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Abstract. This paper develops a BCC input relaxation model for identifying input 
congestion as a severe form of inefficiency of decision-making units in fuzzy data envelop-
ment analysis. The possibility approach is presented to obtain the models equivalent to 
fuzzy models. We use a one-model approach to determine input congestion based on the 
BCC input relaxation model. A numerical example is given to illustrate the proposed mo-
del and identify the congestion with precise and imprecise data. The proposed model is 
also used to determine the congestion in 16 hospitals using four fuzzy inputs and two fuzzy 
outputs with a symmetrical triangular membership function. 
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1. Introduction 
 
Data envelopment analysis (DEA) is a mathematical programming technique for 
evaluating the relative performance of decision-making units (DMUs), widely used 
in almost every field, such as agriculture, banking, benchmarking, economy, edu-
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cation, environment, government, health, human resources, information techno-
logy, insurance, manufacturing, marketing, operations, public policy, regulation, 
retail, services, and tourism, having emerged as a powerful management science 
tool [3]. DEA was introduced by Charnes, Cooper, and Rhodes [4], and the first 
model in DEA was called the CCR model. Banker, Charnes, and Cooper [1] added 
the convex constraint to the CCR model and developed a new model that was 
called the BCC model.  
Dealing with uncertainty is unavoidable in modelling and measuring performance. 
Incorporating uncertainty in DEA modelling has been introduced by many 
researchers. Recent details can be found in Charles and Kumar [2], Shiraz, Char-
les, and Jalalzadeh [30], and Tsolas and Charles [32].  
One of the recent interests is focusing on discussing congestions in DEA modelling, 
under uncertain environments. Input congestion, as a severe form of technical in-
efficiency, has been investigated by many researchers and different models have 
been employed in DEA to identify the source of the input congestion and estimate 
its values with crisp and imprecise data. For example, Cooper et al. [9] proposed 
a one-model approach for determining technical inefficiency and congestion in the 
inputs of DMUs with associated measures in DEA. Cooper et al. [11] extended 
the ordinary DEA models for identifying and determining the input congestion to 
chance-constrained programming approaches with stochastic inputs and outputs 
in DEA. Kheirollahi et al. [19] used a BCC input relaxation model to identify the 
input congestion of Iranian hospitals using stochastic DEA with chance-constra-
ined programming approaches. Flegg and Allen [15] applied DEA models to 
analyze and determine the input congestion in new British universities. Noura et 
al. [27] introduced a new method, called Noura’s approach, to identify and 
determine the amount of the input congestion of DMUs in DEA. Noura’s approach 
requires considerably fewer computations when compared to the other models. 
Färe and Grosskopf [14] focused on clarifying the distinction between the appro-
aches to modeling technology and measuring congestion, differentiating between 
weak disposability and the law of variable proportions. Finally, Saljooghi and 
Rayeni [29] investigated a methodology to measure the undesirable output 
congestion, as well as the input congestion, from both theoretical and empirical 
perspectives. To this end, they applied their proposed approach to identify conges-
tion and measure the undesirable output in the Sistan and Baluchistan Universi-
ty’s educational departments in Iran.  
Traditionally, DEA models require accurate and crisp data, since DEA is a 
methodology focused on the frontier of production possibility set (PPS). A few 
changes in the data can change the efficient frontier significantly. Therefore, some 
authors proposed fuzzy approaches to assess the efficiency of homogeneous DMUs, 
determining the congestion and estimating the returns to scale. For instance, 
Khodabakhshi, Gholami, and Kheirollahi [22] used an additive model to provide 
an alternative approach for estimating the returns to scale in both stochastic DEA 
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and fuzzy DEA. Lertworasirikul et al. [25] introduced the possibility, credibility, 
and necessity approaches to solve fuzzy DEA models. They explained that by 
using the possibility, credibility, and necessity approaches, the relationship 
between the primal and dual models of the fuzzy BCC models is revealed and 
fuzzy efficiency can be constructed. Khodabakhshi and Hejrizadeh [23] developed 
the fuzzy version of the input relaxation model by using some ranking methods  
based on the comparison of  -cuts. Rostamy-Malkhalifeh et al. [28] proposed a 
new approach for determining the input congestion of DMUs with fuzzy inputs 
and outputs. Hosseinzadeh Lotfi et al. [16] used the one-model approach to 
estimate the input congestion in five Iranian banks, with two stochastic inputs 
and two outputs. A review of the different approaches to identifying the input 
congestion of DMUs in DEA can be found in Khodabakhshi, Hosseinzadeh Lotfia, 
and Aryavash [24]. 
The aim of the present paper is to determine the input congestion of DMUs using 
a BCC input relaxation model with precise and imprecise data. The possibility 
approach is used to convert the nonlinear model to a linear model. We assume 
that there are n DMUs, DMUj, j = 1, 2, ..., n, wherein each of them produces s 
nonnegative different outputs rjy (r = 1, 2, ..., s), using m nonnegative different 
inputs ijx (I = 1, 2, ..., m). Sometimes, in evaluating the performance of the 
DMUs, we need to decrease some inputs and increase other inputs to increase 
outputs. To this end, the BCC input relaxation model is applied as follows [17, 
21]: 
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In the above model, the symbol 0j  designates one of the DMUj as the DMUo 
to be evaluated relative to all the data (including the data on DMUj = DMUo), 
where 1  is a real number. The term  in the objective function of model (1) 
is a non-Archimedean, which is smaller than any positive real number, and which 
is used in order to optimize the slacks and ensure that all of the slacks are 
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considered in the optimal solution. The variables 
1is  and 

