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1. Introduction

A key part of any modeling process is whether a mathematical model describes a
system accurately. Usually, approximation uses least squares and also the 2-norm
is used to define the quality of approximation. In certain applications, however,
other measures of approximation quality are more precise. This can be the case
when designing a LED luminaire as the large difference between the desired and
emitted light in one direction is observed easily, may be very annoying, and at the
same time, and may end up as a poor design [12]. A luminaire that severely fails
to fit the demanded light emission in only one direction may be completely useless,
imagine for example the low beam of car headlamps. This failure, although likely to
happen, may be overseen when checking the quality of approximation in 2-norm, and
therefore it may be better to use the max-norm in such cases. However, analytical
expressions for max-norm instead of the 2-norm are likely to be less convenient,
as the corresponding functions may not be smooth. Therefore, there is a trade off
between the seemingly more accurate model as opposed to faster approximation
tools.
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Note that the two models share the same zero-error approximations while the near-
optimal approximations may differ significantly. In this paper we investigate the
possibility to switch among the models in order to enhance the convergence to near
optimal approximations. The idea is not unlike the well-known variable neighbor-
hood search heuristics [14], but it should be noted that here not only are the neigh-
borhoods changed, but also the goal function. Preliminary results provided in this
paper show that the method is promising as our results are comparable to those ob-
tained using standard methods [1, 17]. An important note is that the new approach
was applied almost without or, more precisely, with substantially less tuning of the
parameters compared to previous studies.

In the next section, we provide details of the application that has motivated this
research, and Section 3 presents the model and evaluation functions. In Section 4,
a brief description of the algorithms is provided. In Section 5, we describe the
experiment and provide results, and discuss the conclusions in the last section.

2. Motivation and previous work

In recent years, LED (light emitting diode) technology in light sources has dramati-
cally improved and consequently, its use has grown exponentially. The major reasons
for success of LEDs is lower energy consumption, and endless possibilities of provid-
ing the light engine design (a combination of light source and optical elements). The
latter enables the optics designer to build a lighting system that delivers light to an
environment in a fully controlled fashion. However, numerous possible designs lead
to new problems in choosing an optimal design depending on different goals such as
optimization of energy consumption, production costs, and, last but not least, light
pollution in an environment. The design process may be improved by using analyti-
cal models and optimization tools. This naturally opens up several research avenues.
For example, when aiming to design a luminaire with a prescribed light emitting dis-
tribution, it may be cost-efficient to combine premanufactured LED lenses available
on the market instead of producing special LEDs. This can be achieved using a soft-
ware program that identifies combinations providing distributions close to what is
desired [5]. It is important to have error free or at least very good approximations of
the basic lenses, and methods that are stable, in the sense that they are not too sen-
sitive to noise in the presentation of the input. Hence a model is needed containing
the basic elements, i.e. a single LED luminaire with secondary optics. An adequate
model provides design optimization and automatization - a highly ambitious goal
that calls for further study (see [5] for a pilot experiment).

Here we limit our interest to a discussion on the basic model for LEDs with sec-
ondary optics. First, we recall the preliminary results. It is known that the spatial
light distribution of some LED lenses can be approximated by a sum of a small
number of certain basis functions [15]. The model was successfully applied to LEDs
with secondary optics attached and symmetric light distribution [7] showing with
sufficiently good approximations (RMS error below 5%) obtained using a sum of
only three functions (K = 3). The model was slightly modified in [7] where a new
normalizing parameter was introduced, and consequently, all other parameters have
known values in fixed intervals. It may be interesting to note that due to symmetries
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of the examples, K = 3 is sufficient for both applications [7, 15]. In the general case,
we expect that K > 3 functions are necessary for sufficiently good approximations,
and in optimizing a luminaire design, it becomes necessary to have an idea as to how
large the parameter K can increase in order to assure that the light distribution fits
the desired (and/or standard) light distribution pattern sufficiently well.

