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Abstract. When a service system is being designed, its resistance to randomly occurring 
detrimental events is often assessed. Several approaches can be used to include the influ-
ence of the events in the design process. This contribution deals with two such approaches. 
The first approach is based on making the system resistant to a finite set of scenarios. The 
second approach takes input data as fuzzy values and seeks a design solution where the 
objective function value belongs to a fuzzy set of good objective function values at the 
maximal level of satisfaction. Each approach models uncertainty in a different way and 
we will focus on studying the impact of the used uncertainty model on the resulting min-
sum optimal emergency service system design, which is characterized by a deployment of 
a limited number of service centers in a serviced geographical region. 
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1. Introduction 
 
When designing a service center deploying, a responsible designer must comply 
with randomly occurring events, which may endanger accessibility of the service 
by individual users [3], [5], [7], [11]. The uncertainty caused by detrimental events 
can be handled by several ways. The most commonly employed way is a robust 
system design, where robustness is achieved by taking into account various proba-
ble scenarios caused by random detrimental events. In this case, the emergency 
system is designed so that the resulting deployment of service centers minimizes 
the maximal objective function value over all considered scenarios [2], [10], [12], 
[14]. The scenarios for an emergency system design are usually described by parti-
cular matrices of time-distances from a possible center location to a user location. 
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In this way, each possible detrimental event corresponds to an evaluated consequ-
ence in the form of extended travel times. 
The usual way of taking into account all scenarios [2], [14] is based on minimizing 
the maximal objective function of the individual instances corresponding to 
particular scenarios. The min-max link-up constraints represent a computational 
burden due to bad convergence of the branch-and-bound method embedded inside 
most available IP-solvers.  
To overcome this drawback, we suggest an iterative algorithm, which processes 
much smaller problems, and in which the uncertainty given by scenarios is 
replaced by fuzziness of individual time-distances. In other words, we assume that 
the time-distances are fuzzy values in the suggested approach. The optimization 
process commonly used for solving mathematical programming problems with 
fuzzy coefficients follows the Tanako-Asai’s iterative approach [15], where the 
level of satisfaction is subsequently increased so that the associated constraints 
are not broken.  
The goal of this contribution is to introduce the above mentioned iterative algo-
rithm and to provide a comparison of the suggested approach to the standard 
approach [2] from the point of computational time and robustness. Based on the 
associated result analysis, we will answer the question as to whether the two 
approaches are substitutable.  
The presented paper is organized as follows. The second section comprises radial 
formulation of the robust emergency system design together with a summarization 
of the solution methods studied in [10]. The third section focuses on the fuzzy 
approach to the emergency system design, where also radial formulation of the 
problem is used. The forth section reports on the results of numerical experiments 
performed by the two approaches and yields a brief comparative analysis of the 
designed service center deployments. The obtained findings are summarized in the 
fifth section. 
 
2. Robust emergency system design using scenario set 
 
The robust emergency system design problem with radial formulation [1], [4], [6], 
[8] can be described according to [9], [10]. We employ the following denotations. 
Let symbols J and I denote the set of user locations and the set of possible service 
center locations, respectively. Symbol bj denotes the number of users, who share 
the location j, and p denotes the maximal number of service centers, which can 
be chosen from I. The objective is to minimize the maximal system disutility over 
the set U of scenarios by a suitable deployment of the p centers. We distinguish 
scenario bU, which is the basic scenario corresponding to the standard 
conditions. The system disutility under a given scenario is defined as the sum of 
all disutility values associated with the individual users. The value of a user’s 
disutility is given by the mutual positions of the user location and the location of 
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the service center providing the service. We assume that the user’s disutility grows 
with increasing distance between the user and the service center. Disutility 
following from the distance between locations i and j under a specific scenario 
uU is denoted here as diju. The values of diju may be proportional to the network 
distances between the users’ location j and the center location i under the scenario 
u. Our assumption is that the relevant disutility of a user may range over a limited 
domain starting at zero and ending at some maximal value. The considered 
domain can be approximated by a range of integers. In this paper, we consider 
that each value of diju is an integer and less than or equal to the maximal value 
Dmax from the domain. The decisions, which determine the designed public service 
system, can be modeled by introduced decision variables yi{0,1}, iI. The 
variable takes the value of 1 if a service center is located at i and it takes the 
value of 0 otherwise. The variable h denotes the upper bound of the system 
disutility over the set U of individual scenarios. 
Let us define v= Dmax -1. Further, auxiliary zero-one variables xjsu for s = 0 … v 
and uU are introduced to complete the radial model. The variable xjsu takes the 
value of 1, if the disutility of the user at j  J from the nearest located center 
under the scenario uU is greater than s and it takes the value of 0 otherwise. 
Then the expression xj0u + xj1u + … + xjvu constitutes the value of disutility dju* 
from user location j to the nearest located service center under scenario uU. Let 
us introduce a zero-one constant aiju