2is  are the slacks for 
the decrement and increment of the ith input, respectively. Finally, 

rs  is a slack 
for the increment of the rth output. 
 
Definition 1 (Efficiency): DMUo is efficient under model (1) if the following 
conditions are satisfied: 
1) 1*  ;         
2) 0**

2
*

1  
rii sss ; for i = 1, 2, ..., m and r = 1, 2, ..., s. 

Here and hereafter * is used to designate an optimal value. 
 
The rest of this article is organized as follows: In Section 2, the definition of con-
gestion and the one-model approach based on the relaxed combination of inputs 
for determining congestion are provided, along with a numerical example in the 
subsequent Section 3. Section 4 develops the one-model approach to the BCC 
input relaxation model with the triangular fuzzy data. A fuzzy numerical example 
is also presented in Section 5 to evaluate the efficiency and determine the conges-
tion via a fuzzy BCC input relaxation model. The proposed model is then applied 
to identify the input congestion of 16 hospitals by using fuzzy inputs and outputs 
with a symmetrical triangular membership function. Conclusions are provided in 
Section 7. 
 
2. Congestion 
    
Congestion, as the severe form of inefficiency, occurs when the excessive amounts 
of input cause a reduction in the output of DMUs. Researchers have investigated 
the input congestion of DMUs with precise and imprecise inputs and outputs, in 
the literature. Among the advantages of identifying and managing congestion, we 
can mention the increase in output, as well as the elimination of the increase in 
the input of DMUo. In DEA, many models have been introduced to identify input 
congestion of DMUs. The most famous model, which is called the one-model 
approach, was introduced by Cooper et al. [11]. This model was then expanded 
into the BCC input relaxation model.  
In this paper, the one-model approach to the BCC input relaxation model is 
applied to identify the input congestion with fuzzy inputs and outputs and the 
possibility approach is used to obtain the deterministic models equivalent to the 
fuzzy models. Cooper et al. [10] defined congestion as follows: 
 
Definition 2 (Congestion): Congestion is present in the performance of DMUo, 
the DMU being evaluated, when input increases give rise to decreases in the 
outputs that are maximally attainable or, conversely, when input decreases are 
accompanied by increases in the output amounts that are maximally attainable. 
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We propose a BCC input relaxation model for identifying the congestion of the 
DMUs, following Cooper et al. [10]: 
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The congestion amount of the input of DMUj, j = 1, 2, ..., n, is represented by

*c
is
 in model (2), in accordance with the following theorem [20]. 