In [7], several heuristic algorithms that describe the spatial light distribution of an
LED with its attached secondary optical elements, [6, 8, 9] were applied providing
sufficiently good results. The tested algorithms include local search algorithms with
different neighborhood definitions, as well as genetic and hybrid algorithms. Later,
the results were improved by postprocessing using Newton’s method [10]. Based
on the remark of the reviewer from a previous report [8], we have considered the
problem to be a nonlinear least squares problem in which variables can be sepa-
rated [11], and have achieved a dramatic improvement in convergence speed that
enables consideration of arbitrary distributions which are not necessarily symmet-
ric. Originally, the model was applied to symmetric distributions which is equivalent
to an approximation task on a single C-plane (See Fig. 1). Practical instances of the
problem however typically involve examples without symmetry. The general method
applied here approximates the entire spatial light distribution of one intersection half
plane (C-plane) at a time. Thus, we approximated over 25 C-planes with 181 data
points (polar angles) per C-plane, for every spatial light distribution. Altogether,
we approximated over four thousand data points.

In all previous work [6, 8, 9], the algorithms work with the same approximation error
function which is the standard real mean square or RMS error. If we look at the
definition of the RMS error, we see that it is designed in a way that hides high or
low peak errors and provides an average estimate of the error. This is fine as long
as we expect smooth input data with very little differences between data points.
But in the field of visible light optics, we can also expect data with high differences.
That is why we proposed an alternate approximation error function which we call
the MAXe error [12] or, in other words, the infinite norm. The new approximation
error function differs from the old one in that it does not give an average of the error
over data points on some C-plane but rather the maximum error in that C-plane.
In this way, we are careful not to ignore any initial data. As shown in [12], the
new approximation error approach provides good results that are more reliable, and
thus most probably is the better approach in the future, given that low MAXe error
approximation implies the solution guarantees low deviation in any direction. On the
other hand, as the algorithms used in evaluating the new model were not extensively
tuned, in particular, much less time given to tuning compared to the original model,
the best results achieved in the first model still seemingly outperform the later.

This motivates further study of the new model, in particular, the design and tuning
of optimization algorithms.
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3. Mathematical model and evaluation functions

We search for an approximation of the Luminous intensity I (¢;a,b,c) at a polar
angle of ¢ in the form

K

I(p;a,b,c) = Inas Z a, cos (o — by,), (1)
k=1

where K is the number of functions to sum and ag, bg, ¢ are the function co-
efficients that we search for. For brevity, coefficients are written as vectors a =

(a1,a2,...,aK), b = (b1,b2,...,bx), and ¢ = (c1,¢2,...,ck). The interval ranges
of the coefficients are: a € [0,1]%, b € [0,90]¥ and ¢ € [0,100]%. When using dis-
crete optimization algorithms, the parameter values are: a € [0,0.001,0.002, ..., 1]%,

b € [-90,-89.9,-89.8,...,90]X and c € [0,1,2,...,100]%. Two restrictions on the
model should be noted. First restriction emerges from the LEDs physical design.
As the LED can not emit any light to the back side (the upper hemisphere), all
values that are calculated at angle (¢ — bg) greater than 180° equal 0. The second
restriction is due to the slightly unusual description of the light distribution in stan-
dard files such as Elumdat (file extension .1dt) [16] and Iesna (.ies) [3]. These files
present measured candela values per angle ¢ on so called C-planes which can be
observed on Figure 1. But a C-plane is actually only one half of the corresponding
cross-section and does not describe the other half. However, from physical point of
view the impact from the other half of the cross-section has to be considered.
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Figure 1: C-planes according to standard. C-planes angles : 0 - 360 — ¢ angles : 0 to 180 degrees

As mentioned in the introduction, the impact of introducing a new evaluation func-
tion is investigated in this paper. That is why we define two functions that evaluate
the goodness of fit differently. The first is the root mean square error (RMS), for-
mally defined by the expression:
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N
RMS (a,b,c) = % Z [Ln (i) — I(gs,a,b,c)] (2)

where RM S represents the error of the approximation. Later in tables the relative
RMS error (RMSp) defined by equation (4) is reported. Here, N is the number of
measured points in the input data, I, (¢;) the measured Luminous intensity value
at the polar angle ¢ from the input data, and I(p;,a, b, c) the calculated luminous
intensity value at the given polar angle ¢.

The second alternative evaluation function used here is formally written as:

MAXe(a,b,c)= max [ (pi) — I(pi,a, b, c)] (3)

where M AXe represents the maximum error, and all other variables are as defined
in equation (2).

This gives two models which we refer on as Model 1 or RMS model and Model 2
or MAX model.

