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Abstract. This paper presents a new branching rule based on the flatness of a polyhedron 
associated to the set of constraints in an integer linear programming problem. The rule 
called Flatness II is a heuristic technique used with the branch-and-bound method. The 
rule is concerned with the minimum integer width vector. Empirical evidence supports the 
conjecture that the direction with the highest value of the vector’s components indicates 
a suitable branching direction. The paper provides theoretical results demonstrating that 
the columns of the matrix A corresponding to a set of constraints Ax≤b may be used to 
estimate the minimum integer width vector; this fact is used for constructing a new version 
of the branching rule as was reported in a previous paper by the authors. In addition, the 
new rule uses a branching direction that chooses the child node closest to the integer value 
(either up or down). Thus, it uses a variable rule for descending the tree. Every time a 
new sub-problem is solved, the list of remaining unsolved sub-problems is analyzed, with 
priority given to those problems with a minimum objective function value estimate. The 
conclusions of the work are based on knapsack problems from the knapsack OR-Library. 
From the results, it is concluded that the new rule Flatness II presents low execution times 
and minimal number of nodes generated. 
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1. Introduction 
 
Mixed integer programming (MIP) is composed of a linear objective function, 
linear constraints and a set of variables where some or all are restricted to integers 
or binaries. The most popular method to solve these kinds of problems is the 
branch and bound algorithm (B&B), and is improved by using cuts (branch and 
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cut) and different heuristics such as local search, simulated annealing, Tabu 
search or reformulation techniques such as the Lagrangian relaxation, 
decomposition algorithms, column generation, among others. The B&B algorithm 
selects a node to be explored and solves a new problem as a relaxed  linear 
programming (RLP) problem, where at least one of the integer variables has a 
non-integer solution. Thus, a search tree is generated when branching with these 
candidate variables. There are two aspects in browsing the search tree that will 
be considered in this work: 
 
1) The branching strategy (i.e., a rule to select variables), 
2) The branching direction (i.e., either the right or left node).  
 
The most frequent approach in the B&B algorithm is to first select the variable 
for branching, and then to choose separately the branching direction using a fixed 
rule, for example, always using the left child node. In this classical approach, the 
method to solve the live nodes is determined in these two steps, that is, the 
variable and direction. This paper develops a branching rule based on the flatness 
of a polyhedron. The basis of the rule is a minimum integer width vector. In a 
non-empty closed polyhedron K	 ⊂ Ը୬	the width of this vector d	 ∈ 	Ժ୬		is given by 
[1]: 
  
        																wୢሺKሻ ൌ min

ୢ
ቄmax

ୢ
ሼd୘x: x ∈ Kሽ െ min

ୢ
ሼd୘x: x ∈ Kሽቅ           (1)  

                       
To obtain the branching direction, the new rule is implemented by choosing the 
child node closest to the integer value (either up or down).  Thus, instead of a 
fixed rule for descending the tree, a variable rule is used. A method of this type 
is known as informed search. This paper proposes a new rule for the branching 
variable, based on the flatness of a polyhedron. The flatness is estimated by the 
sum of the columns in matrix A corresponding to the set of constraints A x ൑ b.  
The new rule acts in an integrated manner; that is, it combines the strategy for 
variable selection with the strategy for branching, along with the method for 
visiting the nodes in the waiting list. The proposed rule analyzes each candidate 
variable for branching by selecting the variable with the column of highest sum. 
It then uses the rounding fraction (upper or lower) to branch towards the direction 
with the smallest fraction. Moreover, each time a sub-problem is solved and a 
solution is obtained, the list of sub-problems is reviewed  continuing with the sub-
problem with lowest value in the objective function (in case of minimization). In 
the process, each time a new value is obtained from pruning, the list of live nodes 
is reviewed and the sub-problems with worst values are eliminated. The specific 
problem studied is the multidimensional knapsack problem (MKP), as in (2). 
 
                          ൛max c୘x : Ax ൑ b, x ∈ ሼ0,1ሽ୬, a୧୨ ൒ 0, b ൐ 0ൟ    (2) 
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2. The proposed branching rule: Flatness II  
  
The branching rule developed in this paper is based on the geometry of a 
polyhedron associated with an integer problem. The rule is called Flatness II, 
named after the work by Derpich and Vera [1]. In their work, the branching rule 
utilizes the eigenvalues of a matrix corresponding to an inscribed Dikin ellipsoid 
[2]. However, experimenting with the method in [1] shows that is not adequately 
efficient as it requires long CPU processing times in calculating the center point 
of the ellipsoid and the eigenvalues of the matrix. The new proposed method uses 
the columns of matrix A. The development considers two aspects: i) a rule for 
branching, and ii) a rule for selecting the child node to be branched. The 
branching rule proposed in this paper is based on the flatness direction and is to 
be constructed in two steps as given below.    
 
