-specified vertex r is required in the solution subtree. Vertex r is called
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a root. In order to solve the unrooted version, we solve the rooted version for all
vertices in the smallest group as possible choices for root r, and take the solution of
the smallest weight.

Let Sr =
∪k

i=1{S ⊆ V \ {r} : Gi ⊆ S} be a family of all subsets S of V \ {r}
such that the cut (S, V \ S) separates a group Gi from the pre-specified root r and
δ(S) = {{s, t} ∈ E : s ∈ S, t /∈ S}. We are now ready to give a natural cut-based
integer programming formulation of this problem :

min
∑

e∈E w(e)ze

s.t.
∑

e∈δ(S) ze ≥ 1, S ∈ Sr,
ze ∈ {0, 1}, e ∈ E.

(1)

In this paper, we consider a relaxed version of Problem (1) where the integrality
constraints ze ∈ {0, 1}, e ∈ E are replaced by non-negativity constraints ze ≥ 0,
e ∈ E,

min
∑

e∈E w(e)ze

s.t.
∑

e∈δ(S) ze ≥ 1, S ∈ Sr,
ze ≥ 0, e ∈ E.

(2)

The LP Problem (2) is called the fractional group Steiner tree problem (FGST).
We provide an interpretation in terms of a flow network by adding new vertices
and using the max-flow min-cut theorem. Let us assume the introduction of a new
vertex gi for each group Gi and a directed edge from gi to each vertex v ∈ Gi with
infinite capacity. The value of variable ze is interpreted as the capacity of edge e.
The conditions in (1) ensure that the capacity of each cut separating some group
Gi from root r (or equivalently, a gi from r) is at least one. Using the max-flow
min-cut theorem, it becomes evident that capacities ze are sufficient to send at least
one unit of flow from each vertex gi, to root r.

Motivation and related problems. The group Steiner tree problem general-
izes two important problems: The Steiner tree problem and the set cover problem.
The Steiner tree problem is one of the most important NP-hard problems in com-
binatorial optimization that admits an approximation algorithm with a constant
approximation ratio [4, 5]. Actually, it is NP-hard for approximating it within a
ratio of less than 96/95 [6]. In the Steiner tree problem, we are given an undirected
graph G = (V,E), |V | = n, |E| = m, with an edge-weight function w : E → R+ and
a subset of vertices ∅ ̸= R ⊆ V called terminals. Vertices in V \R are called Steiner
vertices. The task is to find a minimum-weight subtree T that spans all terminals.
It is obvious that the Steiner tree problem is reducible to a special case of the GST
problem, where the size of each group is at most one. The set cover problem is the
second one, but no less important since it generalizes a number of other combinato-
rial problems. We are given a set of elements U and a family U of subsets of U such
that

∪
S∈U = U . We say that the subfamily R ⊆ U is a set cover with respect to the

instance (U,U) if every u ∈ U is covered by at least one set from R. The set cover
problem introduced by Karp [18] is used to find a subfamily R of minimum size. The
more general version of the problem is typically called the weighted set cover problem
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where each set from the family U has a nonnegative weight associated with it. It is
well known that the set cover problem cannot be approximated by an approximation
ratio better than (1 − o(1)) lnn, unless NP contains slightly superpolynomial time
algorithms [10]. For a given set cover instance (U,U) we construct the star graph
where the leaves are associated with sets in U . Each element in U defines a group.
Each vertex belongs to groups that correspond to the elements contained in the set
associated with that leaf. The weight of each leaf is equal to the weight of the set
associated with it. We have just described the reduction of the set cover problem to
the GST problem. Indeed, algorithms for this problem can be used to solve some
other related problems [8].

Solving the LP relaxation to the problem is a very common first step in combina-
torial optimization algorithms. This is particularly so, if we look at the polylogarith-
mic approximation algorithm for GST given by Garg et al. [14], where we see that
it solves (2) when the input graph is a tree. Afterwards, they extend their result to
general graphs using Bartal’s technique of tree metrics approximation [2, 9]. Fortu-
nately, solving (2) for optimality is not necessary, but finding (1+O(ε))-approximate
solution to (2) for some small ε > 0 is sufficient. We refer to their theorem.

