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1. Introduction

In this paper, we consider a class of Linear Complementarity Problems (LCP ) in
the standard form:

s = Mx+ q

xs = 0

x ≥ 0, s ≥ 0

(1)

where x, s ∈ Rn, M ∈ Rn×n, q ∈ Rn and xs denotes Hadamard (component-wise)
product of vectors x and s.

LCP is not an optimization problem, but it has robust relationship with im-
portant optimization problems such as linear programming (LP ) and quadratic
programming (QP ) problems. This strong relationship is based on the fact that
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Karush-Kuhn-Tucker (KKT) optimality conditions for LP and QP can be con-
verted into LCP . Furthermore, many problems from, game theory, engineering,
finance, transportation, etc. can be directly formulated as LCP . Therefore, efficient
methods for solving LCPs has been an important area of research in optimization
both from theoretical and practical point of view. For a comprehensive treatment
of LCP theory and practice we refer the reader to the monographs of Cottle et al.
[4], Fachinei and Pang [6] and Kojima et al. [11].

It is well known that for general matrices M , LCP is NP-complete [3]. Hence,
we consider classes of matrices M for which the corresponding LCP can be solved
in polynomial time. Most common and most studied is the class of monotone-LCPs,
where the matrix M is a positive-semidefinite matrix. This is largely due to the fact
that the Karush-Kuhn-Tucker conditions (KKT) of the convex QP and LP problems
can be formulated as monotone− LCP . In addition, many practical problems that
can be directly formulated as LCP are usually monotone−LCP . For these reasons,
in this paper we consider a class of monotone− LCP .

Methods to solve LCPs have traditionally been connected to the methods devel-
oped for LP . The generalization of the Simplex method, the Lemke’s method, was
developed soon after the introduction of the Simplex Method. The trend continued
with other simplex-type (pivot based) methods. The tradition continued after the
development of Interior-Point Methods (IPMs) that has revolutionized the area of
both linear and nonlinear, primarily convex, optimization.

The first IPM for LP was proposed by Karmarkar [9] in 1984. The main idea of
the algorithm differs from Simplex Method. It uses projective transformations and
Karmarkar’s potential function. Moreover, IPMs are iterative methods and iterates
are calculated in the interior of the feasible region. In 1986, it was proved that the
Karmarkar’s algorithm is connected to barrier and Newton-type methods [8]. Soon
after in 1988, Renegar [17] developed the first path following Newton-type IPM for
LP . These achievements motivated the development of Newton-based IPMs. Since
then, many different versions of Newton-based IPMs for LP have been proposed.
Many of these IPMs for LP have been generalized for LCPs, the first one being
proposed by Kojima et al. [10] in 1989. Without any attempt to being complete,
see [1, 2, 13, 14, 15, 19] and the references therein for more information on the
development of IPMs.

Interior-Point Methods can be classified into two groups: feasible IPMs and
infeasible IPMs. Feasible IPM requires a strictly feasible starting point and feasi-
bility of each iterates. In real life, it is not easy to find a feasible starting point all
the time and finding the feasible starting point may be as difficult as solving problem
itself. Hence, it is important to consider infeasible IPM which can solve problems
with infeasible starting points. The algorithm we present in this paper belongs to
the second group of IPMs. In addition, we consider full-Newton-step IPM , that
is, the step size is always one.

In the paper, an improvement of the algorithm given in [13] is proposed. In the
old version of the algorithm, each iteration requires two main steps per iteration, a
feasibility step and few centering steps (at most two). By suitable choice of parame-
ters, it is possible to eliminate centering steps altogether and just keep the feasibility
step at each iteration thanks to the much tighter proximity estimate which is based
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on the Lemma 3 first proposed in [18]. The algorithm is still globally convergent and
iteration bound matches the best known iteration bound for these types of IPM .

The paper is organized as follows: The outline of the algorithm is given in Section
2 while the analysis and complexity of the algorithm are discussed in Section 3 and
Section 4 respectively. In Section 5, numerical results are presented. Concluding
remarks are given in Section 6.

2. Algorithm

In this section, an outline of the improved full-Newton-step infeasible IPM for
monotone-LCP (1) is presented.