 
Theorem 1: Congestion is present if and only if in the optimal solution 

)s,,,,( *
r

*
2

** 
i

c
i ss of model (2), at least one of the following conditions is 

satisfied:  
1) * > 1 and there is at least one  *s c

i 0, for i = 1, 2, ..., m; 

2) There exists at least one *
rs 0, for r = 1, 2, ..., s, also one  *s c

i 0, for i = 
1, 2, ..., m. 
 
Both the conditions of Theorem 1 tell us that DMUo is inefficient. That is, if a 
DMU has input congestion, then it is inefficient, but the reverse is not true. 
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Figure 1: Input congestion 

 
 
3. Numerical example 
 
Now, we use the BCC input relaxation model (2) to identify the input congestion 
of the DMUs A, B, C, D, E, F, and G, as depicted in Figure 1. These DMUs apply 
one input to produce one output. For point A in Figure 1, we apply model (2) to 
obtain the following problem: 
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The optimal solution of the above problem is 1* C , 4 , 0* s , 2*

12 s

, 0* cs  and the other variables are zero. Based on part 1 of Theorem 1, since 

14  , DMU A is inefficient and since 0* cs , this DMU doesn’t have 
congestion in its input. In addition, we have 2*

12 s ; therefore, this DMU can 
increase its input by two units without worsening its efficiency. For DMU B, the 
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right-hand side of the first and second constraints in problem (3) is modified to 2 
and 2 , respectively. In this case, the optimal solution is 1* C , 1 ,

0* s , 1*
12 s , and 0* cs . This optimal solution shows that Theorem 1 is 

not satisfied and there is no congestion present in DMU B. Also, since 1*
12 s , 

DMU B can increase its input by one unit without worsening its efficiency. For 
DMU C, the optimal solution of the modified problem is 1* C , 1 , 

0* s , 0*
12 s , and 0* cs . None of the conditions of Theorem 1 is satisfied. 

Thus, this DMU is efficient and there is no congestion present in its input. The 
optimal solution of the modified problem for DMU D is 1* C , 2 , 0* s

, 0*
12 s , and 2* cs . Since 2  and 2* cs , part 1 of Theorem 1 is 

satisfied and congestion is present in DMU D and the congestion amount in its 
input is 2* cs . Finally, the results of using model (2) for all DMUs in Figure 
1, are presented in Table 1. 

 

Table 1: Determining congestion by the BCC input relaxation model (2) 
 
 
4. Input relaxation congestion model in fuzzy DEA 
   
Uncertainty is inevitable and commonly exists in many decision-making problems. 
For this reason, the ordinary set theory has been developed into the fuzzy set 
theory, in which the problem of uncertainty is studied. The fuzzy set theory was 
first introduced by Zadeh [34], suggesting that fuzzy sets can be used as a basis 
for the theory of possibility similar to the way that the measure theory provides 
a basis for the theory of probability. More information about the possibility theory 
can be found in Dubois and Prade [12].  
Zadeh [34] introduced a fuzzy variable, which is associated with a possibility dis-
tribution in the same manner that a random variable is associated with a 

