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Abstract. Regional Development Agencies (RDAs) play a major role in ensuring 
sustainability and reducing inter-regional and intra-regional development disparities in line 
with the principles and policies set in the National Development Plan and Programs. This 
is done by enhancing cooperation among the public and private sectors, as well as non-go-
vernmental organizations. To achieve these targets, RDAs use certain tools such as 
financial support programs, technical support programs, and the like. Accordingly, an effe-
ctive evaluation mechanism is crucial in selecting projects that have more added value and 
higher multiplier effects. In this regard, determining the right parameters that assist in 
choosing the best projects should be clearly demonstrated. In this study, the selection of 
projects according to the evaluating criteria of support mechanisms considered by RDAs 
are discussed through the procedure provided by a practical solution methodology, which 
is an integration of fuzzy parametric programming (FPP) and fuzzy linear programming 
(FLP). Later, a two-phase procedure is introduced to solve multi-objective fuzzy linear 
programming problems. 
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1. Introduction 
 
Inter-regional and intra-regional development disparities are evident at different 
levels in the structures of all countries. Due to these disparities, all the countries 
face several social and economic problems. Many countries implement various 
solutions to overcome these challenges and succeed in establishing sustainable and 
balanced development. For this purpose, the first examples of solutions by Regi-
onal Development Agencies (RDAs) are from the 1930s. RDAs, generally conside-
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red the best practical examples, especially in European Union countries, to an 
extent have made great contributions to the development of less developed 
regions. Hence, it is important to support SMEs (small and medium-sized 
enterprises), NGOs (non-governmental organizations), and public institutions, 
which play a considerable role in the development. However, due to the need for 
determining the right parameters and much insufficiency in the effective 
evaluation and monitoring mechanism, level of the needed analysis and support 
mechanism, have not been yet clearly identified. Therefore, choosing projects with 
added value, higher multiplier effects and less risk, in practice is the first step and 
has great importance in the development of regions and countries [23].  
Traditional single criterion decision-making methods can no longer process the 
complexity of current systems in dealing with this problem [21]. Therefore, 
decision-making in selecting projects is viewed as multiple criteria decision-making 
(MCDM) problem with correlated criteria and alternatives. Multi-criteria decision 
analysis (MCDA) uses a flexible tool which helps bring a broad range of variables 
together, so that the decision maker may see the effects of the projects from a 
greater perspective and thus, make more accurate and precise (that is, more 
realistic) decisions. MCDM methods can be divided into two categories: multi-
objective decision making (MODM) and multi-attribute decision making 
(MADM) [1]. 
The selection and evaluation of projects are based on subjective judgments. To 
overcome this situation, fuzzy sets theory is applied to MCDM problems [5, 16]. 
The natural language of perception or judgment is always subjective, uncertain 
or ambiguous [24]. Fuzzy logic is used for integrating imprecise data in decision 
making. Fuzzy sets can properly show uncertain parameters and can be managed 
through different operations on fuzzy numbers. Since uncertain parameters are 
treated as imprecise values instead of precise ones, the process will be stronger, 
and the results will be more credible [10]. 
Fuzzy MCDM (that is, MADM or MODM) methods related to project selection 
have frequently been discussed in the literature [3, 4, 7, 8, 11]. These studies focu-
sed on the selection of municipal, transportation and investment projects [3, 4, 7, 
8]. There are also contributions dealing with multi-period project selection [11]. 
In the presence of different objectives and limitations, the use of multi-attribute 