2.1. The Flatness II rule 
 
The integer width of the polyhedron associated with the integer programming 
problem is a good start for obtaining branching priorities. The idea is to move 
first in the direction where the polyhedron is flatter.  Then, the following 
construction is necessary: 
 
Let  K	 ⊂ Ը୬	 be a non-empty closed set and let d	 ∈ 	Ը୬		be any vector. The width 
of  K along d is given by (1) as shown above. And the integer width of K is defined 
as:                                                   
                                   wሺKሻ ൌ min

	ୢ∈Ժ౤∖ሼ଴ሽ
wୢሺKሻ	                  (3) 

 
Thus, any d that minimizes wୢሺKሻ is called the direction of minimal integer width 
of K. 
Theorem 1 (Kinchin’s Flatness Theorem [3]).  Let n be the dimension of the set 
K, then there exists a function wሺnሻ depending only on the dimension, such that 
if K ⊂ Թ୬ is convex and wሺKሻ ൐ wሺnሻ, then set K contains an integer point.   
The best known bound for wሺnሻ is Oቀnଷ ଶൗ ቁ  and it is conjectured that wሺnሻ ൌ
Θሺnሻ. For an interior ellipsoid of a polyhedron, for example a Dikin ellipsoid, the 
flatness direction can be computed by solving the shortest vector problem (SVP) 
in a base of the lattice ࣦ ൬ቀQଵ ଶൗ ቁ

୘
൰,  where  Q ൌ A୘Dሺx଴ሻିଶA, and  D ൌ

diag൫bଵ െ αଵ
୘x଴, bଶ െ αଶ

୘x଴, … , b୫ െ α୫୘ x଴൯, where m is the number of constraints 
of the problem and  α୧ the i-th row of the matrix A.    
 In the MKP, if we relax the constraint x ∈ ሼ0,1ሽ୬ and change it applying the 
constraint 0 ൑ x୨ ൑ 1, ∀j ൌ 1, . . n, the feasible region becomes the unit hyper cube 
(UHC).  And if we suppose that the relaxed polyhedron K has at least one integer 
point, then we can approximate the center of the polyhedron K.    
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Finally we have that ܦ ൌ ݀݅ܽ݃ሺ݄ଵ, ݄ଶ, … , ݄௠ሻ and  ݄ଵ ൑ 0.5;… ; ݄௠ ൑ 0.5; by 
bounding D we have that ܦ ൌ ݀݅ܽ݃ ቀ

ଵ

ଶ
, … ,

ଵ

ଶ
ቁ ൌ

ଵ

ଶ
݀݅ܽ݃ሺ1,… ,1ሻ ൌ

ଵ

ଶ
ܳ and then ܫ ൌ

ܣଶିܦ்ܣ ൌ  .The base for the lattice ࣦ  is a function of the matrix A .ܣ்ܣ4
Computing the direction of minimum integer width of ܭ is an NP-hard problem. 
We establish a set of algebraic developments and generate several forms for 
computing a score to decide on the branching of variables. Hence, the rule 
proposed in this work was first inspired by the flatness theorem of Kinchin and 
the particular condition of the MKP.  In the MKP, we will search for a way to 
calculate the minimum integer width vector, knowing that this vector can be 
approximated by the shortest vector problem (SVP) and using a lattice basis that 
depends only on matrix A. We find the value  ܾ௜ ܽ௜௝ൗ , as shown in Figure 1, which 
corresponds to the point of intersection of constraint i with the Cartesian axis 
associated with ݔ௝. We then establish a relationship between the minimum integer 
width vector and the term ܾ௜ ܽ௜௝ൗ which is not exact, but a heuristic relationship. 
This is still experimental work with unresolved issues, which occurs often in 
integer programming. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Points of intersection between constraints and coordinate axes 
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Let us call this value ݇௜௝ and ෨݇௝ the mean value of the intersecting points of 
constraint i  w.r.t. the Cartesian axis j. Let F be the set of integer variables that 
has fractional values in the last linear programming optimum solution. 
                        
                    																							 ෨݇௝ ൌ ∑ ୠ౟

ୟ౟ౠ
	,			∀j ൌ 1…n௠

௜ୀଵ 																																																		(4)	
  
Where, ݔ௝ ∈  Moreover, the value in (5) is considered a linear estimator of .ܨ
components j of the minimum integer width  ݀̅௝. 
                         
     																																														 ത݇௝ ൌ

ଵ

௠
	∑

௕೔
௔೔ೕ

௠
௜ୀଵ 	,			∀݆ ൌ 1,…݊																																										ሺ5ሻ 

 
Where, ݔ௝ 	∈  ܾ௜ is approximately constant and by making	 By assuming that .ܨ
ܾ௜ ൌ ܾ, it then holds that (6): 
 
                         ݀̅௝ ൌ

ଵ

௞തೕ
ൌ 	

௠	∑ ௔೔ೕ
೘
೔సభ

௕
	,			∀j ൌ 1…n		   such that ݔ௝ ∈(6)          ܨ 

 
Given that b is the same value for all directions and m is constant, it leads us to 
the consideration that: 
 
                                     መ݀௝ ൌ 			∑ ܽ௜௝

௠
௜ୀଵ 	,			∀j ൌ 1…n		                (7) 

 
The value in (7) is an estimator of the minimum integer width vector ݀̅௝. Thus, 
the score ݏሺ݆ሻ for each candidate variable is:  
 
ሺ݆ሻݏ                          ൌ ∑ ܽ௜௝

௠
௜ୀଵ , ∀j=1…n  such that  ݔ௝ ∈  (8)        ܨ

 
Where ܽ௜௝ is the i,j component of matrix A. Variable ݔ௝ with a maximum s(j) 
value is selected for branching. The idea behind this rule is to branch first using 
the variable that geometrically corresponds to a dimension where matrix A has 
less density. Intuitively, this measure is to some extent similar to polyhedral 
flatness; however, it is different as it does not take into account the right-hand 
side of the constraints.  
 
i) Rule for the branching direction: 
 
Next, a decision is required as to which child to branch first; the selection proposed 
in this paper is based on the adjustment of minimum effort to the nearest integer.  
Let (9) be the fractions of upper and lower rounding, respectively.  
 