DMUs *  *cs  
*

12
s         

*s  
A 4.000 0 1         0 
B 1.000 0 1 0 
C 1.000 0 0 0 
D 2.000 2 0 0 
E 1.000 1 0 0 
F 1.667 1 0 0 
G 1.667 1.5 0 0 
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probability distribution. Using the possibility theory, the possibilities of the fuzzy 
events (i.e., fuzzy constraints) can be determined. In this section, following 
Jahanshahloo and Khodabakhshi [17], a BCC input relaxation model for impro-
ving the output with fuzzy input and output data (FIR) is given as follows: 
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The concept of chance-constrained programming (CCP), which was introduced 
by Charnes and Cooper [5], is adopted to solve the FIR model (4). CCP deals 
with uncertainty by specifying the desired levels of confidence for which the 
constraints hold. Using the concepts of the CCP and the possibility of the fuzzy 
events or fuzzy constraints, the FIR model (4) becomes the possibility input 
relaxation (PIR) model (5): 
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where ]1,0[r , r = 1, 2, ..., s, and ]1,0[i , i = 1, 2, …, m, are prespecified 
acceptable levels of possibility and  is the possibility measure from )( iP  to [0, 
1] in which i  is an arbitrary set and )( iP  is the collection of all subsets of i
. Let ],...,,,,...,,[ 2121 sm   and let us define an - possibilistic 
efficient DMU and an  - possibilistic inefficient DMU, as follows:  
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Definition 3 (Fuzzy efficiency): DMUo with fuzzy inputs and outputs is  -
possibilistic efficient if and only if the following two conditions hold: 
1) 1*  , 
2) The slack values are all zeros for all optimal solutions.  
 
However, to make a reasonable efficiency comparison of the DMUs, the possibility 
levels of the constraints   in the PIR model (5) should be set at the same level. 
The following lemma is useful in finding the optimal solution of the possibilistic 
BCC (PBCC) model (5). 
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The PBCC model (5) can be transformed into: 
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Depending upon the membership functions of the fuzzy parameters in model (6), 
the model may take the form of a linear programming or a nonlinear one. Based 
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on lemma 1 and following Liu [26], for a trapezoidal fuzzy number 
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Therefore, when inputs and outputs are trapezoidal fuzzy numbers, by adding the 
slack variables, model (6) becomes a linear programming model, as follows: 
                

                   )(     
1 1

2
1

1  
 





 
m

i

s

r
ri

m

i
i sssMaximize               

 ,0)~~()~~()1(toSubject U
1

1

U
0

1

 


 rrorj

n

j
jrrorj

n

j
jr syyyy   

    r = 1, 2, …, s,                                                  (7) 

,0)~~()~~()1( 21
L
1

1

L
0

1

 


 iiioij

n

j
jiioij

n

j
ji ssxxxx   i = 1, 2, …, m,    

                                ,1
1




n

j
j                           

            ,0,,, 21 
jrii sss   i = 1, 2, …, m; r = 1, 2, …, s; j= 1, 2, …, n. 

 

Model (7) is a generalization of the BCC model (1) with fuzzy inputs and outputs. 
In a similar way, one can generalize the one-model approach to congestion 
presented in model (2) to the following version: 
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Therefore, we have the following theorem as an obvious generalization of Theorem 
1: 
 
Theorem 2: Suppose ),,,( **

2
* 

ri
c

i sss is the optimal solution of model (8). 
Then, at the possibility level , DMUo has input congestion if and only if at least 
one of the following conditions is satisfied: 
1) 1 , and there exists at least one 0c

is , for i = 1, 2, …, m. 

2) There exists at least one 0
rs , for r = 1, 2, …, s, also one 0c

is , for i = 
1, 2, …, m. 
 
5. Fuzzy numerical example 
   
We present a numerical experiment to apply the possibility approach to identify 
the input congestion via the BCC input relaxation model (8), when inputs and 
outputs are fuzzy numbers. The example is taken from Guo and Tanaka [18]. The 
fuzzy inputs and fuzzy outputs are given in Table 2. These fuzzy inputs and 
outputs have symmetrical triangular membership functions, a special case of the 
trapezoidal membership functions. The membership functions are denoted by (c, 
d) where c is the center and d is the spread. In this example, all the fuzzy 
constraints are satisfied with the same possibility level, i.e, 

ms   ...... 2121 . 
 