It is assumed that the LCP (1) has a solution (x∗, s∗) such that

||x∗||∞ ≤ γp, ||s∗||∞ ≤ γd and µ0 =
(x0)T s0

n
. (2)

The assumption basically states that the solution is in within a certain (large)
box. This assumption is necessary for theoretical purposes of proving the global
convergence of the method. However, in practice the assumption is not restrictive;
if the solution is not found for a certain choice of constants γp and γd, they can be
increased. If after few increases the solution is still not found, then we conclude that
the solution does not exist or it is too big to have any practical meaning.

For a positive random starting point (x0, s0) and for any ν with 0 < ν ≤ 1, we
consider a perturbed LCP , denoted by LCPν .

s−Mx− q = νr0

xs = 0

x ≥ 0, s ≥ 0

(3)

where r0 = s0−Mx0−q is called residual. Note that for ν = 1 LCPν has an obvious
strictly feasible point, the initial starting point (x0, s0). Often, the starting point is
chosen as

x0 = γpe, s0 = γde

where e denotes an n dimensional vector of ones.
The following lemma, proof of which can be found in [16], shows how LCP and

LCPν are connected.

Lemma 1. The original problem (1) is feasible if and only if the LCPν (3) is feasible
for 0 < ν ≤ 1.

Since IPMs are Newton-based methods, the standard procedure is to perturb
the complementarity condition xs = 0 and replace it by xs = µe, with positive
parameter µ. Then the system (3) becomes

s−Mx− q = νr0

xs = µe

x ≥ 0, s ≥ 0.

(4)
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It is well known that if matrix M is positive definite, then the system (4) has
a unique solution for each µ > 0. These solutions, denoted by (x(ν, µ), s(ν, µ)), are
called µ − centers of LCPν and the set of all µ-centers is called central path. The
general idea of IPM is to trace the central path by gradually reducing µ to zero.
However, tracing central path exactly would be inefficient. One of the main achieve-
ments of IPM is to show that it is sufficient to trace the central path approximately.
As long as the iterates are in a certain neighborhood of the central path it is still
possible to prove global convergence and, moreover, achieve polynomial complexity.
In addition, we are not interested in solving LCPν , we are interested in solving the
original LCP , which is LCPν with ν = 0. Thus, the idea is to simultaneously reduce
both µ and ν to zero, that is to work on feasibility and optimality at the same time.

The measure of proximity to the central path is given by the norm-based measure

δ(x, s;µ) = δ(v) =
1

2
||v − v−1||, where v =

√
xs

µ
. (5)

Note that δ(x, s;µ) = 0 means (x, s) is a µ-center. It is easy to show that when
ν = 1, the initial pair (x0, s0) is a µ0-center. Namely, the pair (x0, s0) is strictly
feasible solution for LCPν=1 and δ(x0, s0, µ0) = 0.

In what follows the main idea of one iteration of the algorithm is described. We
assume that at the start of each iteration, δ(x, s;µ) ≤ τ for some threshold value
τ > 0. As we already noted above, when µ = µ0 and ν = 1, (x0, s0) is a µ-center of
LCPν . Thus, initially we have δ(x0, s0;µ0) = 0 < τ which satisfies our assumption at
the first iteration. We also assume that µ and ν are connected as follows: ν = µ/µ0.

Suppose that for µ ∈ (0, µ0], we have an iterate (x, s) feasible to the system (4)
and δ(x, s;µ) ≤ τ . Then, we reduce µ to µ+ = (1− θ)µ and ν+ = µ+/µ0 = (1− θ)ν
using barrier parameter θ ∈ [0, 1) and find the new iterate (x+, s+) satisfying (4)
with µ+ and ν+.

In the old version of the algorithm, the new iterate was found after one feasibility
step followed by few centering steps to satisfy δ(x+, s+;µ+) ≤ τ . The centering steps
were necessary because it was not guaranteed that the feasibility step is in the τ -
neighborhood of the central path. In the new version, with the appropriate choice of
the threshold parameter τ and barrier parameter θ and using Lemma 3 it is possible
to show tighter proximity estimate which in turns guarantees that the feasibility
step is in the τ -neighborhood of the central path, hence, eliminating the need for
centering steps. The calculation of the feasibility step is given below.