              																										f୨ା ൌ ඃx୨ඇ െ x୨  and 	f୨ି ൌ x୨ െ උx୨ඏ                   (9) 
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If (10) holds, then the left child is branched; that is, a sub-problem is solved by 
adding  x୨ ൑ උx୨ඏ. Otherwise, the right-hand child is branched, that is, the 
constraint x୨ ൒ ඃx୨ඇ is added.  As indicated above, the idea behind this rule is to 
make a least effort adjustment. 
 
                         																																			 ௝݂ା ൐ ௝݂

ି                  (10) 

 
3. Comparison between the Flatness II rule and other rules 
found in literature 
 
Next, this section provides a brief overview of branching rules and additional 
aspects regarding the efficiency of the B&B algorithm. 
 
3.1. Branching rules 
 
i) Most infeasible and least infeasible branching, where most infeasible branching  
chooses the fractional variable with the decimal part closest to 0.5, whereas least 
infeasible branching chooses  fractional variables closer to the integer. 
 
ii) Pseudocosts (PSC) was developed by Bénichou et al. [3]; this rule accumulates 
a history of the successes relating to variables that were already branched by 
comparing the candidates through the gain for each case: 
 
௝ା߂                            ൌ ܿொ̅ೕశ െ ܿொ̅						and						߂௝

ି ൌ ܿொ̅೔ష െ ܿொ̅                   (11) 
 
for	upper	rounding  and lower rounding, respectively. Where  ܿொ̅ೕశ and  ܿொ̅೔ష are 
the values of the objective function when solving the sub-problems ܿ ொ̅ upon adding 
the constraints ݔ௝ ൒ ඃ	ݔ௝

∗ඇ and ݔ௝ ൑ උ	ݔ௝
∗ඏ, respectively; where ݔ௝∗ is the component 

j of the variable ݔ	∗, the optimal solution of the problem ܿொ̅. 
 
௝ାߖ					                          ൌ 	∑ 		

௝∈ௌೕ 	
௱ೕ
శ

௙ೕ
శఎೕ

శ 	;													 ௝ߖ
ି ൌ 	∑ 		

௝∈ௌೕ 	
௱ೕ
ష

௙ೕ
షఎೕ

ష				       (12) 

 
Where ߟ௝ା is the number of these problems with upper rounding and ߟ௝ି with lower 
rounding. The term ௝݂

ା and  ௝݂
ି  were defined in (9).  

 
                  																															݆∗ ൌ ൫݁ݎ݋ܿݏ ௝݂

௝ߖି
ି, ௝݂

ାߖ௝
ା൯	               (13) 

 
There are different score functions; one used by Achterberg [5] [6] is the following:  
 



                       Accelerating the B&B algorithm for integer programming                  125 
 
            ݆∗ ൌ ሺ1 െ 	ሻmin൛ߤ ௝݂

௝ߖ	ି
ି, ௝݂

ା	ߖ௝
ା	ൟ ൅ ߤ ∙ max	ሼ	 ௝݂

௝ߖ	ି
ି, ௝݂

ା	ߖ௝
ା	ሽ          (14) 

 
where ߤ called the factor score is a number between  0 and 1 (utilized  ߤ ൌ 1/6). 
 
iii) Strong branching (STG) is one of the most widely used approaches, proposed 
by Applegate et al. [7] [8]. The algorithm carries out a stepwise forward search 
for each variable not complying integrality at the nodes. The computational 
solution searches the relaxed LP solution for each child, thus obtaining ࢏ࡰ

 ࢙
ࡿ) ൌ ൅	,െሻ.	 
 

                        ݆∗ ൌ ଵߤ ∙ ݉݅݊൛	ܦ௝
ି, ௝ܦ

ା	ൟ ൅ ଶߤ ∙ ௝ܦ	ሼ	ݔܽ݉
ି, ௝ܦ

ା	ሽ         (15) 
 
Where  j∗ is the degradation progress of the child nodes, as suggested by Eckstein 
[9], where the parameters ߤଵ ൌ ଶߤ		݀݊ܽ	4 ൌ 1 were empirically verified by 
Linderoth and Savelsbergh [10]. Moreover, if the forward search should continue 
2௞ times utilizing the degradation of the child nodes, it leads to lookahead 
branching for 2,..,4,8 =ࣅ௞, such that ݇ ∈  Thus, if k=1, the described algorithm .ࡺ
will be full strong branching. 
 
iv) Entropic branching (ENTR) aims to reduce the uncertainty (entropy) of 
current sub-problems; that is, quantifies the “uncertainty” of the partial solution. 
This principle borrows some definitions from information theory, and its main 
contribution is the notion of entropy. According to this theory, entropy is an 
additive for independent variables and defines the entropy of a group of binary 
variables, proposed by Andrew and Sandholm in [11] as the sum of the entropy 
over a set of probabilities corresponding to independent binary events.  
 