Theorem 1 (Garg et al. [14], page 75, Theorem 4.1.). There is a randomized
polynomial time algorithm that, with a probability at least 1/2, finds a group Steiner
tree on an underlying graph which is a tree, at a cost no more than O(logN log k)
times optimal value of FGST in (2), where N is the maximum size of the group and
k is the number of groups.

Indeed, the polylogarithmic approximation ratio given by Garg et al. gives an
upper bound to the integrality gap of relaxation in (2). It is not hard to observe
that approximating (2) within a factor 1 + O(ε), for some small ε > 0, does not
asymptomatically change the approximation ratio in Theorem 1. It motivates us to
find an efficient fully polynomial time approximation scheme (FPTAS) for (2). We
say that an algorithm for a minimization problem is FPTAS if it returns a solution
with cost not exceeding 1 + ε times the cost of the optimal, for arbitrarily small
ε > 0, in time that is polynomial in the input size of the problem and 1/ε.

2. Previous work

The paper by Garg and Khandekar [11] considers the fractional Steiner Forest Tree
and related problems. Their approach leads to an unified framework for finding a
minimum hitting set for a collection of clutters. A clutter on set X is a family C of
subsets of X such that no set in C is contained in some other set in C. We say that
clutter C is hit by T ⊂ X if at least one of its sets is included in T . Their algorithm
aims to find a minimum cost subset T of X that hits each clutter in the family
of k clutters C1, . . . , Ck on X. Their approach also uses an oracle Oi, i ∈ [k], that
computes the minimum cost set in clutter Ci and runs in time TOi . All the problems
that they consider can be formulated as the above described min-hit problem. They
provide an (1 + ε)-approximation of the optimal solution to the min-hit problem

in O((m log2 k)/ε2
∑k

i=1 TOi) time. FGST can be easily interpreted as a min-hit
problem for a collection of clutters {Pi}ki=1 on the set of edges E. Each clutter Pi,
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i ∈ [k] consists of paths from group Gi, (i.e. a vertex from group Gi) to the root
r. We wish to find the minimum cost subset of edges that hits each clutter Pi,
i ∈ [k]. In this case, all oracles Oi, i ∈ [k] are the shortest path algorithms from
vertices in Gi to r. Since the root r is fixed, Oi takes as much time as is taken by a
single-source shortest path algorithm. We conclude that the algorithm by Garg and
Khandekar in [11] runs in O(mk(m + n log n) log2 k/ε2) time‡. They pointed out
that their algorithm is the only one known for families of clutters that do not satisfy
the max-flow min-cut (MFMC) property. According to their approach, the group
Steiner tree problem can be viewed as a min-hit problem on a family of clutters that
consist of multicommodity paths.

3. FPTAS improvements

Although FGST has a compact flow-based formulation with polynomially many vari-
ables and constraints [16], combinatorial algorithms exploiting the special structure
of a problem often have better worst-case running time bounds than some known al-
gorithms for general linear programming problems. The linear program (2) exhibits
the structure of a fractional covering linear program that is more carefully studied
later in this paper. Since (2) has exponentially many constraints, state-of-the-art
approaches in [19, 20, 17] cannot be directly applied. Our main task is to adopt
their approach and show that it yields a better worst case running time algorithm
compared to the previous algorithms, when the number of groups k is large enough.

Garg and Khandekar in [11] pointed out that techniques in [23, 26] cannot be
applied to obtain a FPTAS for the min-hit problem on a collection of clutters since
it cannot be formulated as a packing or covering problem. First, we want to present
that nearly linear-time FPTAS for explicit fractional packing and covering linear
programs by Koufogiannakis and Young in [20] is adoptable to an FPTAS for the
FGST problem. This adaptation is very similar to the algorithm given by Garg
and Könemann in [12, 13] for the maximum multicommodity flow problem and
other fractional packing problems. Second, we point that the running time of our
algorithm is O((m logm)k(m+n4/3ε−16/3) logc(m+n4/3ε−16/3)/ε2) where c is some
constant that comes from running time of (1 + ε)-approximate min-cut algorithm
in [7] (Theorem 3). If we neglect constants in running times, finding a (sub)set of
solutions to the following inequality:

m log2 k

ε2
k(m+ n log n) >

m logm

ε2
k(m+ n4/3ε−16/3) logc(m+ n4/3ε−16/3), (3)

gives us values of k that make our algorithm faster than the algorithm in [11]. We
now present the following technical facts that simplify the lower bound on values of
k which satisfy (3).