Figures 1 and 2 present graphical representations of one iteration of the old and
new versions of the algorithm respectively.

The main part of one iteration of the algorithm consists of finding a new iterate
after the reduction of µ and ν. Let (x, s) be a starting iterate in the τ -neighborhood
of the central path of LCPν . Our goal is to find a strictly feasible point (xf , sf ) that
is in τ -neighborhood of the central path of LCPν+ . First, we need to find search
directions △fx and △fs. A direct application of the Newtons method to the system
(4) leads to the following Newton system for the search directions

M △f x−△fs = θνr0

s△f x+ x△f s = (1− θ)µe− xs.
(6)
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Figure 1: Graphical representation of the old version of the algorithm for LCPν

Figure 2: Graphical representation of the improved algorithm for LCPν
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Given the assumptions, which include that the matrix M is positive semi-definite,
the above system (6) has a unique solution for (x, s) > 0. Note that we are targeting
µ+ = (1 − θ)µ center rather µ center as it is done in majority of other algorithms
which also improves the behavior of the algorithm. Taking a full Newton-step along
the search direction, one constructs a new point (xf , sf ) as follows

xf = x+△fx

sf = s+△fs.
(7)

In the Section 3, Analysis of the Algorithm, it will be shown that with the appropri-
ate choice of parameters τ and θ, the feasibility point (xf , sf ) is in the τ neighbor-
hood of the central path, hence, (xf , sf ) is in fact a new iterate (x+, s+) = (xf , sf ).

Previous discussion can be summarized in the following outline of the algorithm.

Improved Full-Newton-Step Infeasible IPM for LCP

Input
Accuracy parameter ϵ > 0,
Barrier update parameter θ, 0 < θ < 1,
Threshold parameter τ, 0 < τ < 1,
Initial points:
x0 > 0, s0 > 0,
µ = µ0 with x0s0 = µ0e,
ν = 1.

begin
while max(xT s, ||s−Mx− q||) ≥ ϵ do
begin
Update µ = (1− θ)µ, ν = (1− θ)ν;

Calculate △f
x,△f

s by solving (6);

Update (x, s) = (x, s) + (△f
x,△f

s ) as in (7);
end

end

Figure 3: Algorithm

In the sequel we will refer to the algorithm described in the Figure 3 simply as
the Algorithm.

3. Analysis of the Algorithm

The main part of the analysis of the Algorithm consists of showing that with the
appropriate choice of the threshold and barrier parameters, the point (xf , sf ) ob-
tained by the feasibility step (6) - (7) is both feasible and close enough to the
central path thanks to the tighter proximity estimate based on the Lemma 3, i.e.,
δ(xf , sf ;µ+) ≤ τ .
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The analysis will require the following transformations

v =

√
xs

µ
, dx =

v △ x

x
, ds =

v △ s

s
(8)

where the operations are component-wise operations of vectors.
Using the above scaled search directions the system (6) transforms into the fol-

lowing system

M̃dx − ds = Dµ−1/2θνr0

dx + ds = v−1(1− θ)− v
(9)

where M̃ = DMD and D = S−1/2X1/2. The matrices X and S represent diagonal
matrix forms of vectors x and s, i.e. X = diag(x) and S = diag(s).

Using (8) and the second equation of the system (6), we have

xfsf = (x+△fx)(s+△fs) = xs+ x△f s+ s△f x+△fx△f s = (1− θ)µe+△fx△f s

= (1− θ)µe+
xs

v2
dfxd

f
s = (1− θ)µe+ µdfxd

f
s = µ[(1− θ)e+ dfxd

f
s ].

(10)
The following lemma then follows.

Lemma 2. The iterates (xf , sf ) are strictly feasible if and only if (1−θ)e+dfxd
f
s > 0.

The more practical, however, just sufficient condition for strict feasibility is given
in the following corollary.

Corollary 3.1. The iterates (xf , sf ) are strictly feasible if ||dfxdfs ||∞ < 1− θ.