decision-making (MADM) techniques provides a reliable methodology to generate 
rankings and select projects. However, in decision-making, it is difficult to state 
which technique is better. The reason for this, it is that the different methods can 
frequently produce different results, even when applied to the same problem using 
the same data. Even the normalization techniques employed in MADM methods 
can also give different ranking results. Therefore, it would be more appropriate if 
the selection or ranking decisions were considered as a constrained multi-objective 
optimization problem, not as a multi-attribute problem. Hence, one can then 
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obtain more accurate and reliable results, without subjective judgments, or reco-
urse to the normalization methods used to eliminate unit differences.  
Conceptual techniques on the implementation of fuzzy optimization to multi-
objective linear programming (MOLP) were firstly presented as fuzzy multiple 
objective decision-making problems by [27, 28]. After that, the solution procedures 
of fuzzy multiple objective decision-making problems were categorized into two 
main classes; first possibilistic and second probabilistic procedures [9]. According 
to [9], since membership functions are used to model the imprecise problem 
parameters in possibilistic procedures, possibility distributions which indicate the 
subjective and objective degree of the occurrence of an event are used in probabi-
listic procedures. Moreover, the multiple objective decision-making methods which 
consider all the parameters as fuzzy are known as possibilistic procedures (look at 
[12, 14, 15, 17, 18, 25]) and the derivatives of these possibilistic procedures are 
also known as interactive procedures (look at [19, 20, 22]). The impreciseness has 
been modelled by these procedures, thanks to the possibility distributions which 
are generally presented by symmetric triangular/triangular and trapezoidal forms. 
However, the possibilistic procedures for optimization problems with fuzzy para-
meters have some disadvantages. Firstly, in expressing the fuzzy parameters 
mathematically, these procedures convert the linear model to a non-linear form. 
Thus, this non-linearity with an increase in the number of constraints and 
objectives has also increased the complexity of the models. As a result, solving 
becomes harder due to their computational complexity. Secondly, the possibilistic 
procedures put some restriction on the structures of membership functions as 
triangular, symmetric triangular and/or trapezoidal which are some of the well-
known probability distributions. Consequently, getting the implementable 
solutions with the flexibility of choosing the right expression of impreciseness of 
parameters, becomes more difficult.  
In order to overcome such problems as mentioned above, in this study, the fuzzy 
parametric programming (FPP), being one of the fuzzy mathematical 
programming (FMP) methods, which had been proposed by [6] for single objective 
problems and afterwards improved by [2] for multiple objective problems, is 
adapted to construct a multiple objective decision problem according to the 
preferences reflecting the fuzziness derived from the decision-makers (DMs). 
Project selection procedures according to the evaluating criteria of support 
mechanisms considered by RDAs are discussed in developing the model. The 
criteria used by RDAs at present were determined in a Likert Scale and are 
composed of equally weighted five main-criteria. By considering the effects of 
subjective judgments on the criteria and alternatives, instead of using a single 
Likert scale number, fuzzy numbers are adopted to eliminate this ambiguity.  
In the organization of the study, firstly, the multi-objective programming problem 
with fuzzy coefficients is discussed in the section "Material and Methods." Secon-
dly, a resolution procedure for project selection by using a two-phase approach to 
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the multi-objective programming problem with fuzzy coefficients is created in the 
section "Theory and Application of the Proposed Model." Finally, the findings are 
discussed in the section "Result and Discussions," and some suggestions are 
presented in the section "Conclusions." 
 