v) Lookahead branching (LOOK) was proposed by Glankwamdee and Linderoth 
[12]. It estimates the impact of the current solution by considering in depth two 
child nodes and counting the number of potential nephews possibly evaluated if 
the variable i is chosen as a branching variable. 
 
vi) Reliability branching (RELI) was introduced by Achterberg at al. [5], and the 
rule applies strong branching on the upper side of a tree to depth of ݀ ≅  ௥௘௟. Theߟ
algorithm calculates		ݏሺ݆ሻ 	ൌ ൫݁ݎ݋ܿݏ ௝݂

௝ߖି
ି, ௝݂

ାߖ௝
ା൯		 for all candidate variables and 

sorts them in decreasing order. Then, for all candidate variables j, such that 
min൛ߟ௝

ି, ௝ߟ
ାൟ ൏ 	௥௘௟, the subproblemsߟ ௝ܵି	ݕ	 ௝ܵା are resolved as relaxed LP 

problems, ߂௝ା,  are updated. Finally, the	௝ିߖ	and	௝ାߖ	௝ି and the pseudocosts߂
candidate variable with the highest score is chosen.  If  ߟ௥௘௟ is equal to zero, it 
coincides with pure pseudocosts branching, otherwise it tends to ∞ and converges 
towards strong branching. Additionally, if ߣ = ∞, strong branching becomes full 
strong branching.   
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vii) The hybrid rule Flatness II and Pseudocosts (FLPS) is a rule that combines 
the Pseudocosts rule and Flatness II as proposed by Derpich and Macuada in [12]. 
It is known that Pseudocosts rule uses the information from other branching to 
calculate the estimated cost of a new branch. Given that at the beginning of the 
process there are no branches, then there is no information and therefore this rule 
is almost a random decision and  if the variable to be branched is badly chosen, 
the process will follow a wrong  path in the search tree. Due to the latter, the 
hybrid rule starts by first using the Flatness II, and when the process has reached 
a certain branching history, it then flips to the Pseudocosts rule.  
 
viii) The flatness rule (FLAT)  is the original rule  developed in [1]. Here, ellipses 
based on a logarithmic barrier function are used for the polyhedron. Let ܲ ൌ
ሼݔ: ݔ௜ߙ ൑ ܾ௜, ݅ ൌ 1, . . , ݉ሽ, be a pair of concentric ellipses defined by the form ܧ ൌ
ሼݔ ∈ Թ௡:	ሺݔ െ ݔ଴ሻ௡ܳሺݔ െ ଴ሻݔ ൑ 1ሽ    and   ܧ′ ൌ ሼݔ ∈ Թ௡:	ሺݔ െ ݔ଴ሻ௡ܳሺݔ െ ଴ሻݔ ൑
ܧ ଴  is the center of the ellipses, such thatݔ ଶሽ, whereߛ ⊂ ܲሺ݀ሻ ⊂ ܳ and ′ܧ ൌ
଴ሻݔሺߩଶߘ ൌ ଴ሻݔሺܦ  with ܣ଴ሻݔଶሺିܦ்ܣ ൌ ݀݅ܽ݃൫ܾ௜ െ ௜ߙ

 ଴൯. It can then be shownݔ்
that the ellipsoid constructed using Q satisfies the required properties and 
γ = m + 1.  In [1], the shortest axis of the ellipse was used as an approximation 
of the minimum integer width direction. Accordingly, it appears reasonable to 
guide the search strategy using the branch and bound algorithm in terms of an 
estimated shape of the polyhedron, a measure which is reflected by the minimum 
integer width vector. Given the complexity in computing it, [1] proposed a 
selection rule for the branching variable based on vectors corresponding to the 
principal axes of the Dikin ellipse associated to center point. In general, although 
the smallest axis will differ from the minimum integer width vector, we expect to 
recover from it significant information on the spatial orientation of the polyhedron 
with respect to the integer lattice. As indicated above, Lenstra’s algorithm takes 
explicit advantage of this information. We will use the vector corresponding to 
the shortest axis of the Dikin ellipse to define priorities for the variables. These 
priorities will be incorporated into the branch and bound. However, we notice 
that it might be meaningless to search in some of the directions defined by the 
shortest axis if they are too small. This last fact is an indication of the polyhedron 
being thin in one direction. In that case, finding many more integral points in the 
orthogonal directions is more likely as more integral coordinates exist in those 
directions. The following proposition justifies the claim: 
 
Proposition 1. 
Let (β1, … , βn) be the vector corresponding to the shortest semi-axis of the Dikin 
ellipse constructed with point x0 as the center .Let δ = min{∣βj∣: j = 1, … , n}.  
Let B(x0, δ)∞be the ball, in the L∞norm, of radius δ with the center at x0. Then, 
if δ < 0.5 and x0 is the center of the unit hypercube, there is no nonzero integral 
point in the interior of B(x0, δ)∞. 
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Proof.  This is a simple geometric fact. 
 
Now we are ready to define the priority vector. Let (β1, … , βn) be the coordinates 
of the shortest axis of the Dikin ellipsoid. Let Θ = {βj: ∣βj∣ > 1/2}. From the 
previous result, the coordinates in this set correspond to the directions in which 
it is more probable to find integer coordinates for points contained in the 
polyhedron. We give priorities to the variables, from 1 to n (with 1 being the 
highest priority) in the following way: Let k = arg maxj{∣βj∣: βj ∈ Θ}. Then, we 
assign αk = 1.  Now, let l = arg maxj{∣βj∣: βj ∈ Θ − {βk}}. We assign αl = 2. 
Upon repeating this process, we complete assigning priorities to the variables for 
the components of the set Θ. For components not in Θ, we assign a priority of 
zero which, when implementing the software, is equivalent to assigning the last 
priority for branching. 
 