The proofs of the above lemmas can be found in [5, 16].
Our goal is to find an upper bound for δ(xf , sf ;µ+). The notation ω(v) =

1
2 (||d

f
x||2+||dfs ||2) will be useful, as well as the following relationships between norms.

||dfxdfs ||∞ ≤ ||dfxdfs || ≤ ||dfx|| ||dfs || ≤
1

2
(||dfx||2 + ||dfs ||2) = ω(v). (11)

Then, the above corollary assumes the following form.

Corollary 3.2. If ω(v) < (1− θ), then (xf , sf ) are strictly feasible.

The following function ξ and Lemma 3, introduced in [18], play a central role in
the subsequent analysis.

ξ(t) =
1 + t

1− θ
+

1− θ

1 + t
− 2 =

(θ + t)2

(1− θ)(1 + t)
≥ 0, t > −1. (12)

Lemma 3. Let a, b ∈ Rn, r ∈ [0, 1) and f(a, b) =
∑n

i=1 ξ(aibi). If ||a||2+||b||2 ≤ 2r2,
then

f(a, b) ≤ (n− 1)ξ(0) + max{ξ(r2), ξ(−r2)}.

The Lemma 3 is used to prove the following lemma which gives the upper bound
for δ(vf ).
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Lemma 4. If ω(v) < 1− θ, then

4δ(vf )2 ≤ (n− 1)ξ(0) + max{ξ(ω(v)), ξ(−ω(v))}.

Proof. Using (5) and (10), (vf )2 can be written as

(vf )2 =
xfsf

µ+
=

(1− θ)e+ dfxd
f
s

1− θ

µ

µ
= e+

dfxd
f
s

1− θ
.

Since 4δ(vf )2 = ||vf − (vf )−1||2, then

4δ(vf )2 =

n∑
i=1

(
vfi − 1

vfi

)2

=

n∑
i=1

(vfi )2 − 2 +

(
1

vfi

)2


=
n∑

i=1

(vfi )
2 +

n∑
i=1

(
1

vfi

)2

−
n∑

i=1

2

= −2n+
n∑

i=1

(
(1− θ) + dfxi

dfsi
1− θ

)
+

n∑
i=1

(
1− θ

(1− θ) + dfxid
f
si

)

=

n∑
i=1

ξ(dfxi
dfsi − θ).

As it can be seen from the Figure 4, ξ(t) function is an increasing function when
t > −1. Furthermore, since, θ ∈ [0, 1), we have

n∑
i=1

ξ(dfxi
dfsi − θ) ≤

n∑
i=1

ξ(dfxi
dfsi).

Then, using Lemma 3, the result of the lemma follows. �

Finding the upper bound on δ(vf ), reduces to finding the upper bound for ω(v)
due to the Lemma 4 which essentially means finding the upper bound for ||dfx||2 +
||dfs ||2. To do so we need the following lemma which was proved in [12].

Lemma 5. Given the following system

M̃u− z = ã

u+ z = b̃
(13)

the following hold

(1) Du = (1 +DMD)−1(a+ b), Dz = (b−Du)

(2) ||Du|| ≤ ||a+ b||
(3) ||Du||2 + ||Dz||2 ≤ ||b||2 + 2||a+ b|| ||a||

where D = S−1/2X1/2, b = Db̃, a = Dã and M̃ = DMD.
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Figure 4: Graph of ξ(t) for different θ ∈ [0, 1)

It is easy to see that application of the Lemma 5 to the system (9), leads to

a = D(θνDr0µ−1/2) = D2(θνr0µ−1/2)

b = D((1− θ)v−1 − v)

u = dfx

z = dfs .

Then, by Lemma 5 - (3), we have

||Ddfx||2 + ||Ddfs ||2 ≤ ||D((1− θ)v−1 − v)||2 + 2||D2(θνr0µ−1/2)

+D((1− θ)v−1 − v)|| ||D2(θνr0µ−1/2)||.
(14)

After applying the following norm facts to (14),

(i) ||Ddfx|| ≤ ||D|| ||dfx|| , ||Ddfs || ≤ ||D|| ||dfs ||
(ii) ||D2(θνr0µ−1/2)|| ≤ ||D||2||θνr0||µ−1/2

(iii) ||D((1− θ)v−1 − v)|| ≤ ||D|| ||(1− θ)v−1 − v||

where ||D|| represents a matrix norm, we obtain

||dfx||2 + ||dfs ||2 ≤ ||(1− θ)v−1 − v||2

+ 2
(
||θνr0µ−1/2||+ ||(1− θ)v−1 − v||

)
||D(θνr0µ−1/2)||.