s under scenario uU for each triple [i, j, s], 
where iI, jJ, s[0..v]. The constant aiju

s is equal to 1, if the disutility diju 
between the user location j and the possible center location i is less than or equal 
to s, otherwise aiju

s is equal to 0. Then the radial-type min-sum robust emergency 
service system design problem according to [2] can be formulated as model (1)-
(7), where the maximum of the objective function values over the set U of 
scenarios is minimized. We introduce auxiliary decision variable h to model the 
upper bound of the mentioned maximum. 
 
                                       Minimize h         (1) 
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           UuvsJjforx jsu  ,,...,1,0,0      (6) 
 

                          0h               (7) 
 

In this model, the objective function (1) represented by variable h gives the upper 
bound of the all objective function values over the set U of individual scenarios. 
The constraints (2) ensure that the variables xjsu are allowed to take the value of 
0, if at least one center is located in radius s from the user location j and constraint 
(3) limits the number of located service centers by p. The link-up constraints (4) 
ensure that each perceived disutility is less than or equal to the upper bound h. 
As concerns the obligatory constraints (6), only values zero and one are expected 
in any feasible solution, but it can be seen that the model has an integrality 
property restricted to the variables xjsu. It follows that the relevant values of xjsu 
in the optimal solution will be equal to one or zero without imposing binary 
constraints upon these variables. 
As the min-max link-up constraints (4) represent an undesirable burden in any 
integer programming problem due to bad convergence of the branch-and-bound 
method, we explored the possibility provided by Lagrangean relaxation to over-
come this burden [10]. The Lagrangean relaxation was applied on the constraints 
(4) only. Each of these constraints was associated with a non-negative Lagrangean 
multiplier u and sub-gradient method was used to set up suitable values of the 
multipliers. 
 
3. Robust emergency system design using fuzzy values 
 
The fuzzy approach does not deal with the set of given crisp scenarios, but it 
describes the individual uncertain values, e.g. the value of perceived disutility, by 
a range of possible values together with a measure of relevance of the individual 
values from the range. The measure is called membership function and the functi-
on is defined on the whole set of real numbers and maps this definition range on 
the interval of real numbers from zero to one. The value of one is assigned to the 
real values which belong to the fuzzy value at the highest level and the value of 
zero is intended for real values outside the range of the fuzzy value. A particular 
fuzzy set defined on real numbers where the membership function satisfies the 
given conditions [7], [13], [15] is called the fuzzy number. In this paper, we restrict 
ourselves to a special type of the fuzzy sets intended for expressing that a 
processed uncertain disutility value is greater than or equal to a given real value 
dij-Max with tolerance dij-Max - dij-min. 
Having described the uncertain disutility following from the time-distance 
between locations i and j by fuzzy set dij with the membership function dij 
depicted in Fig. 1, we can define function dij(t) as a function giving the lowest 
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disutility value which belongs in the range [dij-min, dij-Max] of the fuzzy set dij at the 
level of satisfaction t.  
 

 
 
 
 
 
 
 

Figure 1: The membership function of a fuzzy set dij. 
 
