
Croatian Operational Research Review 81
CRORR 7(2016), 81–96

Research project grouping and ranking by using adaptive
Mahalanobis clustering
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1. Introduction

Differences and similarities between certain phenomena are always an intriguing
starting point not only for researchers, but also for decision makers, in which
argumentation of the similarities and differences is important, e.g., for achieving
as equitable allocation of limited resources (financial, human, material, etc.) as
possible.

Why are the elements of some set more compact and separated better for some
values of their features and how to group them better? For example, grouping a set
of interested buyers of sports shoes with respect to age, education and purchasing
power can be used to define the promotion policy of a manufacturer of sports shoes
or grouping university students depending on the type of their previous education
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and the achieved GPA can be used to define the admissions policy of that university
[4, 8, 14].

By including the criteria referring to limiting resources and expectations of an
equitable distribution of such resources to mutually competitive activities, the
answer to such question becomes exceptionally important from the application point
of view in a situation where there is certain homogeneity of phenomena or activities
that need to be assessed.

The issue of quality/excellence assessment of one’s scientific achievements or
research proposal is very topical and important not only for researchers, but also for
the wider community the individual belongs to. There are many discussions referring
thereto that have been published in scientific and professional papers and various
publications (see e.g., [8, 12, 10, 2]), but also in the daily newspapers, which in fact
is not surprising if one knows that the consequence of this process is the distribution
of financial resources for the purpose of research, which are always limited. Hence,
the debate is most often about whether the method of distribution of funds available
for research corresponds to the actual scientific excellence of the respective research.
And here we come to the basic problem - how someone’s scientific performance or
research proposal can be assessed in a clear, unambiguous, transparent and fair way?

Josip Juraj Strossmayer University of Osijek administration faced such situation
when they decided to encourage research of young researchers through internal fund-
ing programs. This will be used as an example to illustrate the proposed method
for project grouping and ranking.

A fairly large body of literature is dedicated to the assessment and ranking of
research projects (see, for example, [3, 9, 11]) and ranking of departments, institutes
and universities closely associated therewith (see, for example, [4, 8, 14]). Most
approaches use different multi-criteria decision making methods, most frequently the
well-known Analytic Hierarchy Process (AHP) [15]. In our paper, we have combined
the AHP method and the adaptive Mahalanobis clustering (AMC) algorithm pro-
posed in [13]. First, the set of projects that have passed the administrative
verification was grouped into several clusters depending upon the features used. Af-
ter that, ranking was conducted within the cluster of projects assessed as best by
measuring the relative ranking “distance” from the perfectly assessed project, i.e.,
the project that has achieved the maximum grade possible.

The paper is organized as follows. The description and the structure of data
that characterize the projects concerned are given in Section 2. This section also
describes in more detail an example of internal competition for research projects
at the University of Osijek. Section 3 outlines basic facts about cluster analysis
and gives a short description of the AMC algorithm. Different approaches to the
construction of the data set on the basis of which projects are grouped and ranked
as well as appropriate examples are presented in Section 4.

2. Data

Suppose that N project proposal applications with full documentation were
submitted in reply to a call for project proposals. Let us denote this set by PN .
Projects will be assessed on the basis of features f1, . . . , fn describing the quality
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of both the applicants and the project (the quality and relevance of the research
proposal, the quality of the applicants, etc.) and the general impression F of the
project.

By using the well-known AHP method (see, e.g., [3, 4, 15]), to each feature fs

we associate the weights ws > 0, s = 1, . . . , n with the condition
n∑

s=1
ws = 1.

Suppose further that for each project pi ∈ PN two independent, blind reviews
Ri

#1 and Ri
#2 are obtained in which features f1, . . . , fn were assessed by grades

ui
s, v

i
s ∈ [1, 5], s = 1, . . . , n and the general impression of the project by grades

U i, V i ∈ [1, 10]. Grades (ui
s, v

i
s, U

i, V i) do not have to be integers. If for some
project pi0 ∈ PN one of the grades referring to the general impression U i0 or V i0 is
less than 6, such project is considered to be negatively assessed and it will not be
considered for further evaluation.

For project pi ∈ PN assessed by grades
(
(ui

s, v
i
s), s = 1, . . . , n; U i, V i

)
we define

the vector f̄ i of the GPA of features f̄ i
s = 1

2 (u
i
s + vis), s = 1, . . . , n and the GPA of

the general impression F
i
= 1

2 (U
i + V i).