The results are provided in terms of relative RM S and M AX e error that are defined
by equations (4) and (5). The reason for introducing (4) originaly was that the data
in various datafiles available are not scaled, and the consequently the value I,,,4., the
maximal measurement, may differ significanlty among the lenses. Therefore a scaling
factor N/ (Zfil I, (i) was introduced corresponding to average measurement. For
easier comparison, a scaling factor is also applied to the M A X e approximation error.

RMS, (a,b,c) 100« N * RM S (a,b,c) (%) )

Zij\il [Im (pi)]

MAXe,(a,b,c) = 100+ MAXe(a,b,c) (%) (5)

Imam

Clearly, the optimal solutions (zero-error approximations) in both models coincide.
However, the near optimal approximations may be very different. This is illustrated
by the results in Table 1 where we compare solutions obtained from the two models.
Here associated with each model is a version of an optimization algorithm where we
only change the cost function that is to be minimized. The cost functions are, nat-
urally, RM S in the RMS model and M AXe in the MAX model. (The optimization
algorithm used is a local search type algorithm IF that is outlined later in more
detail).

Looking at Table 1, the new model (MAX model) seems to be clearly inferior, but
the main reason is of course that the solutions are evaluated differently. Namely,
a fair comparison is to check the quality of solutions with the same error function.
Here, the results of RMS model are clearly better when comparing the RMS error
(first column in Table 2 compared to the second column in Table 1). In other words,
optimization in Model 2 (applying the MAX cost local search) did not provide a
better result compared to the original optimization method. On the other hand, the
situation is not so clear when considering the MAX error (Table 2, second column).
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Here, in some cases MAX-based optimization is superior but on the other hand,
RMS-based optimization in Model 1 in several cases provides better results also in
terms of the MAX error. However, it is premature to draw any conclusions from
the results provided here. More examples are given in [12] which shows interesting
behavior that forbids any simple conclusions concerning the superiority of either
model or algorithm.

Based on this observation, it may be a good idea to switch between the models and
ask as to whether this may bring about any improvement in approximation quality
or convergence speed. Recall that in introducing the second model, the error derived
using the MAX norm is based on practical considerations [12]. However, the idea
may be useful also in other applications where some other cost functions may be of
interest.

In the next section, we will briefly outline the algorithms used in the experiments.

MAX model RMS model
MAX error RMS error
Lens Best Average Worst Best Average Worst

C10818 5.0801 9.2589 14.2687 | 2.1021 3.3288 4.8276
C10949 3.1546 5.0670 7.1241 1.2023 2.1319 2.9317
CA11416 | 3.9740 6.0391 9.6082 1.5784 2.6409 4.5131
CA11426 | 5.6641 8.8768 15.089 1.9361 3.5252 6.4964
CA12050 | 3.5539 6.6315 11.1721 | 1.5788 2.8181 4.5389
CA12087 | 5.3171 | 13.2861 | 37.4918 | 2.1490 5.4651 14.1541

Table 1: Comparison of the models

MAX model RMS model
RMS error MAX error
Lens Best Average Worst Best Average Worst

C10818 2.6412 5.2852 8.6834 | 5.4280 8.7847 12.9902
C10949 1.9277 2.9424 4.5883 | 3.0165 5.6989 8.7168
CA11416 | 2.3757 3.353 5.2343 | 4.1378 7.3093 13.3517
CA11426 | 2.7196 4.8998 8.5563 | 5.5003 9.8205 22.8541
CA12050 | 1.9821 3.7464 6.7437 | 3.9828 7.6927 14.8069
CA12087 | 2.8540 7.6331 21.6723 | 6.0859 | 19.4859 | 64.3265

Table 2: Models comparison - cont

4. The algorithms

In previous work [5, 6, 7, 8, 9, 10], the model described above was applied in con-
junction with several custom built algorithms based on local search heuristics and
certain meta-heuristics. The algorithms implemented in previous studies include
a steepest descent algorithm, two iterative improvement algorithms with different
neighbourhoods and two genetic algorithms, including a standard and a hybrid one
in which the best individuals of every generation are optimized with the iterative
improvement algorithm.
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The basic local search (iterative improvement with fixed neighborhood) is conceptu-
ally very simple and a well-known heuristics method [1, 17]. Furthermore, it appears
to be among the best algorithms among the applications we analysed in this paper
[9], hence we decided to use this algorithm in the initial study, thus focusing on the
effects of switching among two cost functions. The algorithm (standard IF) and its
new variant (multi-evaluation IF) are explained briefly below.