Then we can define a zero-one constant aij

s(t) for each pair [i, j] and the given 
level of satisfaction t, where iI , jJ, s[0..v] and t[0, 1]. The constant aij

s(t) 
is equal to 1, if the disutility dij(t)  between the user location j and the possible 
center location i is less than or equal to s, otherwise aij

s(t) is equal to 0. 
After these preliminaries, we can formulate the emergency system design problem 
at the level of satisfaction t using the location variables yi defined in the previous 
section and auxiliary variables xjs for s = 0 … v, which are redefined in the 
following way. The variable xjs takes the value of 1, if the disutility dij(t) of the 
user at jJ from the nearest located center is greater than s, otherwise it takes 
the value of 0. Then the expression xj0 + xj1 + xj2 + … + xjv constitutes the value 
of disutility dj* from user location j to the nearest located service center at the 
level of satisfaction t. 
The fuzzy approach to a general minimization mathematical programming 
problem consists in determining the highest level of satisfaction t, for which the 
associated constraints are satisfied and the objective function value belongs to a 
fuzzy set of satisfactorily small values of the objective function. The fuzzy set of 
satisfactorily small values is usually constructed from two real values F1 and F2, 
where F1 corresponds to the optimal objective function value for the most favorite 
case of the problem coefficients, and F2 corresponds to the optimal objective 
function value for the least favorite case of the problem coefficients. The 
membership function Usmall(F) is shown in Fig. 2. 
 
 
 
 
 
 
 
 

Figure 2: The membership function of a fuzzy set of sufficiently small values. 
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The constraint ensuring that the objective function value F belongs to the suffice-
ently small values of system disutility at a level of satisfaction t follows. 
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Now, we can complete the model with the following constraints. 
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Next, we formulate the problem as follows.  
 

tMaximize   
)12()8(: toSubject  

 
The objective of the problem is the maximization of the level of satisfaction t 
subject to constraints (8)-(12). Due to constraint (9), the problem is nonlinear 
and difficult to solve. That is why, we use an iterative approach, which is known 
as the Tanako-Asai’s method used in the fuzzy optimization [15]. 
The method searches for a feasible solution to the problem formulated for a fixed 
value of t. If a feasible solution is found, the value of t is then increased, the 
associated model of the problem is reformulated and the searching process is 
repeated. In the opposite case, when no feasible solution exists, the next examined 
value of t is a little less. Upon a subsequent search for feasible solutions for the 
increased or decreased values of t, the optimal value can be estimated with an 
arbitrary precision . Let us denote the solving procedure for the problem defined 
by the linear program minimize F subject to (8)-(12) for a fixed value of t as 
GetOpt(t). Let (y, x) denote the resulting solution. We can then implement the 
Tanaka-Asai’s method in accordance to the following steps, where  is the 
demanded precision of the maximal level of satisfaction. 

0. Set tmin = 0, tmax = 1. 
1. If tmax -tmin ≥ , go to step 2, otherwise terminate. 
2. Set t = (tmax +tmin )/2 and go to step 3. 
3. Apply procedure GetOpt(t) and go to step 4.  
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4. If no solution (y, x) exists, set tmax = t, otherwise set tmin = t and 
update the best found solution (y, x)best and tbest. Go to step 1. 