Algorithm set-priority 
INPUT: matrix A in Rm×n and vector b ∈ Rm 

OUTPUT: A priority vector α for the branch and bound procedure. 
1. Solve the linear program:  max

	
ݔܣ  subject to ,ݐ ൅ 	݁ݐ ൑ ݐ ,ܾ ൒ 0 

where e is the vector (1, … , 1)T. Let  ݔ଴ be the minimizer. This point is in the 
interior of the polyhedron, in fact, it is the center of the largest sphere contained 
in the polyhedron. 
2.  Let   ܳ ൌ ଴ሻݔሺߩଶߘ ൌ ଴ሻݔሺܦ  where ܣ଴ሻݔଶሺିܦ்ܣ ൌ ݀݅ܽ݃൫ܾ௜ െ ௜ߙ

 ଴൯ݔ்
3.  Let (β1, … , β2) be the shortest semi-axe of  ܧ ൌ ሼݔ ∈ Թ௡:	ሺݔ െ ݔ଴ሻ௡ܳሺݔ െ
଴ሻݔ ൑ 1ሽ 
4.  Let   Θ={βj:|βj|>1/2,j=1,…,n}.  
5.  Let p = 1, S = Θ. 
6. Repeat until S = ∅ 
Let k = arg maxj{∣βj∣: βj ∈ S}. 
αk = p 
S = S − {βk}, p = p + 1. 
   end repeat 
7. The priorities for the remaining components are set to zero. 
 
4. Experimental results 
 
The design and measurements were executed in a personal computer using an 
Intel Core i7 ™, 2.3 GHz, Windows 7 Pro™ operating system, and 8 Gb RAM. 
The design was conducted entirely in MATLAB™ and its associated compiler. 
Our proprietary code named BeBe and programmed in the MATLAB™ language 
was developed for the project which works with sparse matrices. The solver 
manager OPTI Toolbox™ used a series of solvers linked to the MATLAB™ tools. 
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In particular, the MOSEK™ solver for LP problems was used, which uses interior 
point methods for finding solutions to problems. 
It is known fact that most scientific publications utilize commercial solvers during 
development, as they achieve shorter processing times, and that interpreted code 
executes slower that compiled code in machine language. However, the number of 
nodes identified for solving the problem should be equivalent in both cases. This 
strategy was an advantage since using our proprietary code ensured that no other 
techniques became a hindrance, such as preprocessing, specific heuristics, cover 
inequalities, among others, which may have affected evaluation of the desired 
result. Our own clean code ensured that only the utilized branching rules 
influenced the evaluated variables, i.e., CPU time and visited nodes. The 
developed algorithm works with data in sparse matrix format and works directly 
with the MPS format. Next, the paper will present the results divided into a set 
of tables corresponding to the knapsack OR–Library [13]. The main feature for 
mknap-01 and mknap-02 is variability in multidimensional problems. The set of 
respective problems mkanpcb1 belong to the 30 problems of the same dimension; 
however, they are highly complex due to the intensity in the branching. The 
compared algorithms and their abbreviation are as follows: 
  
- PSC: Pseudocosts                                 - FLAT II: New rule proposed 
- STG: Strong branching                         - FLAT: Flatness polyhedron 
-   ENTR: Entropic branching                   - LOOK: Lookahead branching 
-   RELI:  Reliability branching                 - FLPS: Flatness II/ Pseudocosts 
 
The results corresponding to the eight strategies reviewed in the literature are 
shown below. Besides the new branching rule, Flatness II was also tested, using a 
dynamic method for selecting the child node to be branched. 
 

 
N° Size PSC FLAT 

II 
STG FLAT ENTR LOOK RELI FLPS 

1 6x10 11 11 10 10 10 11 11 10 
2 10x10 20 12 17 15 13 14 17 13 
3 15x10 134 62 112 112 167 158 108 122 
4 20x10 87 40 69 50 172 188 148 43 
5 28x10 158 98 398 386 483 409 386 378 
6 39x5 271 51 181 211 545 946 496 280 
7 50x5 428 253 534 489 15566 1273 1273 522 
Avera-
ge 

 158 75 180 182 2422 669 348 195 

Table 1: Comparison of nodes visited in the branching rules relating to file mknap-01.txt 
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Table 1 shows the results corresponding to the number of visited nodes for the 
set of problems relating to file mknap-01, and incorporates the results obtained 
for different branching strategies. The minimum values are shown in bold. The 
results show that Flatness II rule used the fewest nodes in five out of eight cases. 
Table 2 shows the CPU time for the set of problems relating to file mknap-01.txt, 
Flatness II is one of the rules using least time and has the shortest time in all 
cases, although in two cases it tied with Pseudocosts.  
 