In this way, for every project pi ∈ PN we have the following data:

f̄ i
1, . . . , f̄

i
n – the GPA of features based upon reviews Ri

#1 and Ri
#2,

F
i

– the GPA of the general impression of reviewers Ri
#1 and Ri

#2,
(1)

taking into account corresponding weights of features w1, . . . , wn > 0.

Example 1. Josip Juraj Strossmayer University of Osijek administration decided
to encourage research of young researchers by internal funding programs and created
a unique fund for that particular purpose. The main goal of this concept is to help
young researchers, who have yet to acquire their own scientific recognition, in the
implementation of their ideas as this is a difficult time if we take into account the
reduced scope of financing scientific research on the national level and the related
lower likelihood of approval of funding. Thus, the second call for internal scientific
research project proposals was opened in the 2014-2015 academic year. In order
to make the process more transparent, detailed conditions of the call as well as the
assessment criteria were clearly defined on the website of the University‡. Two areas
of scientific research were identified, i.e., the STEM fields and the fields of arts,
humanities and social sciences. The maximum possible score for research, use of
funds, etc. were defined for each field. Following standard administrative checks, all
project proposals are supposed to undergo a peer-review process with two independent
reviewers one of whom is from the specific field the project proposal refers to, and the
other covers a broader project proposal research area. Both reviewers had to fill out
an appropriate peer-review form which was the basis for establishing project proposal
assessment criteria.

However, for each of these fields, there is an open question of equity of the limited
financial resources available to the University for this purpose, which is based on an
equal comparison of all project proposals taking into account the same features.

‡http://news.unios.hr/research/projects/open-calls/research-projects/
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In this and the following examples we will work out the problem of grouping and
ranking research projects in the fields of arts, humanities and social sciences. N = 61
project applications with full documentation were submitted (that have passed the
administrative verification). Each project was reviewed by at least two independent,
blinded reviewers: Ri

#1 was selected from the field the respective project topic belongs

to, and Ri
#2 was selected from another related field. Reviewers Ri

#1 and Ri
#2 had

similar but adapted forms in which they assessed n = 6 project features (see Table 1).

Features Reviewer Ri
#1 Reviewer Ri

#2 Weights ws

f1 The quality and relevance of
the research proposal

The quality and relevance of
the research proposal

0.30

f2 The quality of applicants The quality of applicants 0.20
f3 Research feasibility study Dissemination and utilization

of research results 0.15
f4 Financial plan Financial plan 0.10
f5 Institutional support Institutional support 0.10
f6 Inclusion of students Inclusion of students 0.15

Table 1: The elements assessed by reviewers from Example 1 with corresponding weights

Each reviewer also rated the general impression of the proposed project. Where
the respective assessments of reviewers Ri

#1 and Ri
#2 differed substantially,

additional reviews were requested. If for some project the grade referring to the
general impression was less than 6, such project was considered to be negatively
assessed and it was not considered for further evaluation.

The set of all positively assessed project proposals with corresponding data of
the form (1) will be denoted by P. The set P needed to be grouped according to
their quality and a decision should be made on which projects shall be financed.

3. Data clustering

Clustering or grouping a data set A = {ai ∈ Rn : i = 1, . . . ,m} with n features
in several compact and well-separated clusters has practical importance in a wide
variety of applications, such as biology, medicine, physics, economy, environmental
science, energy management, business, social sciences, etc. (see e.g. [1, 14, 17, 18, 19,
22]). A general problem is as follows: the set A should be partitioned into 1 ≤ k ≤ m
nonempty disjoint subsets π1, . . . , πk, such that

k∪
i=1

πi = A, πr ∩ πs = ∅, r ̸= s, |πj | ≥ 1, j = 1, . . . , k. (2)

Subsets π1, . . . , πk are called clusters in Rn and the set of all clusters is called a
partition, which will be denoted by Π = {π1, . . . , πk}. The collection of all such
partitions will be denoted by C(A, k).

If components ais, s = 1, . . . , n of the data point ai lie in intervals [αi, βi] which
are not of equal range, i.e., if numbers β1−α1, . . . , βn−αn, are mutually significantly
different, they should first be normalized [13]. This can be achieved by transforming
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the set A into the set B = {bi = T (ai) : ai ∈ A} ⊂ [0, 1]n by using the mapping
T : [α, β] → [0, 1]n, where

T (x) = D(x− α), D = diag
(

1
β1−α1

, . . . , 1
βn−αn

)
. (3)

After clustering the set B, the obtained results will be transformed again into [α, β]
by the inverse mapping T−1 : [0, 1]n → [α, β], T−1(x) = D−1x+ α.