2.  Material and methods 
 
2.1.  The multi-objective programming problem with fuzzy co-
efficients 
 
The fuzzy parametric programming-FPP method can be adapted to set up 
multiple objective decision problems regarding different grades of precisions 
according to the preferences reflecting the fuzziness derived from the decision 
makers (DMs), it is possible to adapt. FPP, in which all coefficients in a 
mathematical model are considered as fuzzy, is different from other FMP methods 
[2]. 
The proposed multi-objective FPP method provides the simultaneous optimal 
solutions for all objective functions or lexicographic optimal and/or additive 
solutions enabling different grades of precision according to the decision maker’s 
preferences. All steps of the proposed procedure can be collected in two main 
stages: (a) the construction of a multi-objective FPP model for different precision 
levels and (b) solving multiple objective mathematical models by fuzzy linear 
programming (FLP). 
 
2.2.  Solution procedure of the multi-objective FPP method 
 
Since the FLP method alone considers certain intervals, which are determined 
from the ideal solutions of the vector optimization model, the resulting solution 
is not dependent on DMs. However, this cannot be accepted as a disadvantage 
for the proposed procedure in this study, as the relative flexibility is reflected by 
using the mentioned FPP method. Therefore, the steps of the proposed multi-
objective FPP method are: 
 

Step 1: Setting up the multi-objective mathematical model  
The mathematical expression of the restricted multi-objective optimization 
problem is, 

௞ݖሼ		ሻ݊݅ܯሺ	ݔܽܯ ൌ ௞݂ሺݔሻ ൌ ܿ௞ݔሽ											݇ ൌ 1,2, … ,  ܭ

ݔܣ				:݋ݐ	ݏݐ݆ܾܿ݁ݑݏ ൑.൒.ൌ ݔ													ܾ ൒ 0    (1) 

where ௞݂ሺݔሻ are the kth objective functions, ݖ௞ are objective function values, for 
all k values, ܿ௞, ,ݔ ܾ and ܣ  respectively, represent the 1xn dimensional vector of 



                A two-phase procedure for a multi-objective programming problem         321 
 
coefficients for all k values, the mx1 dimensional vector of variables and  mxn 
dimensional coefficients matrix   
Here, “m,” “n” and “k” are the number of constraints, variables, and objective 
functions, respectively. 
 

Step 2: Identifying fuzzy parameters 
The suggested multi-objective FPP for restricted multiple objective equation 
systems where all parameters are fuzzy is a handy procedure. According to this 
procedure, the intervals for possible values of fuzzy parameters are specified by 
the user as	ሾܿ଴, ܿଵሻ, ሾܣ଴, ,ሾܾ଴	ܽ݊݀	ଵሻܣ ܾଵሻ. Here, the lower bounds, which show the 
implementable solution, are called the “risk-free” zone and the upper bounds, 
which show the unimplementable solution, are called “impossible” zone. Starting 
from the ‘‘risk-free’’ zone to the ‘‘impossible’’ zone, the implementation ability 
decreases. In this context, the purpose of FPP is also to find the optimal compro-
mise ‘‘in-between’’ solution as a function of grades of imprecision in parameters 
[2, 6].   
The ߤ௦ function, which represents the precision of an optimal solution, is expressed 
by the intersection of membership functions corresponding to imprecise 
parameters denoted by ߤ௖,	ߤ஺,	ߤ௕ [6]. 

௦ߤ ൌ ൫ߤ௖௝ ∩ ஺௜௝ߤ ∩ ݅								,௕௜൯ߤ ൌ 1,… ,݉,							݆ ൌ 1,… , ݊.            (2) 

The given expression means that the inherited precision in the optimal solution 
equals the precision of the most ‘‘risky’’ of the parameters [6]. In equation (1), 
the best value for the objective function at a fixed level of ߤ௦ is obtained when 

௦ߤ                  ൌ ൫ߤ௖௝ ൌ ஺௜௝ߤ ൌ ݅							,௕௜൯ߤ ൌ 1,… ,݉,							݆ ൌ 1,… , ݊.           (3) 

This expression means that the best value of the objective function, at a fixed 
level of precision, can be found by using parameter values of the same level of 
precision, since the mathematical model tends to use the ‘‘risky’’ values of the 
parameters [6]. 
 

Step 3: Establishing membership functions 
With the FPP method, fully trade-off membership functions are constructed in 
any possible form of the membership functions such as linear, piece-wise linear 
(triangular, trapezoidal), exponential or hyperbolic, and created by the imprecise 
parameters. 
 