 

N° Size PSC FLAT 
II 

STG FLAT ENTR LOOK RELI FLPS 

1 6x10 0.03 0.03 0.05 0.05 0.04 0.06 0.07 0.05 
2 10x10 0.02 0.02 0.03 0.03 0.03 0.06 0.03 0.02 
3 15x10 0.13 0.08 0.15 0.14 0.22 0.51 0.13 0.12 
4 20x10 0.11 0.06 0.14 0.11 0.3 0.75 0.23 0.08 
5 28x10 0.16 0.14 0.5 0.45 0.7 1.13 0.47 0.44 
6 39x5 0.26 0.08 0.37 0.35 1.10 6.2 0.57 0.32 
7 50x5 0.51 0.42 1.35 0.96 45.93 21.04 1.66 0.75 
Avera-
ge 

 0.2 0.1 0.4 0.3 6.9 4.3 0.5 0.2 

Table 2: Comparison of CPU times in the branching rules relating to file mknap-01.txt 
 
Table 3 shows the results presented corresponding to the number of visited nodes 
for the set of problems of the file mknap-02 in which the results obtained for the 
different branching strategies are presented. The minimum values are presented 
in bold. The results show that the rule FLAT II (Flatness II) is the one that 
minimize in average the number of visited nodes.  The second rule is STG (Strong 
Branching) followed by FLAT (the former Flatness rule, as described in section 
3).  
 
  Size PSC FLAT 

II 
STG FLAT ENTR LOOK RELI FLPS 

1 60x30 1557 1588 499 1895 1048 813 1271 1471 
2 60x30 1833 1247 1358 5417 7892 5162 2637 4495 
3 28x2 156 194 132 133 147 214 117 156 
4 28x2 51 52 50 52 130 50 50 52 
5 28x2 211 78 79 78 69 198 74 194 
6 28x2 58 25 41 25 99 27 106 25 
7 28x2 80 22 22 22 22 22 22 22 
8 28x2 141 108 119 108 115 110 109 109 
9 105x2 264 83 239 194 280 445 453 353 
10 105x2 6616 437 1465 1166 7434 6712 1268 6746 
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11 30x5 187 117 118 180 202 186 215 167 
12 30x5 115 62 90 86 130 130 195 83 
13 30x5 73 41 58 52 270 226 113 116 
14 30x5 33 31 33 31 33 31 131 33 
15 30x5 41 40 67 41 60 45 43 41 
16 40x5 390 105 272 142 417 439 304 273 
17 40x5 323 141 228 139 719 230 511 343 
18 40x5 111 84 181 83 148 137 195 118 
19 40x5 27 27 27 27 27 27 27 27 
20 50x5 314 144 271 250 403 453 344 317 
21 50x5 345 46 77 46 125 126 118 77 
22 50x5 99 69 100 75 178 107 167 124 
23 50x5 517 90 217 57 137 138 61 90 
24 60x5 92 62 70 70 116 109 70 68 
25 60x5 179 112 183 185 188 215 231 182 
26 60x5 1833 1358 2247 2417 7892 5162 2637 2595 
27 60x5 194 156 132 133 147 214 117 156 
28 70x5 131 53 51 52 130 52 50 50 
29 70x5 211 78 109 78 69 198 71 194 
30 70x5 41 25 58 25 99 27 106 25 
31 70x5 22 22 80 22 22 22 22 22 
32 80x5 119 108 115 108 115 110 109 109 
33 80x5 264 83 239 194 280 445 453 353 
34 80x5 6616 437 1465 1166 7434 6712 1268 2746 
35 80x5 187 117 180 118 262 186 215 167 
36 90x5 115 62 115 90 130 130 195 83 
37 90x5 73 41 103 58 102 270 226 116 
38 90x5 33 31 33 31 33 32 131 33 
39 90x5 67 40 41 40 41 40 45 41 
40 39x5 390 105 272 242 417 439 304 273 
41 27x4 323 141 228 239 719 230 511 343 
42 34x4 111 83 84 181 148 137 118 195 
43 29x2 27 27 27 27 27 27 27 27 
44 20x10 344 250 271 250 403 453 344 317 
45 40x30 345 46 77 47 125 126 118 77 
46 37x30 99 69 100 135 178 107 167 124 
47 28x4 517 57 90 217 137 138 61 90 
48 35x4 92 68 70 82 116 109 70 69 
Avera-
ge 

 568 204 243 432 842 672 358 646 

Table 3: Comparison of nodes visited in the branching rules relating to file mknap-02.txt 
 



                       Accelerating the B&B algorithm for integer programming                  131 
 
Regarding the visited nodes, the best rule was Flatness II followed very closely by 
strong branching. This competitiveness trend between both, relating to the 
number of nodes visited, is a characteristic that repeats in the following 
experiment with another group of instances. In third place is the Reliability rule 
with an average of 358 nodes.  Tables 4 shows the CPU times of the experiments 
performed with the instances taken from the file mknap-02 in the OR-Library.  
 