If we introduce some distance-like function (see e.g. [1]) d : Rn × Rn → R+,
R+ := [0,+∞⟩, then to each cluster πj ∈ Π we can associate its center cj defined by

cj = argmin
x∈Rn

∑
a∈πj

d(x, a). (4)

After that, a globally optimal k-partition Π⋆ ∈ C(A, k) can be defined as a solution
of the following global optimization problem

Π⋆ = argmin
Π∈C(A,k)

F(Π), F(Π) =
k∑

j=1

∑
a∈πj

d(cj , a), (5)

where F : C(A, k) → R+ is the objective function (see e.g. [13, 16]).

3.1. Adaptive Mahalanobis clustering

Given the structure of the data set in this paper, the set A will be grouped into
ellipsoidal clusters. An efficient algorithm for searching for a locally optimal
partition with ellipsoidal clusters is the Adaptive Mahalanobis k-means (see [13]),
which can be carried out as a special case of the well-known Expectation Maximiza-
tion algorithm (see [24]), but its efficiency is significantly greater than the standard
Expectation Maximization algorithm. The adaptive Mahalanobis k-means algorithm
can be described by two steps which are iteratively repeated:

Step A: Based on the set of mutually different assignment points c1, . . . , ck ∈ Rn,
the set A should be divided into k disjoint clusters π1, . . . , πk by using the
minimum distance principle

πj = {a ∈ A : djM (cj , a;Sj) ≤ dsM (cs, a;Ss), ∀s ∈ J}, j ∈ J,

where

djM (x, y;Sj) =
n
√

detSj (x− y)TS−1
j (x− y), (6)

is the adaptive Mahalanobis distance-like function, and

Sj =
1

|πj |

∑
ai∈πj

(cj − ai)(cj − ai)T , (7)

is a covariance matrix (see e.g. [1], [13, 20, 21]);
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Step B: For each cluster of the partition Π = {π1, . . . , πk} of the set A, one can
define the corresponding cluster centers

cj =
1

|πj |

∑
ai∈πj

ai. (8)

Remark 1. According to [20] the covariance matrix Sj is positive definite if and
only if the set of vectors

φs = (a1s − csj , . . . , a
|πj |
s − csj)

T ∈ R|πj |, s = 1, . . . , n,

is linearly independent. The matrix Sj can become singular in some cases mentioned
in [20]. That problem can than be solved by taking S = I (identity matrix) or by
introducing the small perturbation of the component of all data points in πj. For
more details see [20].

Searching for a globally optimal partition Π⋆ is a complex global optimization
problem for the solution of which there is generally no effective method. An efficient
incremental partitioning algorithm is proposed in the paper written by [13], which
is able to find either a globally optimal partition or a locally optimal partition
of the set A ⊂ Rn close to the global one. By knowing an optimal r-partition
(r ≥ 1), the algorithm searches for the following additional cluster by using the well-
known DIRECT algorithm for global optimization [6, 5, 7], and after that by using the
adaptive Mahalanobis k-means algorithm it determines the optimal (r+1)-partition.

This algorithm successively gives optimal partitions (consisting of elliptical shape
clusters that are as
compact and relatively strongly separated as possible) for k = 2, . . . , kmax, where
kmax is the maximum number of clusters that makes sense to be calculated. There-
fore, this algorithm is also very suitable for searching for a partition with the most
appropriate number of clusters by using some known indexes (see Section 3.2).

3.2. Choosing of a partition with the most appropriate number
of clusters

In some cases, the number of clusters k is determined by the nature of the problem
itself and therefore it is known in advance. If the number of clusters is not known
in advance, then it is natural to search for an optimal partition which consists of
clusters that are as compact and relatively strongly separated as possible. This can
be done by using some of the well-known validity indexes (see e.g. [13, 23]). In
our paper, we will use the Calinski-Harabasz (CH) index and the Davies-Bouldin
(DB) index. More compact and better separated clusters in an optimal partition
will result in a greater CH index and a smaller DB index, respectively.

4. Project clustering and ranking

The given set of positively assessed projects P should be grouped into k ≥ 1 as com-
pact and well-separated clusters as possible. The very nature of the data implies the
need for searching for ellipsoidal clusters by applying the AMC algorithm described
in Section 3.1.
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4.1. Project clustering and ranking based upon the assessed
project features

For each project pi ∈ P, first the vector f̄ i = (f̄ i
1, . . . , f̄

i
n)

T ∈ [1, 5]n of the GPA and
the vector ai = (w1f̄

i
1, . . . , wnf̄

i
n)

T ∈ Rn of the weighted GPA (WGPA) of features
(1) as well as the set

A ={ai = (w1f̄
i
1, . . . , wnf̄

i
n)

T ∈ Rn : i = 1, . . . ,m} ⊂ [α, β], (9)

α = (w1, . . . , wn)
T , β = 5(w1, . . . , wn)

T , (10)

should be defined (see Fig. 1a).
Since there is a bijection between the set P of all projects and the set A, in order

to group projects into groups by their quality, we will find an optimal partition
of the set A (see Section 3.1) with the most appropriate number of clusters (see
Section 3.2).