Standard multi-start IF. The multi-start iterative improvement with fixed
neighborhood (IF) first initializes several initial solutions. The initial solutions
are randomly chosen from the whole search space. The initial solutions are then
optimized using iterative improvement. At each step, the algorithm randomly
chooses a neighbor, and immediately moves to the neighbor if its cost value is better
than the current cost value. The neighbors of (ai,b1,c1, ag,bs,ca, as,bs,c3) are
(ay + da, by £db,c1 £ de, ag + da,bs + db, ca + de, a3 £ da, bs + db, c3 + dc), where
da = 0.01, db = 1, and dc = I’TS’”. (Hence, there are 512 neighbors.) If no better
neighbor is found after 1000 trials, it is assumed that no better neighbor exists. In
this case the algorithm morphs the neighborhood by changing the step according
to the formula d;11 = d; + dy. More precisely, da; 11 = da; + dag where dag is the
initial step value. Analogously for db and dc. The algorithm stops when the number
of generated solutions reaches Ty, 4.

Multi-evaluation multi-start IF has one parameter, i. The difference in the
standard multi-start IF is that after ¢ changes of neighborhoods, the cost function
is switched. If there is still no better solution, the algorithm changes the evalua-
tion function from RMS to M AXe, resetting the neighborhood, and the search is
restarted in above described manner, the only difference being the evaluation func-
tion. If there is no better solution after i changes of neighborhoods, the evaluation
function is switched again, and so on. The algorithm stops when the number of
generated solutions reaches Ty,q;-

5. Experiments

5.1. Set-up and data-set

As there are no standard benchmark data for the problem, we chose the same data
set used in our previous experiments to make at least a comparison with our previous
results. The choice of the dataset also shows that the algorithms are useful in real
life scenarios.

We chose 9 different asymmetrical lenses to be used with a CREE XT-E series
LED, from one of the worlds leading lens manufacturers, LEDIL from Finland.
We acquired the photometric data from LEDIL’s online catalog [13]. The data was
provided in .ies format, which we then converted to a vector list and is more suitable
for use in our algorithms. LEDIL measurements of the lenses gave a polar precision
of 1° on 25 C-planes. This means that from every .ies file, we extracted 2275 vectors.
The experiment was set up so that all the lenses were approximated over all 25
C-planes. Each C-plane has the time limit T},,,, set to four million iterations. Each
iteration is defined as the evaluation of the current set of parameters using the
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current evaluation function. In real time terms, this means that every lens was
approximated in 30 minutes on a Core 17-4790K CPU @ 4.4 GHz. Given that the I7
CPU has four physical cores, the approximation in a multi-core setup of all twelve
lenses takes a little more than two hours.

5.2. Results - the first experiment

The lenses were approximated over all 25 C-planes. In the tables (3, 4, and 5),
the error on the best and the worst C-plane and the average result are obtained
after four million iterations, comparing the standard IF with the multi-evaluation
IF algorithm (i = 3). The best results after 4M iterations are written in bold.

Standard IF Multi Evaluation IF
Lens/Iter | 100K 1M 4M 100K 1M 4M
CA13299 | 6.9718 | 4.5349 3.9896 3.7821 | 2.8903 | 2.8903
CA13300 9.065 3.6753 3.3089 | 4.7169 | 3.6351 3.6277
CA13805 | 5.7029 | 3.8884 3.7728 4.6041 | 3.2814 | 3.2814
C10818 7.6407 3.826 3.6965 6.3525 | 2.8602 | 2.8602
C10949 3.1882 | 1.8401 1.796 2.8224 | 2.0116 2.0116
CA11416 | 2.9323 | 2.1406 2.1387 2.2671 | 1.8862 | 1.8862
CA11426 | 4.2799 | 3.5875 3.5053 6.1171 | 3.4659 | 3.4659
CA12050 | 1.8933 | 1.7851 1.7607 1.9922 | 1.7739 1.7739
CA12087 | 7.8819 | 2.3436 | 2.3362 9.0052 | 3.0146 3.0146
Kombl 5.9555 | 4.0296 | 4.0239 4.9804 | 4.2286 4.2286
Komb2 3.4397 | 3.3563 3.3563 3.3877 | 3.1698 | 3.1698