DMU DMU1 DMU2 DMU3 DMU4 DMU5 
Input 1 (4,0.5) (2.9,0) (6.9,0.5) (4.1,0.7) (8.5,0.6) 
Input 2 (5.1,0.2) (1.5,0.1) (8.6,0.4) (2.3,0.4) (7.1,0.5) 

Output 1 (4.6,0.2) (5.2,0) (3.2,0.3) (2.9,4) (5.1,0.7) 
Output 2 (4.1,0.3) (4.5,0.2) (5.1,0.8) (5.7,0.2) (7.4,0.9) 

Table 2: DMUs with two fuzzy inputs and two fuzzy outputs 
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The results for the possibility levels 0, 0.25, 0.5, 0.75, and 1 are provided in Table 
3. In this Table, the numbers in parentheses represent the efficiency value, the 
inputs congestions of the corresponding ),,( *

2
*

1
* cc ss  , evaluated at the given 

possibility level α. The interpretation of the results is as follows. At the possibility 
level 1, DMU2 and DMU5 are possibilistically efficient and DMU1, DMU3, and 
DMU4 are possibilistically inefficient, and their congestion values corresponding 
to the first input are 0.26, 0.455, and 0.43, respectively. Note that in the second 
input, there is no congestion for these DMUs. From Table 3, DMU2 and DMU5 
are possibilistically efficient at all the possibility levels, whereas DMU3 and DMU4 
are possibilistically inefficient at some possibility levels. In addition, for DMU3 
and DMU4 there is congestion at some possibility levels, and DMU1 is inefficient 
at all the possibility levels. 
 
 DMU1 DMU2 DMU3 DMU4 DMU5 
0 (1.072,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) 

0.25 (1.079,0.226,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) 
0.5 (1.088,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) 
0.75 (1.092,0.18,0) (1,0,0) (1.057,0.494,0)  (1,0,0) (1,0,0) 
1 (1.096,0.260,0) (1,0,0) (1.057,0.455, 0) (1.1,0.43,0) (1,0,0) 

Table 3: The results of the efficiency values and congestion at 5 possibility levels 
 
 
6. Empirical example 
 
Now, we apply the fuzzy congestion model (8) to identify the input congestion; 
to this end, we employ the technical data for 16 hospitals, which are presented in 
Table 4. These fuzzy inputs and fuzzy outputs have symmetrical triangular 
membership functions. The data set is taken from Tone and Sahoo [31]. The 
inputs are the total hours worked by doctors in the survey period (I1), total hours 
worked by nurses (I2), total hours worked by technical workers (I3), and total 
hours worked by office staff (I4). The outputs are the total medical insurance 
points for outpatients (O1) and the total medical insurance points for inpatients 
(O2).  
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Note: I1, I2, I3, and I4 denote the inputs; O1 and O2 denote the outputs. 

Table 4: Imprecise data for four inputs and two outputs, for 16 hospitals 
 

The computational results of the BCC input relaxation model (8) for determining 
the input congestion of hospitals are shown in Table 5. The first column of Table 
5 shows the hospital’s number and columns 2, 3, and 4 show the computational 
results of model (8) at the possibility levels of 0, 0.5, and 1, respectively. In Table 
5, the numbers in parentheses are the efficiency score, * , the congestion of the 
third and fourth input ( *

3
cs  and )*

4
cs  , and the slacks of the outputs ( *

1
s and 

*
2
s ) in evaluating the hospitals. The congestion for the first and second inputs 

for all of the hospitals has not been shown, due to their absence. Based on the 
results provided in Table 5, hospitals 5, 7, and 15 have the optimal solutions 

1*  , 0*
3 cs , 0*

4 cs , 0*
1 s , and 0*

2 s ; so these hospitals don’t have 
input congestion. The other hospitals with the efficiency score of 1*  are 
inefficient at all the possibility levels. In fact, in efficient units, the score of 
efficiency * , is equal to one and all the slacks of input and output, including

0* cs , congestion, are zero.  
 