Step 4: Establishing restricted multi-objective decision problems based on the 
membership precision level 
FPP models using constructed membership functions are created regarding preci-
sion level of fully trade-off memberships		ሺߤ ൌ ሺߤ௖௞	ݎ݋	ߤ௭௞ሻ ൌ ஺ߤ ൌ  ௕ሻ. Theߤ
membership functions can have two possible alternative cases. By the way, each 
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fuzzy parameter has identical membership functions and membership functions 
can be in different forms. In the first case, although the membership functions are 
non-linear, the FPP model can be easily solved by using traditional techniques. 
In the other case, alternative decision plans according to the grades of precision 
are presented after the model is solved for different values of the membership 
functions. For simplicity, under the assumption that all membership functions are 
in linear form and each model is a vector maximization problem, the FPP model 
for each ߤ level is 

max ௞ݖ	 ൌ ሾܿ௞
ଵ ൅ ሺܿ௞ߤ

଴ െ ܿ௞
ଵሻሿ ݇												,ݔ ൌ 1,… ,  ܭ

ଵܣሾ						:݋ݐ	ݏݐ݆ܾܿ݁ݑݏ	 ൅ ଴ܣሺߤ െ ݔଵሻሿܣ ൑ ܾଵ ൅ ሺܾ଴ߤ െ ܾଵሻ	 

ݔ                                                  ൒ 0                                                             (4) 

 

Step 5: Identifying fuzzy intervals by using ideal solutions 
Primarily, according to the precision level or for some preferred levels, the ideal 
solutions of the vector maximization problems are found. Later, to generate the 
payoff table, corresponding values of every objective at each solution derived are 
determined. Lastly, the best (u) and the worst (l) values for each objective 
corresponding to the set of solutions are obtained. 
 

Step 6: Solutions generating by FLP 
Multi-objective optimization has been applied to minimize or maximize functions 
with some constraints. This optimization technique enables an optimal solution 
with tradeoffs between two or more conflicting objectives. Therefore, it provided 
a compromising solution. In the literature, the approaches providing a compro-
mising solution proposed for multi-objective optimization are the utility approach, 
goal programming, interactive approach, and  fuzzy approach [26]. Among the 
investigations on the multi-objective linear programming problem, Zimmermann’s 
fuzzy programming has been found to be an ideal procedure for obtaining the 
optimal compromising solution of a multi-objective problem [13]. The FLP 
method introduced by [28]  formulates the fuzziness in both single and multiple 
objective problems. The FLP model, which optimizes the objectives 
simultaneously by finding the [u, l], values of each objective regarding the vector 
maximization problem constructed for each precision levels, is 
 

							ݔܽܯ λ  
																								Subjects	to:	 

																																								 λ ൑
ሺݖ௞ െ ݈௞ሻ
ሺݑ௞ െ ݈௞ሻ

,																				݇ ൌ 1,… ,  ,ܭ

 
			ሾܣଵ ൅ ଴ܣሺߤ െ 	ݔଵሻሿܣ ൑ 	ܾଵ ൅ ሺܾ଴ߤ െ ܾଵሻ 
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0 λ 1  , 
 

							 0x  ,																																																																		(5) 

Where ߤ௞ሺݔሻ ൌ
ሺ௭ೖି௟ೖሻ

ሺ௨ೖି௟ೖሻ
ߤ   , ൌ ௭ߤ ൌ ஺ߤ ൌ ௕ߤ ൌ   ௖ andߤ

௞ݖ ൌ ሾܿ௞
ଵ ൅ ሺܿ௞ߤ

଴ െ ܿ௞
ଵሻሿݔ,			∀݇.	 

The solutions for each ߤ௞ሺݔሻ value of equation (5) are combined using FLP. When 
the DM is not happy with the alternative decision plans containing each precision 
level, then the individual must repeat the procedure starting from step 2 or 3. 
 