Fact 1.

i) For any ε ∈ ⟨0, 1⟩, there is a n0 ∈ N such that

m+ n4/3ε−16/3

m+ n log n
<

n1/3

log n
ε−16/3,

‡Õ(f(n)) denotes O(f(n) logc f(n)) for some function f and positive constant c
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for all n ≥ n0 and n− 1 ≤ m ≤ n(n− 1)/2.

ii) For any constant c and ε ∈ ⟨0, 1/6] there is a n0 ∈ N such that

n1/3

log n
> logc(m+ n4/3ε−16/3),

for all n ≥ n0 and n− 1 ≤ m ≤ n(n− 1)/2.

Now, from (3) follows that

log2 k >
m+ n4/3ε−16/3

m+ n log n
logm logc(m+ n4/3ε−16/3). (4)

Fact (1) implies the following bound on the right-hand side of (4)

m+ n4/3ε−16/3

m+ n log n
logm logc(m+ n4/3ε−16/3) <

(
n1/3

log n

)2

ε−16/3, (5)

for n ≥ n0 and some n0 ∈ N. In order to identify certain values of k that satisfy
(3), inequalities (4) and (5) suggest that finding k is sufficient such that:

log2 k >

(
n1/3

log n

)2

ε−16/3, (6)

which gives

k > 2

(
n1/3

log n

)
ε−8/3

, (7)

for n ≥ n0 and some n0 ∈ N0. Now, we can conclude that our algorithm from

Theorem 3 is faster that the algorithm in [11] when k > 2(n
1/3/ logn)ε−8/3

and n ≥ n0,
for some n0 ∈ N. Our approach is independent of the approximate minimum cut
computation in Algorithm 2. Some newer and faster nearly linear algorithms [25] also
can be used, but all incoming improvements to the approximate max-flow min-cut
computation will only decrease the lower bound (7). Unfortunately, improvements
of approximate min-cut computation cannot significantly improve the running time
of Algorithm 1 by decreasing the dominating polynomial factors.

In Section 2 we give an essential overview of the Lagrangean relaxation algorithm
given by Koufogiannakis and Young [19, 20] based on the idea of a two players
zero-sum game [15] and non-uniform increments [12, 13]. In the spirit of their
algorithm, we present an adaptation that involves the calling of an oracle routine
that computes a (1+ε)-approximate cut at each iteration. In Section 3, the analysis
of the approximation ratio and running time is given.

3.1. Preliminaries

In order to present the main idea of our approach, let us recall the covering and
packing linear programs as is considered in [20]. Let A ∈ Rm×n

+ , c ∈ Rn
+ and
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b ∈ Rm
+ for m,n ∈ N. The linear program

min cTx

s.t. Ax ≥ b,
x ≥ 0,

(8)

is called a covering linear program. The dual of (8)

max bTy

s.t. ATy ≤ c,
y ≥ 0

(9)

is called a packing linear program. W.l.o.g we assume that components of vectors
b and c are all ones.

After the transformation of Problem (2), we obtain the following fractional cov-
ering program

min
∑

e∈E xe

s.t.
∑

e∈δ(S)
1

w(e)xe ≥ 1, S ∈ Sr,
xe ≥ 0, e ∈ E,

(10)

while the dual is the fractional packing linear program

max
∑

S∈Sr
yS

s.t.
∑

S∈Sr,e

1
w(e)yS ≤ 1, e ∈ E,

yS ≥ 0, S ∈ Sr,

(11)

where Sr,e = {S ∈ Sr : e ∈ δ(S)}. Now it is clear that (10) and (11) are representable
in the form of (8) and (9), respectively, where matrix A is given by

AS,e =

{
1/w(e) , e ∈ δ(S),

0 , otherwise.
(12)

3.2. Algorithm

3.2.1. Description of the algorithm

We present the Lagrangian relaxation algorithm based on ideas described in the
papers of Koufogiannakis and Young [19, 20] that iteratively improves the solution
of the Primal (10). In order to present the main idea of the algorithm, we recall how
to obtain a Lagrangian relaxation of the Dual (11)

max
ATy≤1,y≥0

1Ty ≤ min
x≥0

max
y≥0

(
1Ty + xT (1−ATy)