 
 

DM-
Us 

Hospi-
tals 

I1 I2 I3 I4 O1 O2 

1 H1 (995, 17) (6205, 262) (1375, 35) (2629, 49) (4127, 83) (1678, 17) 
2 H2 (917,15) (5898,248) (1379,37) (2047,37) (3721,77) (1277,13) 
3 H3 (3178,91) (10049,349) (3615,85) (3511,61) (2706,27) (2051,20) 
4 H4 (813,14) (5833,233) (1124,34) (1730,27) (2176,21) (1538,15) 
5 H5 (1236,21) (8639,309) (2486,56) (4990,92) (5220,105) (20426,204) 
6 H6 (1146,11) (7610,289) (1600,30) (3589,59) (3517,65) (1856,19) 
7 H7 (705,13) (5600,200) (1557,27) (3623,63) (2352,24) (20606,206) 
8 H8 (2871,89) (11524,404) (2880,51) (2452,52) (1755,18) (1664,17) 
9 H9 (1089,20) (8998,228) (1730,40) (2823,53) (4412,89) (2334,24) 
10 H10 (2032,52) (9383,243) (2421,47) (4454,84) (5386,111) (2080,21) 
11 H11 (1414,24) (10468,263) (2140,57) (3649,69) (5735,118) (2691,27) 
12 H12 (1967,29) (11260,272) (2759,69) (3178,48) (6079,125) (2804,29) 
13 H13 (1851,28) (9880,250) (2335,55) (4570,90) (5893,113) (2495,26) 
14 H14 (3100,102) (15649,479) (5487,127) (2940,55) (5248,103) (3692,37) 
15 H15 (5016,176) (18010,480) (4008,98) (3567,60) (7800,131) (4582,47) 
16 H16 (1924,35) (12682,452) (2490,63) (2975,53) (6040,123) (3396,35) 
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Hospitals ),,,,( *
2

*
1

*
4

*
3

*  ssss cc  with possibility level   

0  5.0  1  
H1 (1.88,0,0,0,1436) (1.89,0,0,0,1423) (1.89,0,0,0,1411) 
H2 (2.09,0,0,0,1935) (2.09,0,0,0,1920) (2.10,0,0,0,1905) 
H3 (2.83,0,0,0,0) (2.82,0,0,0,0) (2.81,0,0,0,0) 
H4 (3.54,0,0,0,0) (3.53,0,0,0,0) (3.52,0,0,0,0) 
H5 (1,0,0,0,0) (1,0,0,0,0) (1,0,0,0,0) 
H6 (2.21,0,23,0,478) (2.22,0,23,0,471) (2.22,0,22,0,466) 
H7 (1,0,0,0,0) (1,0,0,0,0) (1,0,0,0,0) 
H8 (4.24,0,0,0, 0) (4.23,0,0,0,0) (4.22,0,0,0,0) 
H9 (1.76,0,0,0,474) (1.76,0,0,0,466) (1.77,0,0,0,456) 
H10 (1.44,0,863,0,1599) (1.45,0,875,0,1584) (1.45,0,887,0,1570) 
H11 (1.36,0,73,0,946) (1.35,0,78,0,934) (1.36,0,82,0,922) 
H12 (1.28,0,0,0,1001) (1.28,0,0,0,993) (1.28,0,0,0,984) 
H13 (1.32,0,973,0,1300) (1.32,0,988,0,1290) (1.32,0,1003,0,1280) 
H14 (1.46,1524,0,0,0) (1.46,1750,0,0,0) (1.46,1557,0,0,0) 
H15 (1,0,0,0,0) (1,0,0,0,0) (1,0,0,0,0) 
H16 (1.29,0,0,0,214) (1.29,0,0,0,205) (1.29,0,0,0,196) 

Table 5: The results of efficiency values and input congestion at 3 possibility levels 
 
As we can see from Table 5, hospital 6 has an efficiency score of more than one, 
which means that this hospital is inefficient at all the possibility levels.  At the 
possibility level 0 , the optimal solution of this hospital is 21.2*  , 

0*
3 cs , 23*

4 cs , 0*
1 s , and 478*

2 s . This optimal solution satisfies 
condition (1) of Theorem 2, so in the performance evaluation of hospital 6, the 
fourth input, namely, the total hours worked by office staff, has congestion, and 
the amount of its congestion is 23*