In order to ensure the same influence of such weighted grades, the data points
should first be normalized by using the mapping T : [α, β] → [0, 1]n given by (3),
where

T (x) = Dx− 1
4e, D = 1

4 diag
(

1
w1

, . . . , 1
wn

)
, e = (1, . . . , 1)T ∈ Rn. (11)

(a) Non-normalized data ai (b) Normalized data bi

Figure 1: Non-normalized data and normalized data

This yields a normalized set B = {bi = T (ai) : ai ∈ A} ⊂ [0, 1]n (see Fig. 1b).
Applying the AMC algorithm described in Section 3.1, by using validity indexes
mentioned in Section 3.2 we obtain an optimal partition Π⋆ = {π⋆

1 , . . . , π
⋆
k} with

the most appropriate number of clusters π⋆
1 , . . . , π

⋆
k with centers ζ⋆1 , . . . , ζ

⋆
k . After

clustering the set B, the obtained results can be transformed again into [α, β] by the
inverse mapping T−1 : [0, 1]n → [α, β].

Project ranking will be carried out based upon measuring the “weighted
Euclidean distance” to the perfectly assessed project p⋆, i.e., the project which the
vector f⋆ = (5, . . . , 5)T ∈ Rn is associated to. In this way, we will achieve a fine
ranking structure in which all GPAs achieved as well as their weights will be taken
into account. In this regard, we introduce the following definition.

Definition 1. Let f̄ i = (f̄ i
1, . . . , f̄

i
n)

T be a vector of the GPA of features of the
project pi and let f⋆ = (5, . . . , 5)T be a vector associated to the perfectly assessed
project p⋆. The quality measure of the project pi ∈ P is the weighted Euclidean
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distance d(pi, p⋆) defined by

d2(pi, p⋆) = ∥f̄ i − f⋆∥2w =

n∑
s=1

ws(f̄
i
s − 5)2. (12)

Remark 2. If the quality measure of the project pr is less than the quality measure
of the project ps, i.e., if d(pr, p⋆) < d(ps, p⋆), then the project pr is “closer” to the
perfectly assessed project p⋆ and it will be ranked higher than the project ps.

Furthermore, note that the quality measure of the project given by (12) can be
expressed by using normalized data. Specifically, by using (11) we obtain

bi = T (ai) = D(ai − α) = 1
4 (f̄

i − b⋆),

where b⋆ = (1, . . . , 1)T ∈ Rn (a normalized representant of the perfectly assessed
project). Hence

d(pi, b⋆) := ∥bi − b⋆∥w = 1
4∥f̄

i − f⋆∥w = 1
4d(p

i, p⋆). (13)

This means that the same quality measure of the project can also be obtained such
that we measure the weighted Euclidean distances of normalized data bi to the vector
b⋆, what will be used below.

Specially, the ranking of clusters within a partition can also be performed by
measuring the weighted Euclidean distances of their centers to the vector of the
perfectly assessed project. In this regard, the quality measure of the cluster π⋆

j with
the centers ζ⋆j is defined as

d(π⋆
j , b

⋆) := ∥ζ⋆j − b⋆∥w. (14)

Example 2. The set of all positively assessed projects P from Example 1 contains
m = 47 projects. These projects should be grouped on the basis of the WGPA,
w1f̄

i
1, . . . , w6f̄

i
6 of these projects obtained based upon reviews by independent, blinded

reviewers Ri
#1 and Ri

#2 and weights of features w1, . . . , wn that can be seen in Ta-
ble 1.

