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Abstract. For the given data (wi, xi, yi), i = 1, . . . , n, and the given model function
f(x;θ), where θ is a vector of unknown parameters, the goal of regression analysis is
to obtain estimator θ∗ of the unknown parameters θ such that the vector of residuals
is minimized in some sense. The common approach to this problem of minimization is
the least-squares method, that is minimizing the L2 norm of the vector of residuals. For
nonlinear model functions, what is necessary is finding at least the sufficient conditions on
the data that will guarantee the existence of the best least-squares estimator. In this paper
we will describe and examine in detail the property of preponderant increase/decrease of
the data, which ensures the existence of the best estimator for certain important nonlinear
model functions.
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1. Introduction

Regression analysis is one of the most important tools for data analysis. For the given
model function f(x;θ), where θ is a vector of unknown parameters, the regression
model can be written in the form

yi = f(xi;θ) + εi, i = 1, . . . , n.

Here xi denote the values of the independent variable, yi denotes the value of the
dependent variable and εi are random errors. The goal of regression analysis is to ob-
tain the estimator θ∗ of the unknown parameters θ base on the given experimental or
empirical data (wi, xi, yi), where wi > 0 are in advance given data weights. Inverse-
variance weighting is typically used in statistical literature, but various weighting
methods are used to calculate weights (see [12]). The errors εi are usually assumed
to be normally distributed with mean zero and constant variance.
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In the most general way, we can divide regression models into two classes: linear
and nonlinear regression models. Linear regression models are those that are linear
in all parameters and are often used in applied sciences due to their simplicity.
However such models are usually nonrealistic. Nonlinear regression models usually
appear when there is some physical explanation of the relationship between the
dependent and the independent variable in a particular functional form. Practical
introductions to nonlinear regression including numerous data examples are given
by Ratkowsky in [11] and by Bates and Watts in [1]. A more extensive treatment of
nonlinear regression methodology is given by Seber and Wild in [15].

The vector of unknown parameters θ in the regression model should be estimated
from the given data by minimizing a suitable goodness-of-fit expression with respect
to θ. The most popular criterion in applied sciences is based on minimization of the
weighted sum of squared residuals, that is by minimizing the following expression

S(θ) =
n∑

i=1

wi(yi − f(x;θ))2 =
n∑

i=1

wiε
2
i .

This approach is known as weighted least squares (LS) method.
It is well known that for a linear least squares problem a closed form solution

exists and can be easily obtained. Numerical methods for solving the nonlinear LS
problem are described in [1, 11, 12, 15]. Before performing iterative minimization of
the sum of squares, the questions remains as to whether the least squares estimate
(LSE) exists. For the case of nonlinear LS problems, answering this question is
exceptionally difficult (see [1, 11, 12, 15]). Therefore, in order to guarantee the
existence of a minimum of the functional S (i.e. the existence of the LSE) it is
necessary to require that the data (wi, xi, yi), i = 1, . . . , n, satisfy some additional
conditions. It has been shown that property of preponderant increase/decrease,
which will be described in more details in the next section, has an important role
in analyzing the existence of the LSE (see e.g. [2, 3, 5, 6, 7, 13, 14]). Our main
theoretical result is the useful Theorem 1 that describes increasing/decreasing data
by preponderantly increasing/decreasing data. Its application in some nonlinear
least squares existence problems is illustrated in Section 3.

2. Property of preponderant increase/decrease of the data

Let us first recall some important and useful definitions and results. Throughout
the entire paper we will suppose that we are given data (xi, yi), i = 1, . . . , n, such
that

x1 ≤ x2 ≤ · · · ≤ xn and x1 < xn. (1)

We will say that the data (xi, yi) are increasing if

y1 ≤ y2 ≤ · · · ≤ yn and y1 < yn.

Similarly, we will say that the data are decreasing if

y1 ≥ y2 ≥ · · · ≥ yn and y1 > yn.
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If y1 = y2 = · · · = yn we say that the data are constant or stationary.
The property of preponderant increase/decrease can be described by the Cheby-

shev inequality. This inequality is usually stated as follows (see [4, 10]): Let
a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn. Then

n
n∑

i=1

aibi ≥
n∑

i=1

ai
∑
i

bi.

The above Chebyshev inequality can be extended to include positive weights pi,

n∑
i=1

pi

n∑
i=1

piaibi ≥
n∑

i=1

piai

n∑
i=1

pibi. (2)

The Chebyshev inequality can be reversed: If a1 ≤ a2 ≤ · · · ≤ an and b1 ≥ b2 ≥
· · · ≥ bn then

n∑
i=1

pi

n∑
i=1

piaibi ≤
n∑

i=1

piai

n∑
i=1

pibi. (3)

If at least two of the ai and at least two of the bi are distinct then both inequalities
(2) and (3) are strict.