(15)

To find the upper bound for ||dfx||2 + ||dfs ||2 we need to find upper bounds for
||D(θνr0µ−1/2)|| and ||(1− θ)v−1 − v|| respectively.



10 Goran Lešaja and Mustafa Ozen

Using the definitions of D, and v, and relationship between norms, we obtain the
following upper bound for ||D(θνr0µ−1/2)||

||D(θνr0µ−1/2)|| = θν
√
µ
||Dr0||

=
θν
√
µ
||X1/2S−1/2r0||

=
θν
√
µ
||
√

x

s
r0||

≤ θ
√
µ

µ

µ0
||
√

x

s
r0||1 −→ (Since ν = µ/µ0)

=
θ

µ0
||
√

µx

s
r0||1

=
θ

µ0
||
√

µ

xs
xr0||1 −→ (Since

√
µ

xs
=

1

v
)

≤ θ

µ0

1

vmin
||xr0||1 −→ (Since

∣∣∣∣ 1vixir
0
i

∣∣∣∣ ≤ 1

vmin
|xir

0
i | ≤

1

vmin
|xi| |r0i |)

≤ θ

µ0

1

vmin
||x||1||r0||∞.

Hence,

||D(θνr0µ−1/2)|| ≤ θ

µ0

1

vmin
||x||1||r0||∞. (16)

Using initial assumption (2), we have

r0 = s0 −Mx0 − q

= γde− γpMe− q

= γd

(
e− γp

γd
Me− 1

γd
q

)
.

Thus, we can bound ||r0||∞ as follows

||r0||∞ = γd||e−
γp
γd

Me− 1

γd
q||∞

≤ γd

(
1− γp

γd
||Me||∞ − 1

γd
||q||∞

)
.

By assuming max{||Me||∞, ||q||∞} ≤ γd, we have that

||r0||∞ ≤ γd(1 + 1 + 1) = 3γd. (17)

The above assumption is in addition to the assumption (2). It is not restrictive and
it is used to streamline the convergence analysis.
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Substituting the upper bound for ||r0|| into (16), we obtain the following upper
bound for ||D(θνr0µ−1/2)||

||D(θνr0µ−1/2)|| ≤ θ

µ0

1

vmin
||x||13γd

=
θ

γdγp

1

vmin
3γd||x||1

=
3θ

γp

||x||1
vmin

.

(18)

The upper bound for ||(1− θ)v−1 − v|| is found as follows

||(1− θ)v−1 − v||2 = ||(1− θ)v−1||2 − 2(1− θ)(v−1)T v + ||v||2

= (1− θ)2||v−1||2 − 2(1− θ)n+ ||v||2

= (1− θ)2||v−1||2 − 2n+ 2θn+ ||v||2

≤ ||v−1||2 − 2n+ ||v||2 + 2θn

= ||v−1 − v||2 + 2θn

= 4δ(v)2 + 2θn.

Hence, we have
||(1− θ)v−1 − v|| ≤

√
4δ(v)2 + 2θn. (19)

Substituting (18) and (19) into (15), we obtain the following upper bound for ||dfx||2+
||dfs ||2

||dfx||2 + ||dfs ||2 ≤
(
4δ(v)2 + 2θn

)
+ 2

(
3θ

γp

||x||1
vmin

+
√
4δ(v)2 + 2θn

)
3θ

γp

||x||1
vmin

. (20)

Consequently, finding the upper bound for ||dfx||2+ ||dfs ||2, reduces to finding the
upper bound and the lower bound for ||x||1 and vmin respectively. This is achieved
by using the following lemma, proof of which can be found in [16].

Lemma 6. Let
q(δ) = δ +

√
δ2 + 1.