After defining the set A = {ai = (w1f̄
i
1, . . . , w6f̄

i
6)

T ∈ R6 : i = 1, . . . ,m}, on
the corresponding normalized set B = {bi = T (ai) : ai ∈ A} ⊂ [0, 1]6 the AMC
algorithm is carried out as described in Section 3.1. By using indexes specified in
Section 3.2 it was shown that an optimal partition with the most appropriate number
of clusters has four clusters. The obtained results were transformed again into [α, β].
Characteristics of the optimal cluster partition (the number of projects per cluster
|π⋆

j |, the standard deviation of the cluster σ⋆
j , the cluster center c⋆j = T−1(ζ⋆j ) and

the quality measure d(π⋆
j , b

⋆) of the cluster) are given in Table 2.
Note that the quality measure d(π⋆

1 , b
⋆) of the cluster of projects assessed as best

is significantly lower than the quality measures of other clusters, whereby there is an
insignificant difference between standard deviations by clusters (see Table 2). This
means that the cluster of projects π⋆

1 assessed as best is significantly separated from
other clusters.
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Cluster |π⋆
j | σ⋆

j c⋆j = T−1(ζ⋆j ) d(π⋆
j , b

⋆)

π⋆
1 17 0.69 (4.527, 4.801, 4.713, 4.779, 4.956, 4.846) 0.077

π⋆
2 11 0.98 (4.432, 4.159, 4.182, 3.977, 4.364, 4.591) 0.178

π⋆
3 10 1.26 (3.908, 4.725, 3.95, 4.25, 4.65, 3.75) 0.229

π⋆
4 9 1.08 (3.519, 3.722, 3.5, 4.167, 4.528, 4.5) 0.301

Table 2: Properties of clusters of the optimal partition

The cluster π⋆
1 which consists of projects assessed as best contains 17 projects

ranked according to the achieved quality measures d(pi, b⋆) as defined by (13) (see
Table 3). GPA of all features of these projects, average weighted grades (AWG) of

all features f̂ i =
n∑

s=1
wsf̄

i
s, the GPA of the general impression F

i
and the quality

measures d(pi, b⋆) of these projects are also given in Table 3.

pi f̄ i
1 f̄ i

2 f̄ i
3 f̄ i

4 f̄ i
5 f̄ i

6 f̂ i F i d(pi, b⋆) Rank

p35 5 5 5 5 5 5 5 10 0 1
p40 5 5 5 5 5 5 5 9.5 0 2
p6 4.833 4.75 5 5 5 4.875 4.881 9.75 0.038 3
p36 5 5 4.5 4.5 5 5 4.875 9.5 0.062 4
p10 4.5 4.75 5 4.75 5 5 4.775 10 0.076 5
p1 4.417 5 5 5 5 5 4.825 9.25 0.080 6
p33 4.5 5 4.5 5 5 5 4.775 10 0.084 7
p7 4.5 5 5 5 5 4.5 4.775 9.5 0.084 8
p8 5 4.5 5 4.5 5 4.5 4.775 9.5 0.084 9
p26 4.5 4.5 5 5 5 5 4.750 9.5 0.088 10
p45 4.5 4.5 5 5 5 5 4.750 8.5 0.088 11
p28 4.875 4.875 4.125 4.5 5 5 4.756 9.875 0.096 12
p9 4.5 4.75 4 4.5 5 5 4.600 9 0.128 13
p30 4.333 5 4.75 4.5 5 4 4.563 8.75 0.141 14
p3 4 5 4.5 4.5 5 5 4.575 9 0.151 15
p24 4 4.5 4.25 4.5 4.75 4.5 4.337 8.5 0.177 16
p19 3.5 4.5 4.5 5 4.5 5 4.325 9 0.222 17

Table 3: Cluster of projects π⋆
1 assessed as best

Theoretically, it may happen that for some project pr ∈ π1 and for some project
ps ∈ π2 holds d(pr, b⋆) > d(ps, b⋆), but application of ellipsoidal clusters reduces
such possibility significantly.

Note that the ranking of projects in Table 3 does not follow the ranking of these
projects by the AWG of all features (see column f̂ i in the table). For example,
project p1 has a higher average score than project p10, but it is still ranked lower.
The reason for that lies in its relatively low grade given to feature f̄1

1 of project p1,
which is much more important than other features (w1 = 0.30).

Thus, the proposed method accepts better a fine structure of project feature
ratings than the ordinary ranking obtained on the basis of the AWG of all features.
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Since the well-known AHP method is in the background of ranking projects
according to the AWG of all features (see e.g. [3, 9, 14]), in Table 3 it is possible to
recognize advantages of the method we propose in relation to the AHP method.