 
4. Numerical experiments 
 
In this section, we present an overview of numerical experiments aimed at 
ascertaining the characteristics of suggested approaches based on scenarios and 
fuzzy sets. The comparison was performed in terms of computational time and 
the resulting emergency service system design.  
To solve the problems described in the previous sections, the optimization 
software FICO Xpress 8.0 (64-bit, release 2016) was used and the experiments 
were run on a PC equipped with the Intel® Core™ i7 5500U processor with the 
parameters: 2.4 GHz and 16 GB RAM.  
The used benchmarks were derived from a real emergency health care system, 
which was originally implemented in selected regions of Slovakia. For each self-
governing region, i.e., Bratislava (BA), Banská Bystrica (BB), Košice (KE), Nitra 
(NR), Trenčín (TN), Trnava (TT) and Žilina (ZA), all cities and villages with 
the corresponding number of inhabitants bj were used. The coefficients bj were 
rounded to hundreds. These sub-systems cover demands of all communities - 
towns and villages spread over the particular regions by a given number of 
ambulance vehicles. In the benchmarks, the set of communities represents both 
the set J of user locations and also the set I of possible service center locations. 
The cardinalities of these sets vary from 87 to 515 according to the considered 
region. The number p of located centers was derived from the original design and 
it varies from 9 to 52. To enrich the set of benchmarks, we added also several 
instances for the self-governing region of Žilina, which were solved for different 
values of parameter p. The network distance from a user to the nearest located 
service center was taken as the user´s disutility. The achieved results are 
summarized in the Table 1. 
An individual experiment was organized so that the referential system design was 
suggested for the basic scenario b only without taking into account the other 
scenarios. The particular results for basic scenario are reported in the “BASIC” 
part of the table. The computational time in seconds is denoted by “CT” and the 
objective function value of a resulting solution y for basic scenario b is computed 
according to (13). We should note that the ObjF is computed for resulting 
solutions of basic, standard and fuzzy approaches and the corresponding values 
are denoted by ObjFB, ObjFS and ObjFF respectively. 
 

        }1,:{minObjF 


iijb
Jj

j yIidb          (13) 
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To compare the objective functions of the robust designs (min-max objective 
function) of a resulting solution y, we use the expression (14). We should note 
that the ObjFM is computed for the resulting solutions of standard and fuzzy 
approaches and the corresponding values are denoted by ObjFMS and ObjFMF 
respectively. 
 
                  }:}1,:{minmax{ObjFM UuyIidb iiju

Jj
j  



  (14) 

 
After the referential system design corresponding to the usual situation on the 
transportation network was obtained, the robust design using the model (1) - (7) 
was computed taking into account all studied scenarios. Due to the lack of 
common benchmarks for studying robustness, the scenarios used in our computa-
tional study were created in the following way. We selected 25 percent of the 
matrix rows with the rows corresponding to the biggest cities in regard to the 
number of system users. Then we chose randomly from 5 to 15 rows from the 
selected ones and the associated disutility values in the chosen rows were 
multiplied by the randomly chosen constant from the range 2, 3 and 4. The rows, 
which were not chosen by this random process, remain unchanged (they are 
multiplied by the value of 1). In this way, 10 different scenarios were generated 
for each self-governing region. The scenarios represent the consequence of fatal 
detrimental events, when some time-distances are several times elongated. The 
achieved results for the robust emergency service system design are reported in 
the middle part of the table. As before, “CT” denotes the computational time in 
seconds. The column “ObjFS” contains the objective function value computed 
according to (13) for the basic scenario and values of location variables yi resulting 
from the solution of the model (1)-(7). To evaluate the price paid for making the 
system resistant to various catastrophic events, the price of robustness “PoR” was 
computed. Its value is defined as the difference between “ObjFS” and “ObjFB” 
expressed as a percentage of “ObjFB”. Both mentioned values “ObjFS” and 
“ObjFB” are computed for the basic scenario and the particular resulting values 
of location variables yi. The right part of the table is used for the results of fuzzy 
approach explained in Section 3. The objective function value “ObjFF” was 
evaluated using the expression (13) for the basic scenario and the values of 
location variables yi resulting from the solution of the model (8)-(12). The column 
“Dif” is used to report the difference between the objective function values 
“ObjFF” and “ObjFS” expressed as a percentage of “ObjFB” computed for the 
basic scenario. The negative values of “Dif” indicate such cases, in which the fuzzy 
approach gave a better solution in regard to the objective function value (13). 
The standard robust and fuzzy designs can be compared using the Hamming 
distance “HD”, which is defined as follows. Let yr denote the vector of location 
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variables for the standard robust design and let yf denote the vector for the fuzzy 
one. Then, the Hamming distance “HD” takes the form of (14). 
 