           

  Size PSC FLAT 
II 

STG FLAT ENTR LOOK RELI FLPS 

1 60x30 5.44 5.54 7.09 11.58 13.32 57.48 6.6 5.66 
2 60x30 16.19 6.26 8.05 25.84 83.13 229.94 8.71 13.1 
3 28x2 0.17 0.23 0.21 0.18 0.23 0.82 0.19 0.19 
4 28x2 0.06 0.07 0.08 0.16 0.19 0.20 0.11 0.08 
5 28x2 0.13 0.13 0.14 0.12 0.24 0.79 0.15 0.24 
6 28x2 0.06 0.04 0.04 0.07 0.17 0.17 0.17 0.05 
7 28x2 0.03 0.04 0.03 0.03 0.03 0.07 0.07 0.10 
8 28x2 0.13 0.17 0.13 0.11 0.14 0.32 0.15 0.12 
9 105x2 0.43 0.16 0.56 0.41 0.65 2.60 0.78 0.57 
10 105x2 10.68 0.81 3.68 2.47 23.75 49.35 2.76 11.30 
11 30x5 0.14 0.15 0.26 0.33 0.40 1.22 0.35 0.23 
12 30x5 0.07 0.14 0.14 0.13 0.22 0.50 0.31 1.20 
13 30x5 0.10 0.06 0.14 0.22 0.67 0.15 0.21 0.19 
14 30x5 0.05 0.05 0.07 0.06 0.07 0.24 0.25 0.11 
15 30x5 0.07 0.08 0.08 0.08 0.08 0.21 0.11 0.41 
16 40x5 0.52 0.16 0.65 0.47 0.88 2.44 1.50 0.41 
17 40x5 0.43 0.34 0.39 0.43 0.75 1.66 0.83 0.54 
18 40x5 0.14 0.13 0.23 0.34 0.34 0.69 0.23 0.3 
19 40x5 0.04 0.04 0.04 0.04 0.05 0.11 0.15 0.05 
20 50x5 0.41 0.53 0.71 0.49 0.92 2.58 0.68 0.48 
21 50x5 0.11 0.14 0.13 0.10 0.26 0.77 0.27 0.15 
22 50x5 0.14 0.11 0.22 0.28 0.45 0.72 0.38 0.24 
23 50x5 0.13 0.11 0.26 0.18 0.26 0.96 0.22 0.15 
24 60x5 0.16 0.11 0.26 0.18 0.26 0.96 0.22 0.15 
25 60x5 0.29 0.20 0.46 0.40 0.43 1.31 0.52 0.34 
26 60x5 6.26 8.05 16.1 25.8 83.1 229.9 8.71 13.1 
27 60x5 0.23 0.17 0.21 0.18 0.23 0.82 0.19 0.19 
28 70x5 0.16 0.06 0.08 0.07 0.19 0.2 0.11 0.08 
29 70x5 0.13 0.14 0.14 0.12 0.13 0.79 0.15 0.24 
30 70x5 0.06 0.04 0.07 0.04 0.17 0.17 0.17 0.05 
31 70x5 0.03 0.03 0.03 0.03 0.03 0.07 0.17 0.04 
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32 80x5 0.13 0.11 0.13 0.17 0.14 0.32 0.15 0.12 
33 80x5 0.43 0.16 0.56 0.41 0.65 2.6 0.78 0.57 
34 80x5 10.68 0.81 3.68 2.47 23.75 49.35 2.76 11.3 
35 80x5 0.14 0.15 0.26 0.33 0.4 1.22 0.55 0.23 
36 90x5 0.17 0.14 0.14 0.13 0.22 0.5 0.41 1.20 
37 90x5 0.06 0.1 0.14 0.22 0.67 0.15 0.21 0.19 
38 90x5 0.06 0.05 0.07 0.06 0.07 0.24 0.25 0.11 
39 90x5 0.08 0.09 0.07 0.08 0.08 0.21 0.21 0.41 
40 39x5 0.52 0.16 0.65 0.47 0.88 2.44 0.50 0.41 
41 27x4 0.43 0.34 0.39 0.43 0.15 1.66 0.83 0.54 
42 34x4 0.14 0.13 0.23 0.34 0.34 0.69 0.23 0.30 
43 29x2 0.04 0.04 0.04 0.04 0.05 0.11 0.10 0.05 
44 20x10 0.41 0.53 0.71 0.49 0.92 2.58 0.68 0.48 
45 40x30 0.11 0.54 0.13 0.10 0.26 0.77 0.27 0.15 
46 37x30 0.14 0.11 0.22 0.28 0.45 0.72 0.38 0.24 
47 28x4 0.13 0.18 0.51 0.12 0.31 0.80 0.21 0.17 
48 35x4 0.16 0.12 0.26 0.18 0.26 0.96 0.22 0.15 
Av.  1.18 0.59 1.03 1.61 5.03 13.61 0.92 1.39 

Table 4: CPU-Time for the set of problems of the mknap-02 
 
The best rule in terms of CPU time was by far the Flatness II rule. Here, the rule 
Pseudocosts had a very high CPU time compared to what was expected. The 
other rules had longer computational processes, where the Entropic rule was 
especially slow. Table 5 shows the number of nodes visited for the set of problems 
relating to mknapcb-01. Tables 6 shows experiments performed using the 
instances taken from the same file mknap-02 of the OR-Library, but now showing 
results for visited nodes. The best rule in this case was Strong branching, and is 
not surprising as it generated more information due to solving a larger number of 
sub-LP problems. Consequently, it is slower than the other rules. However, the 
difference with Flatness II in terms of nodes is 39852 nodes in the 30 problems 
solved, representing an average of 1328 nodes per problem, that is, using Flatness 
II versus Strong branching. Table 6 shows CPU times for the set of problems from 
mknapcb-01 in seconds.  
In terms of processing time, the best rule was Flatness II, and the second best 
was Pseudocosts by 37%. The third best rule was FL/PS, a rule that combines 
both Flatness II and Pseudocosts, using Flatness II for the first 20 iterations and 
Pseudocosts for the remaining. This was unexpected given that in the other 
experiments with different groups of instances, the FL/PS rule based on this 
benchmark appeared more distant than the best rules. 
 