4.2. Project clustering and ranking based upon assessed
features and the general impression of the projects

Similarly to the previous section, for every project pi ∈ P define (n+1)-dimensional

vector (f̄ i
1, . . . , f̄

i
n, F

i
)T ∈ [1, 5]n × [1, 10]. The first n components of this vector

are the GPAs of features, and the last component represents a GPA of the general
impression of the project. A set of data A will be defined by means of these grades

such that the grade of the general impression of the project F
i
has the same impact

as all weighted features w1f̄
i
1, . . . , wnf̄

i
n together. This means that we have the

following set of data

A ={ai = (w1f̄
i
1, . . . , wnf̄

i
n, F

i
) ∈ Rn+1 : i = 1, . . . ,m} ⊂ [α, β], (15)

α = (w1, . . . , wn, 1)
T , β = (5w1, . . . , 5wn, 10)

T . (16)

Please note that the ratio of the impact of the general impression of the project
and the weighted features w1f̄

i
1, . . . , wnf̄

i
n could also be defined in a different way.

Since there is a bijection between the set P of projects and the set A, in order
to group projects into groups by quality, we will find an optimal partition of the set
A (see Section 3.1) with the most appropriate number of clusters (see Section 3.2).

In order to ensure the same impact of grades weighted in this way, the data
points should first be normalized by using the mapping T : [α, β] → [0, 1]n+1 given
by (3), where

T (x) = D(x− α), D = diag
(

1
4w1

, . . . , 1
4wn

, 1
9

)
, α = (w1, . . . , wn, 1)

T ∈ Rn. (17)

Thus, this yields the set B = {bi = T (ai) : ai ∈ A} ⊂ [0, 1]n+1 on which we applied
the AMC algorithm described in Section 3.1 by using indexes given in Section 3.2
and obtained the optimal partition Π⋆ = {π⋆

1 , . . . , π
⋆
k} with the most appropriate

number of clusters π⋆
1 , . . . , π

⋆
k with centers ζ⋆1 , . . . , ζ

⋆
k . After clustering the set B,

the obtained results can be transformed again into [α, β] by the inverse mapping
T−1 : [0, 1]n → [α, β].

In accordance with Remark 2, project ranking can be carried out on the basis of
the quality measures of the projects defined by (13).

Example 3. The set P of m = 47 projects from Example 1 will be grouped equally,
on the basis of the WGPA of 6 project features w1f̄

i
1, . . . , w6f̄

i
6 and on the basis of

the GPA of the general impression F
i
, which were obtained based upon reviews by

independent, blinded reviewers Ri
#1 and Ri

#2.

After defining the set A = {ai = (w1f̄
i
1, . . . , w6f̄

i
6, F

i
) ∈ R7 : i = 1, . . . ,m}, on

the corresponding normalized set B = {bi = T (ai) : ai ∈ A} ⊂ [0, 1]7 the AMC
algorithm is carried out as described in Section 3.1. By using indexes specified
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in Section 3.2, it was shown that an optimal partition with the most appropriate
number of clusters has four clusters. The obtained results were transformed into
[α, β]. Characteristics of the optimal cluster partition (the number of projects per
cluster |π⋆

j |, the standard deviation of the cluster σ⋆
j , the cluster center c

⋆
j = T−1(ζ⋆j )

and the quality measure d(π⋆
j , b

⋆) of the cluster defined by (14)) are given in Table 4.

Cluster |π⋆
j | σ⋆

j c⋆j = T−1(ζ⋆j ) d(π⋆
j , b

⋆)

π⋆
1 18 0.37 (4.512 4.785 4.674 4.736 4.958 4.797 9.326) 0.250

π⋆
2 8 0.51 (4.187 4.656 4.031 4.094 4.187 4.250 8.347) 0.599

π⋆
3 3 0.34 (3.778 4.917 4.833 4.500 4.833 2.833 9.000) 0.559

π⋆
4 18 0.58 (3.912 3.889 3.681 4.083 4.569 4.556 7.982) 0.755

Table 4: Properties of the optimal partition

Note that the cluster π⋆
1 which consists of projects assessed as best is ranked

significantly higher than other clusters, whereby there is an insignificant difference
between standard deviations by clusters (see Table 4). This means that the cluster
of projects π⋆

1 assessed as best is significantly separated from other clusters.