)
. (13)
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Let ỹe(t) be
∑

S∈Sr,e
yS(t)/w(e), for e ∈ E. We conclude in (13) that the primal

variable xe plays the role of the penalty for the violation of the dual constraint∑
S∈Sr,e

yS/w(e) ≤ 1. Let xe(t), e ∈ E and yS(t), S ∈ Sr be the primal and dual

variables at iteration t ≥ 0. At the beginning, we have xe(0) = 0, e ∈ E and
yS(0) = 0, S ∈ Sr. If ỹe(t) is ”large”, and we suppose that the violation of the dual
constraint is also ”large”. According to (13) increasing xe to mimic the increasing
the penalty for a violation of the corresponding dual constraint seems reasonable.
In order to quantify the violation, we use ỹe(t). Following the idea of exponential
potential function methods in [3], we increase each variable xe(t) by a quantity that
is exponential in violation of ỹe(t − 1) and divided by the sum of exponentials in
all dual constraint violations. More precisely, our algorithm iteratively improves the
primal solution xe(t) quantitatively which is proportional to pe(t)/|p(t)| where

pe(t) = (1 + ε)ỹe(t−1). (14)

Instead of random sampling of the primal and dual variables, we increase de-
terministically one variable in the dual and all variables in the primal. At each
iteration in line 13 of Algorithm 1, we increment the dual variable yŜ(t) by Ŵ (t),

where (Ŝ(t), V \ Ŝ(t)) is the (1 + ε)-approximate minimum cut with respect to the
capacities

ce(t) :=
1

w(e)

pe(t)

|p(t)|
, for e ∈ E,

in graph G that separates some group Gi from r, and Ŵ (t) := mine∈δ(Ŝ(t)) w(e).

More details for determining the cut (Ŝ(t), V \ Ŝ(t)) are found in Section 3.2.2.
We also note, at line 11 of Algorithm 1, that Ŵ (t) is the length of the step that

increases the primal variable xe in the direction pe(t)/|p(t)|, for e ∈ E. In other
words, Ŵ (t) is distributed among all primal variables according to the weight vector
p(t)/|p(t)|. We also update ỹe(t) and pe(t) only for e ∈ δ(Ŝ(t)) at each iteration.
Our algorithm terminates when M(t) ≥ T where

M(t) := max
e∈E

ỹe(t). (15)

Scaling the primal solution x by the capacity of the (1+ε)-approximate minimum
cut gives a feasible primal solution.

3.2.2. (1 + ε)-approximate minimum cut oracle

In this section we describe the algorithm that computes a (1+ ε)-approximate min-
imum cut (Ŝ(t), V \ Ŝ(t)) that separates some group Gi from r with respect to the
capacities ce(t), e ∈ E, at iteration t ≥ 0. We solve that problem as a sequence of k
(1 + ε)-approximate minimum cut problems in the following group Steiner network.

Definition 1. Let (G,G, w) be a group Steiner tree instance and i ∈ [k]. A group

Steiner network with respect to the capacities c ∈ R|E|
+ is the network (G⃗i, c) where

G⃗i is a directed graph obtained from G as follows:
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Algorithm 1 FPTAS for the fractional group Steiner tree problem

1: xe(0) := 0, ỹe(0) = 0 for all e ∈ E, yS(0) := 0, S ∈ Sr,M(0) ← 0, t := 0,
T := lnm

ε2

2: pe(1) := 1, e ∈ E
3: while M(t) < T do
4: t← t+ 1
5: for e ∈ E do
6: ce(t)← 1

w(e)
pe(t)
|p(t)|

7: end for
8: calculate Ŝ(t) with respect to the capacities c(t) using Algorithm 2
9: Ŵ (t)← mine∈δ(Ŝ(t)) w(e)

10: for e ∈ E do
11: xe(t)← xe(t− 1) + Ŵ (t) · pe(t)

|p(t)|
12: end for
13: yŜ(t)(t)← yŜ(t)(t− 1) + Ŵ (t)