 



                       Accelerating the B&B algorithm for integer programming                  133 
 
 PSC FLAT II STG FLAT ENTR RELI FLPS 
1 588381 324280 139991 254726 546946 1078617 611384 
2 264158 171439 145417 139624 364005 703531 175685 
3 324359 316426 168767 205934 319263 979461 379138 
4 964082 601654 578440 1220753 1703279 3442123 2059026 
5 212887 208628 165941 344996 400403 696683 526471 
6 291613 113822 152765 150751 304693 391331 223764 
7 134810 44861 207494 220550 598252 396170 319995 
8 129313 160300 99974 186669 165984 517715 295378 
9 241756 271505 123527 417345 295741 1093448 755203 
10 735438 223578 235629 536155 487905 1362273 1073853 
11 205735 68259 166865 167824 505815 624915 213552 
12 197840 131542 133426 398402 294152 426365 761022 
13 1391085 915001 498013 1250885 1344622 2408570 2131063 
14 378781 317403 222035 292024 465836 1105971 490193 
15 419797 547862 412136 370976 794080 888985 378254 
16 41087 148398 166495 73497 290279 283302 76198 
17 10114 6414 38784 47624 307866 152130 54602 
18 818034 461762 246821 406525 773227 1025309 578438 
19 972162 179190 137278 285492 477214 863642 315320 
20 252301 191252 92479 179493 380977 511477 228402 
21 85236 50951 80105 45814 229241 271838 46322 
22 167063 49064 142109 112138 465920 384785 89981 
23 113829 100445 77209 106397 278455 268344 122413 
24 126435 170148 118677 136646 474774 347865 142646 
25 50249 62639 61747 65518 449974 285441 66820 
26 210992 147275 121214 161497 328954 507728 251729 
27 58028 52778 76365 60047 835363 497729 88106 
28 78758 89968 46067 91884 360461 213979 93901 
29 61990 80291 62824 127933 489723 692423 89854 
30 131577 127878 220874 198412 522641 615543 197293 
Average 321930 211167 171316 275218 508535 767923 427867 

Table 5: Number of nodes visited for the set of problems relating to mknapcb-01 
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 PSC FLAT II STG FLAT ENTR RELI FLPS 
1 917 581 706 833 2927 1397 940 
2 403 280 677 431 1956 874 262 
3 496 520 808 639 1690 1248 567 
4 1471 977 3044 3970 9141 4444 3111 
5 330 343 820 1128 2149 905 801 
6 440 186 709 472 1551 484 335 
7 202 73 921 676 2891 496 475 
8 201 262 456 567 844 653 436 
9 371 446 613 1278 1533 1359 1132 
10 1125 366 1135 1701 2602 1707 16217 
11 301 112 666 485 2391 718 308 
12 288 215 554 1105 1365 490 1092 
13 2081 1496 2354 3686 6801 2848 3126 
14 551 519 958 828 2174 1240 701 
15 612 892 1779 1034 3637 983 538 
16 61 247 732 206 1386 327 110 
17 15 11 138 128 1374 169 75
18 1161 750 1131 1130 3581 1129 803 
19 1424 292 570 810 2300 951 454 
20 379 311 388 523 1846 577 331 
21 112 83 287 122 827 280 63
22 221 81 494 265 1665 398 111 
23 155 163 293 277 1031 288 166 
24 174 278 471 358 1836 367 194 
25 66 103 222 164 1628 290 86
26 288 242 504 420 1287 534 332 
27 79 87 266 153 3154 515 120 
28 105 146 167 222 1299 225 120 
29 81 129 226 310 1773 703 114 
30 180 208 858 539 2024 637 264 
Average 476 346 764 815 2355 908 626 

Table 6: CPU-Times for the set of problems relating to the mknapcb-01 file 
 
5. Conclusions    
 
Based on the developments in this research and the obtained results, our 
conclusion is that the actions taken to devise a new branching rule based on the 
polyhedron, as implemented in the B&B algorithm were adequate. The FLAT II 
rule developed in this paper aimed to improve the CPU time and the memory size 
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used in the B&B algorithm.  These factors are important in resolving real-world 
problems, for instance, in industry and business, especially in large scale problems. 
A good example of these factors is found in areas where integer programming has 
assumed the main role, such as telecommunications networks, due to the large 
number of variables taken into account in decision making. The size makes many 
problems slightly intractable, as for example a network with one hundred nodes 
using a special linear formulation of the p-hub type. The formulation requires five 
hundred integer variables with a resolution that may take hours using even 
efficient commercial software. In cases like these, efficient strategies should exist 
for branching variables, directing and handling the list, so that the B&B capacity 
is improved in order to obtain solutions within reasonable periods of time. The 
conclusion of the work is based on the knapsack problems from the knapsack OR-
Library. These have integer variables 0 and 1, and are commonly used for testing 
as they provide non-polynomial complexity. Based on the results, the conclusion 
is that the devised rule presents low execution times and a minimal number of 
generated nodes. Future work in the proposed design should include testing the 
algorithm using other libraries with a variety of problems.    
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