Table 3: Best RM Sp results, Standard IF versus Multi Evaluation IF

Standard IF Multi Evaluation IF
Lens/Iter | 100K 1M 4M 100K 1M 4M
CA13299 40.942 32.1781 | 32.1781 32.369 29.3404 22.7258
CA13300 | 51.0319 | 44.0651 | 44.0651 | 47.3095 | 31.6158 31.6158
CA13805 | 28.8676 | 28.3285 | 28.3285 28.152 13.1184 13.1184
C10818 135.163 | 135.163 | 135.163 | 43.3599 | 39.6064 39.6064
C10949 7.888 7.8858 7.8858 7.7721 4.5279 4.5279
CA11416 12.365 7.5858 7.5858 10.9348 6.6492 6.6492
CA11426 | 114.139 | 114.139 | 114.139 | 59.2504 | 46.3456 46.3456
CA12050 | 32.2305 | 32.2274 | 32.2274 | 26.2531 | 12.1922 12.1922
CA12087 | 116.168 | 116.168 | 116.168 96.217 46.0797 | 46.0797
Kombl 50.5046 | 18.3178 | 18.3178 27.2 14.7034 14.7034
Komb2 28.789 28.7216 | 28.7214 | 28.7406 | 16.4413 16.4413

Table 4: Worst RM Sp results, Standard IF versus Multi Evaluation IF

In short, the experiment shows that switching among the cost functions provides
better results. While the best results are in some cases obtained by the standard
IF, the version that switches among the cost functions is clearly better when consid-
ering the worst and average solutions, thus we may say that it gives a more robust
optimization method.
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Standard IF Multi Evaluation IF
Lens/Iter | 100K 1M 4M 100K 1M 4M
CA13299 | 15.3567 | 10.7127 10.6134 13.1771 9.0846 8.3041
CA13300 | 21.7651 | 11.1328 | 11.0013 17.4506 | 12.1059 11.0836
CA13805 | 13.1719 | 9.4713 9.2052 9.7218 6.8671 6.8667
C10818 26.9771 | 17.2709 17.1556 21.8802 | 11.9307 | 11.9282
C10949 5.0333 3.3956 3.2434 4.2915 3.1271 3.1271
CA1l1416 6.3793 3.9897 3.965 5.3212 3.4003 3.4002
CA11426 36.5325 | 21.6352 21.1202 24.6908 17.091 17.091
CA12050 | 10.6401 7.4747 7.2966 8.6917 5.0087 5.0083
CA12087 | 44.1952 | 25.2746 | 22.7253 | 35.8289 | 24.882 24.8816
Kombl 16.127 8.6716 8.5033 11.9709 | 7.8635 7.8635
Komb2 13.473 9.7719 9.6595 9.2142 7.3049 7.2799

Table 5: Average RM Sp results, Standard IF versus Multi Evaluation IF

5.3. Results - the second experiment

The choice of the parameter value, i = 3, was arbitrary and based on our intuition.
In the second experiment, we briefly investigated the importance in choosing a value
of parameter i. The multi-evaluation IF algorithm was run with various parameter
values including ¢ = 1,5, 7, 10, and 15. As before, T},4, was set to 4 million iterations
on each C-plane.

Average results after 4M iteration, i=1,3,5,7,10,15
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Figure 2: Average RM Sp of Multi Evaluation IF, switching between RMS and MAX, variation of
parameter i

Figure 2 shows that the smaller ¢ values are clearly superior to higher ¢ values.
Results on the best and the worst C-planes are similar and are not appear as un-
expected, hence we will not show them due to space limitations. As the number
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of experiments is limited, in conclusion we only say that it indicates that switching
among the cost functions on this dataset proved to be useful and deserves further
attention in future studies.