Then, the following inequalities hold

(i) q−1(δ) ≤ vi ≤ q(δ)

(ii) ||x||1 ≤ (2 + q(δ))nγp, ||s||1 ≤ (2 + q(δ))nγd.

Using Lemma 6, the upper bound obtained in (20) becomes

||dfx||2 + ||dfs ||2 ≤ (4δ2 + 2θn) +
18θ2

γ2
p

||x||21
v2min

+
6θ

γp

√
4δ2 + 2θn(2 + q(δ))q(δ)

= (4δ2 + 2θn) + 18θ2n2(2 + q(δ))2q2(δ)

+ 6θn
√
4δ2 + 2θn(2 + q(δ))q(δ).

(21)
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Finally, we obtain the the upper bound for δ(vf ) in terms of δ and θ

δ(vf ) ≤ 1

2

√
(n− 1)ξ(0) + max{ξ(ω(v)), ξ(−ω(v))} ≤ τ, (22)

where

ω(v) ≤ (2δ2 + θn) + 9θ2n2(2 + q(δ))2q2(δ) + 3θn
√
4δ2 + 2θn(2 + q(δ))q(δ)

and
q(δ) = δ +

√
δ2 + 1.

Since δ ≤ τ , δ is replaced with τ in the above upper bounds (22). Now, we need
to find specific values of τ and θ such that (22) is satisfied. Analytic estimate of these
values is difficult, hence, we have performed a numerical estimate using MATLAB
code to find specific τ and θ values satisfying the inequality (22). The results are
given in the Table 1.

θ τ δ(vf ) : n = 2 n = 100 n = 1000
1

39+n
1
5 0.1806 0.0751 0.0468

1
40+n

1
4 0.2483 0.1060 0.0721

1
53+n

1
3 0.3272 0.1787 0.1329

1
170+n

1
2 0.4981 0.4371 0.3708

Table 1: Proximity of new iterates to µ-center for a certain choice of τ and θ

It can be observed from the Table 1, that the estimate is tighter for smaller
values of n, where n is a dimension of the problem, while, as n increases, the new
iterates get closer to the central path. The above discussion can be summarized in
the following theorem.

Theorem 3.3. Let δ and τ be one of the pairs in the Table 1 and (x, s) be a
current iterate of the Algorithm with δ(x, s;µ) ≤ τ . Then, after the feasibility step
of the Algorithm, the point (xf , sf ) is strictly feasible and satisfies (22), that is,
δ(xf , sf ;µ+) ≤ τ . Thus, (xf , sf ) is the new iterate, (x+, s+) = (xf , sf ).

The above theorem essentially states that the Algorithm is well defined.

4. Complexity analysis

In this section, we calculate an upper bound on the required number of iterations of
the Algorithm to obtain ϵ- approximate solution of monotone−LCP (1). We begin
with the following lemma proof of which can be found in [16].

Lemma 7. The following equation and inequalities hold:

(i) △ xT △ s ≤ µδ2

(ii) xfsf = µe+△x△ s

(iii) (xf )T sf ≤ µ(n+ δ2).
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The above Lemma 7 is used in the proof of the theorem below that gives the upper
bound on the required number of iteration for the Algorithm to find ϵ-approximate
solution of monotone− LCP (1).

Theorem 4.1. Let θ = 1
39+n , τ = 1

5 and µ0 = (x0)T s0

n . Then, the Algorithm

requires at most (39 + n) log 51(x0)T s0

50ϵ iterations to reach the ϵ-approximate solution
of monotone− LCP (1).

Proof. Let xk and sk be the k-th iterates of the algorithm. Then,

xT
k sk ≤ µk(n+ δ2)

≤ µk(n+
1

25
)

= (1− θ)kµ0(n+
1

25
)

= (1− θ)k
(x0)T s0

n
(n+

1

25
)

≤ (1− θ)k
(x0)T s0

n
(n+

1

50
n) (Since n ≥ 2)

= (1− θ)k
(x0)T s0

n

51

50
n

= (1− θ)k(x0)T s0
51

50
≤ ϵ.