pi f̄ i
1 f̄ i

2 f̄ i
3 f̄ i

4 f̄ i
5 f̄ i

6 f̂ i F
i ∥bi − b⋆∥ Rank

p35 5 5 5 5 5 5 5 10 0 1
p6 4.833 4.75 5 5 5 4.875 4.881 9.75 0.047 2
p40 5 5 5 5 5 5 5 9.5 0.055 3
p10 4.5 4.75 5 4.75 5 5 4.775 10 0.076 4
p36 5 5 4.5 4.5 5 5 4.875 9.5 0.0829 5
p33 4.5 5 4.5 5 5 5 4.775 10 0.0834 6
p28 4.875 4.875 4.125 4.5 5 5 4.756 9.875 0.096 7
p8 5 4.5 5 4.5 5 4.5 4.775 9.5 0.1000 8
p7 4.5 5 5 5 5 4.5 4.775 9.5 0.1001 9
p26 4.5 4.5 5 5 5 5 4.750 9.5 0.104 10
p1 4.417 5 5 5 5 5 4.825 9.25 0.115 11
p9 4.5 4.75 4 4.5 5 5 4.600 9 0.169 12
p3 4 5 4.5 4.5 5 5 4.575 9 0.187 13
p45 4.5 4.5 5 5 5 5 4.750 8.5 0.188 14
p30 4.333 5 4.75 4.5 5 4 4.563 8.75 0.197 15
p37 4 4.5 4.25 4.5 4.75 4.5 4.275 8.5 0.240 16
p24 4 4.5 4.25 4.5 4.75 4.5 4.337 8.5 0.243 17
p19 3.5 4.5 4.5 5 4.5 5 4.325 9 0.248 18

Table 5: Cluster of projects π⋆
1assessed as best

The cluster of projects π⋆
1 assessed as best in this case contains 18 projects. It is

interesting to notice that these are all projects selected as best in the previous section
(Example 2), but their order is modified under the influence of grades referring to
the general impression of projects. For the very same reason, project p37 became
part of the cluster projects assessed as best (data referring to this project can be
seen in Table 5).
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The ranking of projects in the cluster of projects π⋆
1 assessed as best is determined

on the basis of the quality measures d(pi, b⋆) of the projects defined by (13) in
accordance with Remark 2 and shown in Table 5. Since in this approach the impact
of the GPA of the general impression of the project and the WGPA of all features
is assumed to be equal, the quality measures of projects is primarily determined

by the grades F
i
, but there are also fine corrections. For example, project p6 was

rated higher than project p40 due to a higher general impression grade, but project
p19 is ranked lower than projects p45, p30, p37, p24, although it has a higher general
impression grade. The reason for that lies in a relatively low grade given to feature
f1 of these projects, which is much more important than other features (w1 = 0.30).

4.3. A possibility of simplification

A set of data (15) can have a great number of components, from which serious
numerical problems in the implementation of data clustering may arise. Namely, in
this case, there is a high possibility of the singularity of the covariance matrix (see
[20]). That is why it makes sense to observe the following simplification: instead

of the vector (f̄ i
1, . . . , f̄

i
n, F

i
)T we could observe the vector (f̂ i, F i)T , where f̂ i =

n∑
s=1

wsf̄
i
s are the AWG of all features of the i-th project. In this way, the problem

would be reduced to the problem of grouping data with two features considered
equally, i.e., we consider the set

A = {ai = (f̂ i, F
i
) ∈ R2 : f̂ i =

n∑
s=1

wsf
i
s, i = 1, . . . ,m}. (18)

In this approach we should be aware of the fact that we have lost a fine structure
of grades, but obtained a simpler set of data that can also be displayed graphically
(see Fig. 2a).

Due to a disproportionate range of numbers f̂ i and F
i
, when grouping the set A,

the general impression would be preferred to the AWG of all features. In order to
eliminate this discrepancy, in accordance with Section 3, the set of data A should be
first transformed into the set B = {bi = T (ai) : ai ∈ A} ⊂ [0, 1]2 in the unit square
[0, 1]2. In this case, T : [1, 5]× [1, 10] → [0, 1]2,

T (x) = D(x− α), D = diag
(
1
4 ,

1
9

)
, α = (1, 1)T . (19)

Thus we ensure a balanced simultaneous impact of the AWG of all features and
the GPA of the general impression of the project.

Applying the AMC algorithm (see Section 3.1), by using indexes specified in
Section 3.2 we obtain the optimal partition Π⋆ = {π⋆

1 , . . . , π
⋆
k} with the most appro-

priate number of clusters π⋆
1 , . . . , π

⋆
k with centers ζ⋆1 , . . . , ζ

⋆
k . After clustering the set

B, the obtained results can be transformed again into [1, 5] × [1, 10] by the inverse
mapping T−1.

In accordance with Remark 2, in this case project ranking can also be carried
out by comparing the quality measures d(pi, b⋆) of respective projects.
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Example 4. The set P of m = 47 projects from Example 1 will be grouped on the
basis of the AWG of all project features f̂ i and the GPA of the general impression

F
i
obtained on the basis of reviews by independent, blinded reviewers Ri

#1 and Ri
#2.