3. The theory and application of the proposed model 
 
3.1.  Project selection using a two-phase approach for the 
multi-objective programming problem with fuzzy coefficients 
 
To illustrate how the proposed multi-objective FPP method works, this study was 
adopted from data in the article titled "Using Fuzzy Ahp and Fuzzy Topsis 
Methods for the Analysis of Development Agencies Project Evaluation Criteria” 
prepared by [23]. According to the study of [23] discussing the supports provided 
by Regional Development Agencies (RDAs) and the evaluating criteria of 
supports, the evaluation criteria for 20 project alternatives were grouped into five 
main aspects as C1- Financial and business capacity, C2- Relevancy, C3- Method, 
C4-Sustainability, C5- Budget and cost effectiveness, respectively. Also, three 
independent auditors evaluated it, and expert opinions were expressed using 
triangular fuzzy numbers. In this study, the multi-objective FPP method has been 
presented to suggest an alternative method to the RDAs for the selection of 
projects. Subsequently, the steps resulting from the proposed procedure are as 
follows: 
 

Setting up the multi-objective mathematical model 
The multi-objective mathematical model with fuzzy coefficients based on group 
decision-making for the 20 projects evaluated by different experts and considering 
each evaluation criteria as an aim is as follows:  
Indices 
i: the number of projects (i=1…,20) 
j: the number of experts (j=1,2,3) 
Parameters 
1௜௝ܥൣ

଴ , 1௜௝ܥ
ଵ ൯: the "risk-free" and "impossible" values of “Financial and business 

capacity" criteria evaluated by the jth expert for the ith project 
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2௜௝ܥൣ
଴ , 2௜௝ܥ

ଵ ൯: the "risk-free" and "impossible" values of “Relevancy" criteria 
evaluated by the jth expert for the ith project 
3௜௝ܥൣ

଴ , 3௜௝ܥ
ଵ ൯: the "risk-free" and "impossible" values of “Method" criteria evaluated 

by the jth expert for the ith project 
4௜௝ܥൣ

଴ , 4௜௝ܥ
ଵ ൯: the "risk-free" and "impossible" values of “Sustainability" criteria 

evaluated by the jth expert for the ith project 
5௜௝ܥൣ

଴ , 5௜௝ܥ
ଵ ൯: the "risk-free" and "impossible" values of “Budget and cost 

effectiveness" criteria evaluated by the jth expert for the ith project 
Decision variables 
 ௜: the weight value of the ith project (namely, this value is the degree ofݔ
importance that indicates which project is better according to the existing 
parameters.) 
Objective functions and subjects 

* The total financial and business capacity of the projects 
	

             max	 ଵݖ ൌ ∑ ∑ 1௜௝ܥൣ
଴ , 1௜௝ܥ

ଵ ൯ଷ
௝ୀଵ

ଶ଴
௜ୀଵ  ௜                                (6)ݔ

* The total relevancy of the projects 

max	 ଶݖ ൌ ∑ ∑ 2௜௝ܥൣ
଴ , 2௜௝ܥ

ଵ ൯ଷ
௝ୀଵ

ଶ଴
௜ୀଵ  ௜                                (7)ݔ

* The sum of method scores related to the projects 

max	 ଷݖ ൌ ∑ ∑ 3௜௝ܥൣ
଴ , 3௜௝ܥ

ଵ ൯ଷ
௝ୀଵ

ଶ଴
௜ୀଵ  ௜                                (8)ݔ

* The total sustainability of the projects 

max	 ସݖ ൌ ∑ ∑ 4௜௝ܥൣ
଴ , 4௜௝ܥ

ଵ ൯ଷ
௝ୀଵ

ଶ଴
௜ୀଵ  ௜                                (9)ݔ

* The total Budget and cost effectiveness of the projects 

max	 ହݖ ൌ ∑ ∑ 5௜௝ܥൣ
଴ , 5௜௝ܥ

ଵ ൯ଷ
௝ୀଵ

ଶ଴
௜ୀଵ  ௜                              (10)ݔ

 
Subject to: 

∑ x୧ ൌ 1ଶ଴
୧ୀଵ                                              (11) 

௜ݔ              ൒ 0,													∀݅ ൌ 1,… ,20 
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Establishment of restricted multi-objective decision problems regarding member-
ship precision level 
For simplicity, under the assumption that membership functions regarding fuzzy 
parameters are in linear form and each aim is a vector maximization problem, the 
eleven different vector maximization models with a fixed level of precision carried 
out with various membership values are 