                           2r f
i i

i Î

HD y y


             (14) 

 
Hamming distance evaluates the structural difference between two designs in the 
sense that it informs of the number of locations in which the designs differ, but 
does not refer to the quality of the designs. Therefore, we also compared the 
robust and fuzzy design from the point of the other characteristics mentioned 
above. As shown in Table 1, the emergency service system designs obtained using 
the standard robust model (1)-(7) and suggested fuzzy approach do not differ as 
much. From the point of computational time, the fuzzy approach seems to be 
more suitable when middle-sized instances are solved. Some higher values of 
“PoR” can be explained by the fact that the robust design takes into account all 
scenarios and possible failures, whereas the basic design concerns only the basic 
scenario. 
 

 |I| p BASIC STANDARD ROBUST
CT ObjFB CT ObjFS ObjFMS PoR

BA 87 9 0.3 20342 25.4 22050 25417 8.40
BB 515 52 22.9 17289 953.7 17740 18549 2.61
KE 460 46 15.7 20042 1150.5 20475 21286 2.16
NR 350 35 7.5 22651 1862.1 23210 24193 2.47
TN 276 28 3.5 15686 267.0 16321 17524 4.05
TT 249 25 2.8 18873 394.2 19604 20558 3.87
ZA 315 32 5.3 20995 1132.3 21783 23004 3.75

Ži
lin

a 

315 158 5.2 2444 135.6 2451 2535 0.29
315 105 5.2 5594 338.5 5700 5912 1.89
315 79 5.9 8430 192.4 8564 9084 1.59
315 63 5.5 11125 923.6 11650 12394 4.72
315 32 5.3 20995 1132.3 21783 23004 3.75
315 21 5.2 28548 729.7 30926 32959 8.33
315 16 5.3 34405 1161.0 38602 40839 12.20

 |I| p FUZZY APPROACH
CT ObjFF ObjFMF Dif PoR HD

BA 87 9 2.9 23149 27014 5.40 13.80 2
BB 515 52 44.2 18231 19458 2.84 5.45 26
KE 460 46 35.2 21757 22872 6.40 8.56 20
NR 350 35 25.8 23803 24849 2.62 5.09 18
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TN 276 28 16.0 16173 17883 -0.94 3.10 8
TT 249 25 10.2 20603 21639 5.29 9.17 14
ZA 315 32 13.9 22391 23655 2.90 6.65 14

Ži
lin

a 
315 158 13.5 2525 2623 3.03 3.31 26
315 105 13.9 5789 6331 1.59 3.49 16
315 79 14.0 9021 9994 5.42 7.01 20
315 63 14.1 12476 13525 7.42 12.14 30
315 32 13.9 22391 23655 2.90 6.65 14
315 21 16.6 31260 34420 1.17 9.50 8
315 16 14.5 37450 41432 -3.35 8.85 14

Table 1: The results of numerical experiments for the self-governing regions of Slovakia 

 
5. Conclusions 
 
This paper has focused on mastering real-sized instances of the emergency service 
system design problem under uncertainty using a commercial IP-solver. The 
uncertainty follows from the requirement of making the designed system resistant 
to various catastrophic events, which may occur in the transportation network, 
through which the associated service is provided. The uncertainty can be proce-
ssed in different ways. In this paper, we have compared the robust approach based 
on scenarios with the fuzzy approach, where the disutility values are modelled 
using fuzzy numbers. The achieved results have confirmed that the fuzzy approach 
gives r results much faster and it is acceptable also in terms of solution accuracy. 
Our conclusion based on the performed computational study is that we have 
presented a useful tool for the robust emergency service system design problem, 
which can be easily implemented using common commercial optimiza-tion softwa-
re. 
Future research in this field could focus on finding relevant scenarios, which may 
significantly impact the performance of an emergency service system. Since a 
robust design can significantly differ from the basic one, it would be useful to find 
a method that allows changing only a limited number of centers in comparison 
with the standard solution. 
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