(a) Non-normed data ai

f⋆

(b) Normed data bi

b⋆

Figure 2: Distances of non-normed data ai to the vector f⋆ (ellipses) and distances of normed
data bi to the vector b⋆ (circles)

After defining the corresponding set of data A = {ai = (f̂ i, F i) ∈ R2 : i =
1, . . . ,m}, first the corresponding normalized set B = {bi = T (ai) : ai ∈ A} is defined
by means of mapping (19). The set A is shown in Fig. 2a, and the corresponding
set of normalized data is given in B in Fig. 2b. The AMC algorithm is applied to
the set B, as described in Section 3.1 (see also Fig. 3b). After clustering the set B,
the obtained results will be transformed again into [1, 5]× [1, 10].

(a) Non-normalized data

π1

π2

π3

π4

(b) Normalized data

Figure 3: Clusters of non-normalized and normalized data

It was shown that the optimal partition with the most appropriate number of
clusters has four clusters, too. Characteristics of the optimal cluster partition (the
number of data per cluster |π⋆

j |, the standard deviation of the cluster σ⋆
j , the cluster

center c⋆j = T−1(ζ⋆j ) and the quality measure d(π⋆
j , b

⋆) of the cluster) are given in
Table 6.

The cluster of projects π⋆
1 assessed as best in this case contains 13 projects (see

Table 7 and Fig. 3). It is interesting to notice that these are all projects selected as
best in the previous sections, but projects p19, p24, p30, p37 and p45 are missing.



94 Željko Turkalj, Damir Markulak, Slavica Singer and Rudolf Scitovski

Cluster |πj | σ⋆
j c⋆j = T−1(ζ⋆j ) d(π⋆

j , b
⋆)

π1 13 0.21 (4.82 9.57) 0.066
π2 19 0.62 (4.30 8.71) 0.226
π3 12 0.82 (4.22 7.85) 0.308
π4 3 1.27 (3.62 7.08) 0.473

Table 6: Properties of clusters of the optimal partition

Ranking clusters within the partition was carried out on the basis of the quality
measures of the clusters d(π⋆

j , b
⋆), as defined in (14). The order of projects in the

cluster of projects π⋆
1 assessed as best is determined based upon the quality measures

d(pi, b⋆) of the projects defined by (13).

pi f̂ i F i d(pi, b⋆) Rank

p35 5 10 0. 1
p6 4.877 9.75 0.0209 2
p33 4.825 10 0.0239 3
p40 5 9.5 0.0248 4
p28 4.8 9.875 0.02808 5
p36 4.9 9.5 0.02837 6
p10 4.7875 10 0.0291 7
p3 4.65 9 0.0690 8
p7 4.8 9.5 0.0369 9
p1 4.8542 9.25 0.0422 10
p26 4.75 9.5 0.0423 11
p8 4.75 9.5 0.0423 12
p9 4.6625 9 0.0678 13

Table 7: Cluster of projects assessed as best

Please note that this ranking is not the same any more as it was in previous
sections, and it is shown in Table 7. Note also that the cluster of projects π⋆

1

assessed as best is ranked significantly higher than other clusters, whereby there
is an insignificant difference between standard deviations by clusters (see Table 6).
This means that the cluster of projects π⋆

1 assessed as best is significantly separated
from other clusters.

A balanced simultaneous impact of the AWG of all features and the GPA of the
general impression of the project determined the project ranking list.

5. Conclusions

The problem of a fair, equitable and transparent selection of research projects to be
financed from a fund is important for both the institution that allocates financial
resources and researchers, i.e., potential users. To tackle this problem, numerous
approaches can be found in the literature, which are most often based on the AHP
method. The combination of the AHP method and the AMC algorithm proved to
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be a very reasonable approach to solve this problem because the proposed method
for the formation of the cluster of projects assessed as best optimally connects all
features of the data set, i.e., grades obtained in the review procedure. Note that
the well-known Expectation Maximization Algorithm lies in the background of the
method [22, 24].

The quality measure of projects in the cluster of projects assessed as best is
defined such that it takes into account the weighted structure of grades obtained in
the review procedure.

Based upon this grouping and ranking of positively assessed projects from Exam-
ple 1, the obtained results were presented to University of Osijek constituent units
and a list of projects to be financed was published on the University of Osijek web-
site. It was observed that the reactions of applicants in the call for project proposals
to this transparent and clear assessment process are generally very positive. In this
way, we have maximally avoided possible objections and dissatisfaction of applicants
whose project proposals were not selected for funding.
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