ە
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۓ
ߤ	ݎ݋݂ ൌ 																																									0.1	ݕܾ	1	݋ݐ	0

max	 ଵݖ ൌ෍෍ൣ1ܥ௜௝
ଵ ൅ 1௜௝ܥ൫ߤ

଴ െ 1௜௝ܥ
ଵ ൯൧

ଷ

௝ୀଵ

ଶ଴

௜ୀଵ

௜ݔ

max	 ଶݖ ൌ෍෍ൣ2ܥ௜௝
ଵ ൅ 2௜௝ܥ൫ߤ

଴ െ 2௜௝ܥ
ଵ ൯൧

ଷ

௝ୀଵ

ଶ଴

௜ୀଵ

௜ݔ

max	 ଷݖ ൌ෍෍ൣ3ܥ௜௝
ଵ ൅ 3௜௝ܥ൫ߤ

଴ െ 3௜௝ܥ
ଵ ൯൧

ଷ

௝ୀଵ

ଶ଴

௜ୀଵ

௜ݔ

max	 ସݖ ൌ෍෍ൣ4ܥ௜௝
ଵ ൅ 4௜௝ܥ൫ߤ

଴ െ 4௜௝ܥ
ଵ ൯൧

ଷ

௝ୀଵ

ଶ଴

௜ୀଵ

௜ݔ

max	 ହݖ ൌ෍෍ൣ5ܥ௜௝
ଵ ൅ 5௜௝ܥ൫ߤ

଴ െ 5௜௝ܥ
ଵ ൯൧

ଷ

௝ୀଵ

ଶ଴

௜ୀଵ

௜ݔ

																																																													:݋ݐ	ݐ݆ܾܿ݁ݑݏ

෍ݔ௜ ൌ 1

ଶ଴

௜ୀଵ
௜ݔ						 ൒ 0,						∀݅

	݁݊݀																																																																												

 

(12) 

Identifying fuzzy intervals by using ideal solutions 
After the ideal solutions of each maximization aim regarding precision level were 
individually optimized under the constraint that the sum of the weight value of 
each project equals 1, the corresponding values of every objective at each solution 
derived were determined, and thus, the payoff table was generated. 
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µ   z1 z2 z3 z4 z5 
0.0     
 1st aim optimization 29.4 28.2 24.5 25.7 25.5 
 2nd aim optimization 29.4 28.2 24.5 25.7 25.5 
 3rd aim optimization 27.7 25.4 26.6 26.0 27.0 
 4th aim optimization 27.5 25.4 26.6 26.0 27.0 
 5th aim optimization 23.8 24.4 23.5 23.3 27.5 
 best value (u) (max) 29.4 28.2 26.6 26.0 27.5 
  worst value(l) (min) 23.8 24.4 23.5 23.3 25.5 

0.1   
 1st aim optimization 28.2 27.0 23.3 24.5 24.3 
 2nd aim optimization 28.2 27.0 23.3 24.5 24.3 
 3rd aim optimization 26.3 24.2 25.4 24.8 25.8 
 4th aim optimization 26.3 24.2 25.4 24.8 25.8 
 5th aim optimization 22.6 23.2 22.3 22.1 26.3 
 best value (u) (max) 28.2 27.0 25.4 24.8 26.3 
  worst value(l) (min) 22.6 23.2 22.3 22.1 24.3 

0.2   
 1st aim optimization 27.0 25.8 22.1 23.3 23.1 
 2nd aim optimization 27.0 25.8 22.1 23.3 23.1 
 3rd aim optimization 25.1 23.0 24.2 23.6 24.6 
 4th aim optimization 25.1 23.0 24.2 23.6 24.6 
 5th aim optimization 21.4 22.0 21.1 20.9 25.1 
 best value (u) (max) 27.0 25.8 24.2 23.6 25.1 
  worst value(l) (min) 21.4 22.0 21.1 20.9 23.1 