Then by taking the logarithm of both sides, we have

log

[
(1− θ)k(x0)T s0

51

50

]
≤ log ϵ

log(1− θ)k + log(x0)T s0 + log
51

50
≤ log ϵ

log(1− θ)k ≤ log ϵ− log(x0)T s0 − log
51

50

k log(1− θ) ≤ log
50ϵ

51(x0)T s0

−k log(1− θ) ≥ − log
50ϵ

51(x0)T s0
.

Since − log(1− θ) ≥ θ, we obtain the desired iteration bound

kθ ≥ log
51(x0)T s0

50ϵ

k ≥ 1

θ
log

51(x0)T s0

50ϵ

k ≥ (39 + n) log
51(x0)T s0

50ϵ
.

�
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Similarly, we calculate the required number of iterations for other θ and τ values
listed in the Table 1. The results are shown in the Table 2.

θ τ number of iterations
1

40+n
1
4 (40 + n) log 33(x0)T s0

32ϵ
1

53+n
1
3 (53 + n) log 19(x0)T s0

18ϵ
1

170+n
1
2 (170 + n) log 9(x0)T s0

8ϵ

Table 2: Required number of iterations for different τ and θ values

Hence, we have the following corollary.

Corollary 4.2. Let δ and τ be one of the pairs in the Table 1. Then the Algorithm
is globally convergent and achieves the ϵ-approximate solution of monotone− LCP
(1) in at most O(n log n

ϵ ) iterations.

Recall that the iteration bound of the old version of the algorithm is

12n log
33(x0)T s0

32ϵ
.

It is not hard to see that both iteration bounds have the same order of magnitude
stated in the above Corollary 4.2; however, constant-wise the iteration bound of the
new version of the method is much better than the old version for sufficiently large
n.

It is worth noting that the iteration bounds of both old and new versions of the
algorithm match the best known iteration bound for these type of methods as far as
the order of magnitude is concerned.

5. Numerical Results

In this section, we present preliminary numerical results of the implementation of the
new and old version of the algorithm for the set of randomly generated monotone−
LCPs. Recall that the the old version of the algorithm, consists of one feasibility
step and a few centering steps at each iteration, while the improved version of the
algorithm consists of only one feasibility step. The pseudo-code of the new version
of the algorithm is outlined in Figure 3 and the pseudo-code of the old version is
outlined in [13]. Both versions are implemented in MATLAB and run on the desktop
computer with Intel(R) core(TM) processor and 4 Gb of RAM running Windows 7
operating system.

First, the old version of the algorithm and the improved version of the method
are compared . Comparison is given in the Table 3. The number of iterations (No. of
it.) represents average number of iterations while the (CPU time) represents average
CPU time of all instances of the problems of the given dimension. For the improved
version of the algorithm, we use θ = 1

40+n and τ = 1
4 , while for the old version of the

algorithm the value of θ is θ = 1
12n while the value of τ is the same. The accuracy

for all the cases is set at ϵ = 10−4.



Improved full-Newton-step IIPM for linear complementarity problems 15

Size Old version Old version Improved version Improved version
No. of it. CPU time No. of it. CPU time

3× 3 385 1.3239× 10−2 439 1.9803× 10−2

5× 5 716 3.2589× 10−2 506 2.5870× 10−2

10× 10 1626 7.7880× 10−2 676 3.7156× 10−2

100× 100 23917 16.955375 2697 1.894107

Table 3: θnew = 1
40+n

, θold = 1
12n

, τ = 1
4
, ϵ = 10−4

As expected, Table 3 shows that the improved version of the algorithm requires
less iterations and less CPU time in almost all the cases. The exception is the
low dimensional set of problems (3x3). However, as the dimension increases the
improved version of the algorithm becomes much more efficient than the old version.
The reason is twofold. The θ value essentially controls the reduction of µ (optimality)
and ν (feasibility); the bigger the θ, the bigger the reduction, hence, fewer iterations
are needed. For the smaller values of n, the θ value the old version of the algorithm,
θold = 1

12n is bigger than the θ value of the new version, θnew = 1
40+n . It starts to

be the opposite with n ≥ 4 with the gap increasing as n increases. Furthermore, in
the new version the centering steps are eliminated which significantly contributes to
the better performance of the new version in comparison to the old version of the
algorithm.