For any two finite sequences of real numbers a = (a1, . . . , an) and b = (b1, . . . , bn)
and any strictly positive and finite sequence of real numbers p = (p1, . . . , pn), the
so-called Korkine’s identity holds (see [9]):

n∑
i=1

pi

n∑
i=1

piaibi −
n∑

i=1

piai

n∑
i=1

pibi =
1

2

n∑
i=1

n∑
j=1

pipj(ai − aj)(bi − bj). (4)

This equality is easy to check directly by rewriting the right-hand side of the equa-
tion.

Before stating the definition of preponderantly increasing/decreasing data, let
us first recall that, for the given data (wi, xi, yi), i = 1, . . . , n, the corresponding
weighted regression line is given by

y = a∗x+ b∗,

where

a∗ =

∑n
i=1 wi

∑n
i=1 wixiyi −

∑n
i=1 wixi

∑n
i=1 wiyi∑n

i=1 wi

∑n
i=1 wix2

i − (
∑n

i=1 wixi)2
,

b∗ =

∑n
i=1 wiyi − a∗

∑n
i=1 wixi∑n

i=1 wi
.

Definition 1 (see [13]). The data (wi, xi, yi), i = 1, . . . , n, are said to have the
preponderant increase (respectively decrease) property if the slope a∗ of the associated
weighted linear trend is positive (respectively negative). If the slope is equal to zero,
then the data is said to be preponderantly stationary.
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The property of preponderant increase/decrease is also referred to as an essential
increase/decrease property (see e.g. [2]). In general, this property depends on both
data (xi, yi) and weights wi. We will illustrate this in the next simple example.

Example 1. Let the data x = (2, 5, 8) and y = (2, 5, 2) be given. We will make
the following choices of weight: w1 = (1, 1, 1), w2 = (1, 1, 1

2 ) and w3 = ( 12 , 1, 1).
For the first choice of weights, the slope of the regression line is equal to zero, hence
the data are preponderantly stationary. For the second choice of weights, the slope
of the regression line is equal to 1

7 , and the data have the property of preponderant
increase. The last choice of weights for the slope gives the value of −1

7 , and hence
in this case the data have the property of preponderant decrease.
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Figure 1: The data and associated linear trends for different choices of weights

Given that the denominator of a∗ is strictly positive as xi satisfy (1), the data
will be preponderantly increasing if and only if the following condition is satisfied

Q(w,x,y) =
n∑

i=1

wi

n∑
i=1

wixiyi −
n∑

i=1

wixi

n∑
i=1

wiyi > 0.

By using (4), that condition can be written in the following form:

Q(w,x,y) =
n∑

i=1

n∑
j=1

wiwj(xi − xj)(yi − yj) > 0. (5)

The above discussion is stated in the following proposition (see also [13]).

Proposition 1. The data (wi, xi, yi), i = 1, . . . , n, have the property of preponderant
increase if and only if the Chebyshev inequality holds:

n∑
i=1

wi

n∑
i=1

wixiyi >
n∑

i=1

wixi

n∑
i=1

wiyi.

Similarly, property of preponderant decrease is equivalent to the opposite inequality.

The following results are direct consequences of Proposition 1 (see also [2]).

Proposition 2. Effect of some transformation of the data.
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(a) If the data (wi, xi, yi), i = 1, . . . , n, are preponderantly increasing (decreasing),
then the data (wi,−xi, yi) are preponderantly decreasing (increasing).

(b) If the data (wi, xi, yi), i = 1, . . . , n, are preponderantly increasing (decreasing),
then the data (wi, xi,−yi) are preponderantly decreasing (increasing).

(c) If the data (wi, xi, yi), i = 1, . . . , n, are preponderantly increasing (decreasing)
and 0 < x1, then the data (wixi, x̃i, yi), where x̃i = 1

xi
, are preponderantly

decreasing (increasing).

(d) If the data (wi, xi, yi), i = 1, . . . , n, are preponderantly increasing (decreas-
ing) and 0 < y1 ( 0 < yn), then the data (wiyi, xi, ỹi), where ỹi = 1

yi
, are

preponderantly decreasing (increasing).

In regression analysis the most often case is when values of independent variable
are distinct, i.e. x1 < x2 < · · · < xn. The following theorem treats just that case.

Theorem 1. Suppose we are given the non-constant data (xi, yi), i = 1, . . . , n,
such that x1 < x2 < · · · < xn. The data are increasing (or decreasing) if and only
if the data (wi, xi, yi) have the property of preponderant increase (or preponderant
decrease) for any choice of weights wi > 0, i = 1, . . . , n.

Proof. We will prove the Theorem1 only for the case when data are increasing;
the proof for the case when data are decreasing would be done in a similar way.
Therefore suppose that the data (xi, yi), i = 1, . . . , n, are increasing. Then

(xi − xj)(yi − yj) ≥ 0.