0.3   
 1st aim optimization 25.8 24.6 20.9 22.1 21.9 
 2nd aim optimization 25.8 24.6 20.9 22.1 21.9 
 3rd aim optimization 23.9 21.8 23 22.4 23.4 
 4th aim optimization 23.9 21.8 23 22.4 23.4 
 5th aim optimization 20.2 20.8 19.9 19.7 23.9 
 best value (u) (max) 25.8 24.6 23.0 22.4 23.9 
  worst value(l) (min) 20.2 20.8 19.9 19.7 21.9 

0.4   
 1st aim optimization 24.6 23.4 19.7 20.9 20.7 
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 2nd aim optimization 24.6 23.4 19.7 20.9 20.7 
 3rd aim optimization 22.7 20.6 21.8 21.2 22.2 
 4th aim optimization 22.7 20.6 21.8 21.2 22.2 
 5th aim optimization 19.0 19.6 18.7 18.5 22.7 
 best value (u) (max) 24.6 23.4 21.8 21.2 22.7 
  worst value(l) (min) 19.0 19.6 18.7 18.5 20.7 

0.5   
 1st aim optimization 23.4 22.2 18.5 19.7 19.5 
 2nd aim optimization 23.4 22.2 18.5 19.7 19.5 
 3rd aim optimization 21.5 19.4 20.6 20.0 21.0 
 4th aim optimization 21.5 19.4 20.6 20.0 21.0 
 5th aim optimization 17.8 18.4 17.5 17.3 21.5 
 best value (u) (max) 23.4 22.2 20.6 20.0 21.5 
  worst value(l) (min) 17.8 18.4 17.5 17.3 19.5 

0.6   
 1st aim optimization 22.2 21.0 17.3 18.5 18.3 
 2nd aim optimization 22.2 21.0 17.3 18.5 18.3 
 3rd aim optimization 20.3 18.2 19.4 18.8 19.8 
 4th aim optimization 20.3 18.2 19.4 18.8 19.8 
 5th aim optimization 16.6 17.2 16.3 16.1 20.3 
 best value (u) (max) 22.2 21.0 19.4 18.8 20.3 
  worst value(l) (min) 16.6 17.2 16.3 16.1 18.3 

0.7   
 1st aim optimization 21.0 19.8 16.1 17.3 17.1 
 2nd aim optimization 21.0 19.8 16.1 17.3 17.1 
 3rd aim optimization 19.1 17.0 18.2 17.6 18.6 
 4th aim optimization 19.1 17.0 18.2 17.6 18.6 
 5th aim optimization 15.4 16.0 15.1 14.9 19.1 
 best value (u) (max) 21.0 19.8 18.2 17.6 19.1 
  worst value(l) (min) 15.4 16.0 15.1 14.9 17.1 

0.8   
 1st aim optimization 19.8 18.6 14.9 16.1 15.9 
 2nd aim optimization 19.8 18.6 14.9 16.1 15.9 
 3rd aim optimization 17.9 15.8 17.0 16.4 17.4 
 4th aim optimization 17.9 15.8 17.0 16.4 17.4 
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 5th aim optimization 14.2 14.8 13.9 13.7 17.9 
 best value (u) (max) 19.8 18.6 17.0 16.4 17.9 
  worst value(l) (min) 14.2 14.8 13.9 13.7 15.9 

0.9   
 1st aim optimization 18.6 17.4 1.7 14.9 14.7 
 2nd aim optimization 18.6 17.4 1.7 14.9 14.7 
 3rd aim optimization 16.7 14.6 15.8 15.2 16.2 
 4th aim optimization 16.7 14.6 15.8 15.2 16.2 
 5th aim optimization 13.0 13.6 12.7 12.5 16.7 
 best value (u) (max) 18.6 17.4 15.8 15.2 16.7 
  worst value(l) (min) 13.0 13.6 1.7 12.5 14.7 