14: M(t)←M(t− 1)
15: for e ∈ E do
16: if e ∈ δ(Ŝ(t)) then

17: ỹe(t)← ỹe(t− 1) + Ŵ (t)
w(e)

18: pe(t+ 1)← pe(t)(1 + ε)
Ŵ (t)
w(e)

19: if ỹe(t) > M(t) then
20: M(t)← ỹe(t)
21: end if
22: else
23: ỹe(t)← ỹe(t− 1)
24: pe(t+ 1)← pe(t)
25: end if
26: end for
27: end while
28: calculate S′ with respect to the capacities x(t) using Algorithm 2
29: m(t)←

∑
e∈δ(S′) xe(t)

30: return x(t)/m(t)

• for each edge e = {u, v} ∈ E, we introduce two directed edges (u, v) and (v, u)
where each of them has the capacity ce,

• for group Gi ∈ G, we introduce a new vertex gi,

• for each v ∈ Gi, we introduce a directed edge (gi, v) with infinite capacity.

At each iteration l we compute a (1+ε)-approximate minimum cut that separates

group Gl and the root r in the group Steiner network (G⃗l, c) by using the algorithm
of Christiano et al. in [7]. Upon completing we take the one with the minimum
capacity. It is easy to see that we computed a (1+ε)-approximate cut that separates
group Gj from r, for some j ∈ [k]. The running time of Algorithm 2 is given in the
following Proposition.



An FPTAS for the fractional group Steiner tree problem 533

Proposition 1. Algorithm 2 returns Ŝ ⊆ V \ {r}, where (Ŝ, V \ Ŝ) is (1 + ε)-
approximate min-cut that separates some group Gi from r, in Õ(k(m+n4/3ε−16/3))
time.

Proof. The construction of the group Steiner network in Definition 1 does not
asymptotically enlarge the size of the network because only one vertex is added
and at most 2m+ n directed edges are introduced§. Therefore each computation of
(1+ ε)-approximate min-cut takes at most Õ(m+n4/3ε−16/3) time. Since there are
k such computations, the statement follows easily. �

Algorithm 2 (1 + ε)-approximate min-cut oracle

Input: the capacities c, ε > 0
Output: (1 + ε)-approximate min-cut Ŝ that separates gi from r in the (G⃗i, c)
for some i ∈ [k]
Ĉ, Ĉ ′ ←∞
Ŝ, Ŝ′ ← ∅
for l = 1, . . . , k do

compute a (1 + ε)-approximate (gl, r) min-cut Ŝ′ in the network (G⃗l, c) by
using algorithm in [7]

Ĉ ′ ←
∑

e∈δ(Ŝ′) c(e)

if Ĉ ′ < Ĉ then
Ŝ ← Ŝ′

Ĉ ← Ĉ ′

end if
end for
return Ŝ

4. Analysis of the Algorithm 1

In this section we prove that Algorithm 1 returns a feasible solution to (2) with a
total cost not exceeding 1+O(ε) times the optimal. We will also prove that running
time is indeed that which was previously mentioned in Section 3.

4.1. Approximation ratio analysis

First, we give some technical facts (without proof) that are necessary for an analysis.

Claim 1.

i) (1 + ε)x ≤ 1 + εx, for all 0 < ε < 1 and 0 ≤ x ≤ 1

ii) (1 + εx) ≤ eεx, for all ε, x ∈ R

In order to prove that Algorithm 1 returns the (1 +O(ε))-approximate solution
to (2), we present some useful facts.

§since each group contains at most n vertices
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Proposition 2. For all t ≥ 1 Algorithm 1 maintains the following invariants:

i) |x(t)| = |y(t)|, t ≥ 0

ii) maxe∈E(ỹe(t)− ỹe(t− 1)) = 1

Proof.
i) This statement follows easily from the facts that only one dual variable corre-
sponding to Ŝ(t) is increased by Ŵ (t) and that the sum of all increments in primal
variables equals Ŵ (t).

ii)

max
e∈E

(ỹe(t)− ỹe(t− 1)) = max
e∈E

∑
S∈Sr,e

1

w(e)
(yS(t)− yS(t− 1))

= max
e∈δ(Ŝ(t))

1

w(e)
(yŜ(t)(t)− yŜ(t)(t− 1))

= max
e∈δ(Ŝ(t))

Ŵ (t)

w(e)
=

Ŵ (t)

mine∈δ(Ŝ(t)) w(e)

= 1

�
The crucial fact in the analysis of the approximation ratio of Algorithm 1 is the

upper bound for the value of Φ(t+ 1), where Φ is the potential function given by

Φ(t) = |p(t)|.