4 cs .  
The results provided in Table 5 also show that hospital 10 with 1*   is 
inefficient at all the possibility levels. At the possibility level zero, the optimal 
solution of this hospital is 44.1*  , 0*

3 cs , 863*
4 cs , 0*

1 s , and 
1599*

2 s . This optimal solution satisfies condition (1) of Theorem 2, so in the 
performance evaluation of hospital 10, the fourth input has congestion and the 
amount of its congestion is 863*

4 cs .  
Hospital 11 with 1*   is inefficient at all the possibility levels. At the possibility 
level zero, the optimal solution of this hospital is 36.1*  , 0*

3 cs , 73*
4 cs
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, 0*
1 s , and 946*

2 s . This optimal solution satisfies condition (1) of 
Theorem 2, so in the performance evaluation of hospital 11, the fourth input has 
congestion and the amount of its congestion is 73*

4 cs . 
Hospital 13 with 1*   is inefficient at all the possibility levels. At the possibility 
level zero, the optimal solution of this hospital is 32.1*  , 0*

3 cs , 
973*

4 cs , 0*
1 s , and 1300*

2 s . This optimal solution satisfies condition 
(1) of Theorem 2, so in the performance evaluation of hospital 13, the fourth input 
has congestion and the amount of its congestion is 973*

4 cs .  
Finally, hospital 14 with 1*   is inefficient at all the possibility levels. At the 
possibility level zero, the optimal solution of this hospital is 46.1*  , 

1524*
3 cs , 0*

4 cs , 0*
1 s , and 0*

2 s . This optimal solution satisfies 
condition (1) of Theorem 2, so in the performance evaluation of hospital 14, the 
third input, namely, the total hours worked by technical workers, has congestion 
and the amount of its congestion is 1524*

3 cs . At the possibility levels of 0, 
0.5, and 1, the amount of congestion in the third input of hospital 14 is 1542, 
1750, and 1557, respectively. 
 
7. Conclusion 
   
Congestion is a widely observed phenomenon that indicates an economic state 
where inputs are overly invested [33]. The requirement to study congestion is, 
therefore, rather obvious; furthermore, it has additional important practical 
implications, especially when its use is associated with a need for increasing inputs 
to serve vital objectives besides output maximization [10]. As such, in time, con-
gestion has developed into a topic that has received considerable attention from 
both researchers and practitioners alike. And while there are some debates on the 
subject of congestion [6-9, 13], most of them arise due to the fact that the different 
models proposed to identify congestion work under different assumptions. 
In the existing literature on DEA, many models have been introduced to identify 
the input congestion of DMUs. Among these models, the most famous one, which 
is called the one-model approach, was introduced by Cooper et al. [11] and further 
expanded into the BCC input relaxation model. On the other hand, uncertainty 
is inevitable and commonly exists in many decision-making problems. For this 
reason, the fuzzy set theory has been proposed as a way to quantify imprecise and 
vague data in DEA models.  
In this paper, we proposed a BCC input relaxation model with precise and impre-
cise data for determining the input congestion of DMUs in the mathematical 
programming technique of DEA with the one-model approach that has been 
introduced by Cooper et al. [11]. Furthermore, the possibility theory is used to 
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determine the possibilities of the fuzzy constraints. We have solved the fuzzy 
models by using the concept of chance-constrained programming, which has been 
introduced by Charnes and Cooper in 1959 [5].  
The proposed one-model approach was further applied to determine the input 
congestion of 16 hospitals, wherein each hospital used four fuzzy inputs to produce 
two fuzzy outputs. These fuzzy inputs and outputs have symmetrical triangular 
membership functions.  
Identifying the input congestion with the input relaxation model and fuzzy inputs 
and outputs and solving it with the possibility approach is a new work that has 
been presented in this article. 
For future extensions, how to develop the proposed model with fuzzy random 
data will be an important research issue. Finally, it is hoped that this research 
makes a contribution to the field of DEA.  
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