1.0   
 1st aim optimization 17.4 16.2 12.5 13.7 13.5 
 2nd aim optimization 17.4 16.2 12.5 13.7 13.5 
 3rd aim optimization 15.5 13.4 14.6 14.0 15.0 
 4th aim optimization 15.5 13.4 14.6 14.0 15.0 
 5th aim optimization 11.8 12.4 11.5 11.3 15.5 
 best value (u) (max) 17.4 16.2 14.6 14.0 15.5 
  worst value(l) (min) 11.8 12.4 11.5 11.3 13.5 

Table 1: Payoff table enabling an optimal solution with tradeoffs between two or more 
conflicting objectives regarding the values of the µ precision level 

 
3.2.   Solutions generating by FLP 
 
The best (u) and the worst (l) values for each objective corresponding to the set 
of solutions using the values from the payoff table were obtained. Then, the FLP 
model, i.e. the latest version of the problem, is defined as 



                A two-phase procedure for a multi-objective programming problem         329 
 

݇	ݎ݋݂ ൌ 																																								11	݋ݐ	1
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(13) 

Where k is the number of solutions corresponding to each µ precision level value 
in the payoff table and λ  is a suitable variable that satisfies the definition of the 
operational adequacy measure, for the case that the objectives are hazy or cloudy. 
That is, the numerical value of λ  means that all objectives are optimized together, 
and one of them is satisfied with λ 	the level and the others are satisfied at least 
at λ level.  
The results of FLP Models, which are created and solved for each precision level, 
provide alternative decision plans to the DMs/analysts. 
 
4. Results and discussions 
 
To determine the projects given the supports provided by Regional Development 
Agencies (RDAs) according to the specific evaluation criteria, the result of the 
FLP model is defined in Table 2. 
 

µ ƛ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 
0 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.1 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

µ ƛ x15 x16 x17 x18 x19 x20

0 0.50 0.67 0 0 0 0 0.33
0.1 0.05 0.86 0 0 0 0 0.14
0.2 0 1.00 0 0 0 0 0
0.3 0 1.00 0 0 0 0 0
0.4 0 1.00 0 0 0 0 0
0.5 0 1.00 0 0 0 0 0
0.6 0 1.00 0 0 0 0 0
0.7 0 1.00 0 0 0 0 0
0.8 0 1.00 0 0 0 0 0
0.9 0 1.00 0 0 0 0 0
1.0 0 1.00 0 0 0 0 0

Table 2: FLP results created and solved for µ=0, 0.1,…,1 
 
According to the aggregated satisfaction level of the FLP models for each precision 
level (µ = 0, 0.1, . ., 1), the best satisfaction level of the aims is equal to 0.5, and 
this has been provided with the value of µ=0. As a result, the generated 
mathematical model has assigned 67% and 33% weight values for the 15th and 
20th project, respectively. Also, there are alternative decision plans for other µ 
values. 
Twenty projects according to the five evaluating criteria considered by RDAs 
were evaluated based on the opinions of three independent auditors. However, in 
this research, the institution’s resources were not taken into account. If institu-
tion’s resources were considered, this would have had to be added as a constraint 
to the mathematical model created. Perhaps then, the institution’s resources 
would have allowed it to support another project. 
 
5. Conclusions 
 
In this research, implementation of a new mathematical procedure in multi-obje-
ctive decision problems with fuzzy coefficients for project selection is introduced. 
The paper presents an overview of fuzzy linear programming and fuzzy parametric 
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programming, which are two well-known techniques. A new procedure has been 
established and explained along with all the details and illustrated using a simple 
numerical step-by-step example. All the data used in this study has been collected 
from the DM’s experience, information and expecta-tions through interaction. The 
solutions at each precision level and obtained from the model are optimal and 
efficient. This procedure can be used in a wide range of real-life problems. We 
have two reasons to support this idea. First, handling the imprecision of parame-
ters is very easy in the multiobjective mathematical programming (MOMP) 
context, and secondly, the solution characteristics of the procedure have no effect 
on the complexity of mathematical models. Therefore, we believe that the proce-
dure can be applied to many real-life problems. 
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