This approach is widely used in designing fast combinatorial approximation algo-
rithms for similar problems. A very nice overview of potential function methods can
be found in [3].

Lemma 1. For any t ≥ 1

Φ(t+ 1) ≤ m exp

(
ε

t∑
t′=1

Ŵ (t′)Ĉ(t′)

)
,

where Ĉ(t) is the capacity of a (1 + ε)-approximate minimum cut (Ŝ(t), V \ Ŝ(t)).

Proof.

Φ(t+ 1) =
∑
e∈E

pe(t+ 1) =
∑
e∈E

(1 + ε)ỹe(t)

=
∑

e∈δ(Ŝ(t))

(1 + ε)ỹe(t−1)+
Ŵ (t)
w(e) +

∑
e ̸∈δ(Ŝ(t))

(1 + ε)ỹe(t−1)

=
∑

e∈δ(Ŝ(t))

pe(t)(1 + ε)
Ŵ (t)
w(e) +

∑
e ̸∈δ(Ŝ(t))

pe(t) (16)
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From Fact ii) in Proposition 2, Claim 1 and (16) it follows

Φ(t+ 1) ≤
∑

e∈δ(Ŝ(t))

pe(t)

(
1 +

Ŵ (t)

w(e)
ε

)
+

∑
e ̸∈δ(Ŝ(t))

pe(t)

= |p(t)|

1 + ε
∑

e∈δ(Ŝ(t))

pe(t)

|p(t)|
· Ŵ (t)

w(e)


= Φ(t)

1 + ε
∑

e∈δ(Ŝ(t))

ce(t)Ŵ (t)


≤ Φ(t) exp

ε
∑

e∈δ(Ŝ(t))

ce(t)Ŵ (t)

 (17)

Iterating (17), we obtain the statement of the lemma

Φ(t+ 1) ≤ Φ(1) exp

ε
t∑

t′=1

∑
e∈δ(Ŝ(t′))

ce(t
′)Ŵ (t′)


= m exp

ε
t∑

t′=1

∑
e∈δ(Ŝ(t′))

ce(t
′)Ŵ (t′)


= m exp

ε

t∑
t′=1

Ŵ (t′)
∑

e∈δ(Ŝ(t′))

ce(t
′)


= m exp

(
ε

t∑
t′=1

Ŵ (t′)Ĉ(t′)

)
.

�

Lemma 2. Let m(t) be minS∈Sr

∑
e∈δ(S)

xe(t)
w(e) , for t ≥ 1, then

t∑
t′=1

Ĉ(t′)Ŵ (t′) ≤ (1 + ε)m(t).

Proof. Let us observe from line 11 of Algorithm 1 that

xe(t) =
t∑

t′=1

Ŵ (t′)
pe(t

′)

|p(t′)|
. (18)

For any arbitrary S ∈ Sr using (18) we have
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∑
e∈δ(S)

xe(t)

w(e)
=
∑

e∈δ(S)

1

w(e)

t∑
t′=1

Ŵ (t′)
pe(t

′)

|p(t′)|

=
t∑

t′=1

Ŵ (t′)
∑

e∈δ(S)

1

w(e)

pe(t
′)

|p(t′)|

=
t∑

t′=1

Ŵ (t′)
∑

e∈δ(S)

ce(t
′), (19)

where ce(t
′) is given in line 6 of Algorithm 1. Since a (1+ ε)-approximate minimum

cut (Ŝ(t′), V \ Ŝ(t′)) is calculated at each iteration t′ with respect to the capacities
ce(t

′), e ∈ E, from (19) it is obvious that

(1 + ε)
∑

e∈δ(S)

xe(t)

w(e)
≥

t∑
t′=1

Ŵ (t′)Ĉ(t′),

which proves the statement of the lemma. �
The following theorem gives the upper bound on the approximation ratio of Algo-
rithm 1.