Since the data are increasing, strict inequality appears for at least one pair (i, j). Due
to this fact, for any choice of weights wi > 0 inequality (5) holds, and by definition,
the data have the property of preponderant increase.

Suppose that the data (wi, xi, yi), i = 1, . . . , n are preponderantly increasing for
any choice of weights wi > 0, i = 1, . . . , n. Let i1, i2 ∈ {1, . . . , n} such that i1 < i2.
It is necessary to show that yi1 ≤ yi2 and y1 < yn. To do this, for each k ∈ N let us
define

wi :=

{
1
k , i ∈ {1, . . . , n} \ {i1, i2}
1, i ∈ {i1, i2}.
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By assumption, we have

Q(w,x,y) =

n∑
i=1

n∑
j=1

wiwj(xi − xj)(yi − yj)

=
1

k2

n∑
i=1

i ̸=i1,i2

n∑
j=1

j ̸=i1,i2

(xi − xj)(yi − yj)

+
1

k

n∑
j=1
j ̸=i2

(xi1 − xj)(yi1 − yj)

+
1

k

n∑
j=1
j ̸=i1

(xi2 − xj)(yi2 − yj)

+2(xi2 − xi1)(yi2 − yi1)

> 0, ∀k ∈ N,

wherefrom by passing to the limit when k → ∞ we obtain

(xi2 − xi1)(yi2 − yi1) ≥ 0

Since xi2 − xi1 > 0, we have yi2 − yi1 ≥ 0. It remains to show that y1 < yn. Indeed,
if y1 = yn, then y1 = y2 = · · · = yn, implying that the slope of the weighted linear
trend is equal to zero which contradicts the assumption.

Remark 1. The following result which was used in [3] for proof of the existence of
the LSE can now be viewed as a consequence of Theorem 1 for a special choice of
weights:
Suppose that the data (wi, xi, yi), i = 1, . . . , n, are such that 0 < x1 < x2 < · · · < xn

and wi > 0, i = 1, . . . , n. Then

(i) If the sequence (y1, . . . , yn) increases, then

n∑
i=1

wi

xi

n∑
i=1

wiyi −
n∑

i=1

wi

n∑
i=1

wi
yi
xi

≥ 0, (6)

with the inequality holding for y1 < yn.

(ii) If the sequence (y1/x1, . . . , yn/xn) decreases, then

n∑
i=1

wiyixi

n∑
i=1

wix
3
i −

n∑
i=1

wix
2
i

n∑
i=1

wiyix
2
i ≥ 0, (7)

with the inequality holding for y1/x1 > yn/xn.

Condition (6) means that the data (wi/xi, xi, yi), i = 1, . . . , n, have the prop-
erty of preponderant increase, and similarly, condition (7) means that the data
(wix

2
i , xi, yi/xi), i = 1, . . . , n, have the property of preponderant decrease.
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3. Some applications of preponderant increase property in re-
gression analysis

In this section we will give a brief overview of a few important nonlinear least
square regression models. It has been shown that for these models the property of
preponderant increase/ decrease is crucial for the existence of the LSE.

Example 2. The mathematical model described by an exponential function

f(x; b, c) = becx, b, c ∈ R

or a linear combination of such functions is often used in applied research, e.g.
biology, chemistry, electrical engineering, economy, astronomy, nuclear physics, etc.
In [7], it was shown that the LSE exists, provided the data satisfy either the condition
of preponderant increase or the condition of preponderant decrease.

Example 3. The generalized logistic function (or asymmetric S function)

f(x; b, c) =
A

(1 + be−cγx)1/γ
, A, b, c, γ > 0

occurs frequently in various applied areas, such as biology, marketing, economics,
etc. The existence of the LSE for the generalized logistic function is considered in
[8], where it was proved that the LSE exists if in addition to the natural condition
on the data, it is enough to require that the data are preponderantly increasing.

Example 4. The Michaelis-Menten enzyme kinetic model

f(x; a, b) =
ax

b+ x
, a, b > 0,

is widely used in biochemistry, pharmacology, biology and medical research. The
following theorem gives sufficient conditions for the existence of the LSE; the proof
can be found in [3].

Theorem 2. Let the data (wi, xi, yi), i = 1, . . . ,m, m ≥ 3, be given, such that
0 < x1 ≤ x2 ≤ . . . ≤ xm, x1 < xm and yi > 0, i = 1, . . . ,m. If the data fulfill
inequalities (6) and (7), then the LS estimate for the Michaelis-Menten function
exists.

4. Conclusion

The aim of this paper was to thoroughly investigate the property of preponder-
ant increase/decrease of data. This property was found very useful in solving the
existence problem for some important nonlinear model functions. The theoretical
improvement of results given in [13] is stated in Theorem 1; that is the description
of the increasing/decreasing data by preponderantly increasing/decreasing data.
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matematički, 4, 279-298.

[15] Seber, G.A.F. and Wild, C.J. (1989). Nonlinear Regression. New York: Wiley.