5.4. Results - the third experiment

In our application, that was the motivation behind the original experiment, we had
two natural cost functions corresponding to definition of a good approximation.
The first is the popular RMS error (L2 norm) and the second is the MAX error
(Lo norm). However, the idea of switching among the cost functions may be use-
ful in certain situations, where other error function(s) may provide a meaningful
alternative to measure quality of approximation. For example, the sum of absolute
errors (L1 norm) or any other L, norm, and perhaps some other measure, may be
a reasonable choice. As suggested by the reviewer, we conducted a preliminary test
for the L case on our dataset. In the last experiment, the algorithms are the same
as before, only the MAX cost function was replaced by the SUM cost function. The
results are found in Figure 3. The solution for quality seems to behave similarly as
before, depending on the values of i. Curiously, s = 1 and 7 = 5 provide nearly the
same results, so that their graphs seemingly overlap. A comparison of the results in
Figure 3 and Figure 2 shows that the combination of MAX and RMS for the dataset
was superior to combining SUM and RMS.

AVERAGE RESULTS (SUM)

45.0000

40.0000

RS
’ N PRy
35.0000 7 ~ P N
a P2 No” N\
VAR g N
30.0000 , AN N _ - / LY
/ - \ / \
/ \ / \
5 25,0000 P . y \
3 \
° \ I °
2 200000 \ 4 I.\ \\/ -
¥ 7\
/ \
15.0000 N / \
VRN / ‘\
10.0000 -==_ / \ / -
S - - / \ / ~o
~e N / \ ’ N = - =0
5.0000 S / A Y

S -
- = =

0.0000
CA13299 CA13000 CA13805 €10818 €10949 CA11416 CA11426 CA12050 CA12087 Komb1 Komb2 Komb2nr

- -1 9.6009 9.6790 7.4457 8.5091 29718 3.7276 14.0216 4.8844 21.2442 9.5830 6.7440 7.3522
- -5 9.5468 9.6776 7.4394 8.5091 2.9566 3.7275 14.0216 4.8844 21.2259 9.4642 6.6611 7.3094
7 20.1664 25.3776 19.8061 24.1352 17.7818 31.7393 34.9918 34.9581 32.6729 25.2592 13.6478 17.1919
10 23.6560 30.8837 21.1285 28.0570 17.3542 31.7770 36.4368 31.5050 34.5656 28.4055 16.2954 19.8247
-8 =15 242734 32.9344 27.3634 30.1881 18.4304 31.7770 38.1836 32.8873 37.3176 30.6919 18.6404 21.4756

Figure 3: Average RM Sp of Multi Evaluation IF, switching between RMS and SUM, variation of
parameter i
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6. Discusion and conclusion

First, we recall that the motivation for this study was to search for improved op-
timization tools in a particular application, for the purpose of designing a LED
luminaire. As there are (at least) two natural choices for measuring the approxima-
tion quality, we compared the two corresponding models and also decided to test
the idea of switching among the two models. The best results within the two models
are obtained using algorithms incorporating the cost function of the chosen model,
as expected. The advantage of the first model (RMS, using the Lo norm norm) is
the potential to improve the quality of solutions and speed of convergence compared
with applying Newton’s method. On the other hand, the second model (MAX, using
Lo, norm) gives more reliable results and a guarantee that the solutions are of prac-
tical use. Combining both models, by switching the models during the optimization
process, provides better results over a shorter time. We have concluded that the
method for the realistic dataset in our application proved to be an improvement
over the previously used methods.

The idea of switching among the cost functions regarded as a variation of the idea
of variable neighborhood search, is much more general and deserves a more compre-
hensive approach. Here, we provided just a couple of preliminary experiments. We
found that the value of paramater i = 3 was a lucky choice, but, in general, this is
definitely a parameter that should be tuned according to the problem and dataset in
question. In the final experiment, we showed that using another norm (L; instead
of L, ) is relatively simple, but the combination did not give competitive results for
our dataset. A number of possibilities remains unexplored (various cost functions,
various parameter values) that may after some tuning lead to other useful techniques
for local search based optimization.

The results should be viewed as preliminary given that applying more algorithms
and having more time available for tuning the algorithm parameters would pro-
vide a fairer comparison, and should also be run on a larger dataset. Regardless
of these limitations, we can conclude that switching between two evaluation func-
tions provided an improvement when compared to the standard algorithm with a
single evaluation function. Further experiments and development of algorithms are
necessary, and open up a natural avenue of further research.

We also believe that the general idea of switching the error functions, or, among the
cost functions, may be worth consideration in certain other applications. Of course,
this has to be considered with much care, as it may lead to some confusion in which
the formal definition of the optimization problem might be overlooked.
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