Theorem 2. After termination, for any ε ∈ ⟨0, 1/6], Algorithm 1 returns a (1+6ε)-
approximate solution to the LP relaxation of the group Steiner tree (10).

Proof. Statements of Lemmas 1 and 2 imply

(1 + ε)ỹe(t) ≤ m exp(ε(1 + ε)m(t)), ∀e ∈ E,

which, after taking the natural logarithm of both sides, becomes

ỹe(t) ln(1 + ε) ≤ lnm+ ε(1 + ε)m(t), ∀e ∈ E. (20)

Since inequality in (20) is valid for all e ∈ E, it follows that

M(t) ln(1 + ε) ≤ lnm+ ε(1 + ε)m(t), ∀e ∈ E. (21)

Our algorithm terminates when inequality M(t) ≥ T is valid. If we use this fact
in Inequality (21), we obtain

m(t)

M(t)
≥ 1− 3ε,

which, for any ε ∈ ⟨0, 1/6], gives

M(t)

m(t)
≤ 1 + 6ε. (22)

Let x̂ be the vector returned by Algorithm 1 and x∗ the optimal solution to (10).
From Fact i) in Proposition 2, the strong duality theorem and (22), it follows that
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|x̂|
|x∗|

≤
|x|
m(t)

|y|
M(t)

=
M(t)

m(t)
≤ 1 + 6ε.

�

4.2. Running time analysis

In this section, we give an analysis of the running time of Algorithm 1.

Theorem 3. Algorithm 1 returns a (1 + 6ε)-approximate solution to (10) in
Õ(mk(m+ n4/3ε−16/3)/ε2) time.

Proof. The update operations inside the while loop (lines 3-27), excluding line 8, in
Algorithm 1 take O(m) time. From Proposition 1 it follows that Algorithm 1 takes
Õ(k(m+n4/3ε−16/3)) time per iteration since Algorithm 2 runs inside the while loop
at line 8 and it dominates the time of all update operations. It remains to show
that there are at most (m lnm)/ε2 iterations until termination. There are at most
m iterations until M(t) is increased by 1 because at least one edge is a maximizer
of the left-hand side term in ii) of Proposition 2. It follows that M(t) is at least T
after at most mT iterations of the while loop. �

5. Conclusion

We presented a simple modification of the fully polynomial time approximation
scheme (FPTAS) in [19, 20] for explicit fractional packing and covering linear pro-
grams that is very close to the approach in [12, 13]. In this way, we obtained
Algorithm 1 that computes a (1 + ε)-approximate solution to the fractional group
Steiner tree problem whose running time outperforms the algorithm in [11] when
the number of groups k is large enough. Since all algorithms in [11] for the min-hit
problem on a family of clutters that do not satisfy the max-flow min-cut property
are reported as the only known algorithms, further research in this area can be un-
dertaken to improve the running times of these algorithms using an approach similar
to the one presented in this paper.

On the other hand, the FPTAS for the fractional group Steiner tree (FGST) prob-
lem, presented in this paper, can be applied for approximate solving of large-scale
group Steiner tree (GST) instances that naturally arise from the various problems
that are of great interest in Operations Research community. The FGST can be
found as the part of approximation algorithms for GST problem [14]. Furthermore,
the solution to the FGST problem can be used as a good lower bound in the optimal
solution to the GST problem in some general linear integer programming techniques.
Besides being a very common application for the problem associated with wire rout-
ing and multiport terminals in physical VLSI design [24], the GST problem can be
applied to find teams of experts in social networks that are supposed to have solved
some of the specific tasks [21, 1, 22]. This application requires extremely fast al-
gorithms, since social networks grows rapidly. This fact provides motivation for a
further improvements of running time for the FPTAS and FGST problems.
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[6] Chleb́ık, M. and Chleb́ıková, J. (2008). The Steiner tree problem on
graphs: Inapproximability results. Theoretical Computer Science, 406(3), 207–214.
doi:10.1016/j.tcs.2008.06.046.

[7] Christiano, P., Kelner, J. A., Madry, A., Spielman, D. A. and Teng, S. H. (2011).
Electrical flows, laplacian systems, and faster approximation of maximum flow in
undirected graphs. In: Proceedings of the 43rd annual ACM symposium on Theory
of computing - STOC ’11 (pp. 273–282). New York, USA. ACM Press.
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