Next, we investigate the effects of different values of θ parameter on the per-
formance of the improved version of the algorithm. In theory, for constant values
of θ the convergence of the Algorithm is not guaranteed. Nevertheless, we run the
MATLAB implementation of the Algorithm with θ = 0.2, 0.5, 0.9 on the set of test
problems of different dimensions with accuracy being again ϵ = 10−4. Results are
shown in Table 4:

Size θ = 1
40+n θ = 0.2 θ = 0.5 θ = 0.9

2× 2 417 45 15 5
5× 5 488 54 17 6
10× 10 577 61 20 7
100× 100 1938 87 28 9
1000× 1000 16795 113 37 X

Table 4: Number of iterations for different θ values

It can be observed that, although the convergence of the algorithm for the con-
stant values of θ is not guaranteed, the method was able to solve almost all instances
of the problem for all values of θ except the problem of the largest dimension for the
largest value of θ = 0.9. The probable reason is that the reduction taken was too
aggressive. As expected, the number of iterations reduces dramatically as the value
of θ increases. Moreover, the number of iterations does not increase significantly as
the dimension of the problem increases.

The preliminary implementation and numerical testing indicate that the Algo-
rithm has certain computational merit even for the values of θ that guarantee con-
vergence and especially for the constant values of θ, if one is willing to take a low risk
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that method may not converge to the solution for some instances of the problem.
Additional details on the implementation of the Algorithm and numerical tests can
be found in [16].

More sophisticated implementation and more numerical testing are needed to
come to the more definite conclusions about the practical behavior of the algorithm.

6. Concluding remarks

In this paper an improved version of the Full-Newton-Step Infeasible Interior-Point
Method for monotone − LCP is considered. The method is outlined in Figure 3
and throughout the text we referred to it as simply the Algorithm. The old version
of the algorithm was discussed in [13, 5]. In the old version of the method, each
iteration consisted of one feasibility step and few centering steps (at most two)
per iteration. The centering steps were necessary to bring the point obtained by
feasibility step to the τ -neighborhood of the central path again. In the improved
version of the method, with the suitable choice of the threshold parameter τ and
barrier parameter θ, it is guaranteed that after one feasibility step, the new iterate
is feasible and immediately in the τ -neighborhood of the central path thanks to the
much tighter proximity estimate which is based on the new Lemma 3 introduced in
[18]. Thus, the centering steps are eliminated.

The good features of the old version of the method are still preserved in the new
version. The Algorithm does not require strictly feasible starting point (infeasible
algorithm) and it uses full-Newton-steps, thus, avoiding calculations of a step-size
at each iteration. Furthermore, a nice feature of both versions of the method is that
they work on simultaneously reducing infeasibility and achieving optimality.

The Algorithm is globally convergent for the values of the threshold and barrier
parameters listed in the Table 1. Furthermore, the Algorithm matches the best
known iteration complexity for these types of methods, in order of magnitude, which
is O(n log n

ϵ ). Although the order of magnitude of the iteration bounds of the old
and new version of the method is the same, constant-wise the iteration bound of the
improved version of the method is much better than the old version for sufficiently
large n.

The disadvantage is that the Algorithm is still a short-step method, because
θ = O

(
1
n

)
. However, the preliminary implementation and numerical testing of the

Algorithm indicate that the method has certain computational appeal even for the
values of θ that guarantee convergence. For the constant values of θ, the Algorithm
becomes long-step method, but in that case, the global convergence of the method
is no longer guaranteed. However, the initial numerical testing shows that in most
instances the Algorithm still converges and converges very fast, with number of
iterations reducing dramatically as the value of θ increases. Moreover, the number
of iterations does not increase significantly as the dimension of the problem increases.
Furthermore, numerical testing shows that the new version of the method performs
much better than the old version. More sophisticated implementations and more
numerical testing are needed to have a better idea about the practical behavior of
the algorithm.



Improved full-Newton-step IIPM for linear complementarity problems 17

In addition to more numerical testing, some directions for further research include
generalization of the method to more general classes of LCPs such as P∗(κ)-LCP
and LCPs over symmetric cones.
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