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Abstract. This paper presents and analyzes the applicability of three linearization 
techniques used for solving multi-objective linear fractional programming problems using 
the goal programming method. The three linearization techniques are: (1) Taylor’s polyno-
mial linearization approximation, (2) the method of variable change, and (3) a modification 
of the method of variable change proposed in [20]. All three linearization techniques are 
presented and analyzed in two variants: (a) using the optimal value of the objective 
functions as the decision makers’ aspirations, and (b) the decision makers’ aspirations are 
given by the decision makers. As the criteria for the analysis we use the efficiency of the 
obtained solutions and the difficulties the analyst comes upon in preparing the linearization 
models. To analyze the applicability of the linearization techniques incorporated in the 
linear goal programming method we use an example of a financial structure optimization 
problem. 
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1. Introduction 
 
There are many business and economics problems that can be presented by multi-
objective linear fractional programming (MOLFP) models. A MOLFP model 
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contains k (k   2) linear fractional objective functions that should be optimized 
(maximized or minimized) on the set S consisting of m linear constraints. 
Therefore, what is to be found is an efficient preferred solution on the given set, 
which is a convex polyhedron.  
The problem of linear fractional programming with one objective function was 
extensively researched in the second half of the twentieth century and efficient 
methods were developed for solving such problems ([3], [4]). Solving multi-
objective linear fractional programming models is limited to a small number of 
inadequately effective multi-objective programming methods ([2], [7], [8], [9], [11], 
[12], [14], [16], [17], [18], [21], [22]).  
The most effective method for solving multi-objective linear fractional 
programming models is the linear goal programming method based on the simplex 
algorithm. However, the use of linear goal programming for solving those problems 
requires linearization of the linear fractional objective functions. 
For the linearization of the linear fractional objective functions we can use 
different methods which do not have the same efficiency. Here we present three 
linearization methods: 1) Taylor’s polynomial linearization approximation [22], 2) 
the method of variable change ([9], [11], [12], [18]), and 3) a modification of the 
method of variable change proposed  in [20]. 
The analysis of the linearization approaches will be done by solving a financial 
structure optimization problem with respect to efficiency of the obtained results 
and the difficulties the analysts come upon in preparing the model. As a result, 
we will obtain the most appropriate linearization method for solving such 
problems by using goal programming methods. 
The rest of the paper is organized as follows: in the Section 2, we introduce the 
MOLFP model, the linear goal programming method and three linearization 
techniques for solving MOLFP problems by linear goal programming. In the 
Section 3, we solve a financial structure optimization problem by using presented 
linearization techniques and the linear goal programming method and analyze the 
applicability of the presented methods. In the Section 4, we give conclusions about 
the applicability of the linearization techniques and recommendations for the 
future research. 
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2. Goal programming methodology for solving MOLFP 
problems 
 
2.1. MOLFP model 
 
A MOLFP model can be written as 
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             (1) 
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k = 1, 2, ..., K, are linear fractional functions, A is an (m, n) matrix, x is an n – 
dimensional nonnegative variable vector, b is an m – dimensional vector, o is an 
n-dimensional null-vector, and * represents symbols ,   and .    
Numerous computational methods are proposed for solving the model (1), but 
they are not efficient enough from the point of view of decision makers and 
analysts. Two important groups of methods are ones which use (a) interior point 
methods [10], and (b) simplex method after the linearization of the linear 
fractional objective functions. Here we investigate the efficiency of the 
linearization methods which use goal programming and the simplex method to 
solve the model (1).  
 
2.2. Solving the MOLFP model by goal programming 
 
To solve the model (1) by the goal programming method we have to find marginal 
solutions for all the objective functions on the given set of constraints with 
objective function values: * * *

1 2, ,..., .Kz z z  Later we form the goal programming 
model in one of the four possible ways ([15], [19], [20]):  

(i) The min – max form:   
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, nk 0, pk 0, nk pk = 0,  
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k = 1, 2, …, K. 

Aspiration levels kz  are determined by the decision maker or equal to *
kz . gk is a 

linear function of the negative (nk) and positive (pk) deviational variables.  

(ii) The minimization of the sum of deviations form: 

                                
 

1

( , )
1x,n,p S

min
K

k k k
k

g n p



               (3) 

 (iii) The minimization of the weighted sum of deviations form: 
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where wk (k = 1, 2, …, K) are weights determined by the decision maker. 

(iv) The preemptive priority form:  

In this form the K objectives are rearranged according to decision makers’ priority 
levels, the highest priority goal is considered first, then the second and so on. The 
general lexicographical goal programme is: 
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min ( , ) : 1,2,...,

1x,n,p S
 

i

k k k k
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where I is the number of priority levels and kPi means that the kth goal is at 
the ith priority level. 
Models (2), (3), (4) and (5) are nonlinear programming models which cannot be 
solved by the simplex method. The non-linear functions in the constraints set 
make a problem, which significantly complicates the solving process. To solve the 
models (2 – 5) by the simplex method we have to apply a linearization technique 
to linearize the linear fractional objective functions. The complexity of the 
linearization approaches and problems with orthogonality constraints nk pk = 0, 
k = 1, 2, …, K will be given in the rest of the paper. In this case we obtain an 
approximation of the model (2) that gives the week efficient solutions (see more 
in [9, 11, 12, 19, 20]). 
 
2.3. Taylor’s polynomial linearization approximation 
 
The Taylor’s polynomial linearization approximation is used to transform linear 
fractional functions into linear functions [22]. The fractional functions in the set 
of constraints of the specified goal programming models (2), (3), (4), and (5) are 
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replaced by the linearized functions. In this way we obtain an appropriate linear 
programming model that can be solved by the simplex method. 
The linearization procedure is performed in two steps: 

Step 1) Determine * * * *
1 2, ,...,x

T

k k k knx x x     which is the value that maximizes the 
linear fractional objective function zk(x), k = 1, 2, …, K.  

Step 2) Transform zk(x) by using the first-order Taylor polynomial series [22]. 
Consequently: 

* * *
* * * *0
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Models (2), (3) and (4) obtained in this way are linear programming models that 
can be solved by the simplex method, and the model (5) can be solved by the 
multiphase simplex method [5] or the sequential simplex method [6]. Therefore, 
the linear goal programming model with the Taylor’s polynomial linearization 
approach can be presented as 
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2.4. Linearization using the method of variable change 
 
Pal, Moitra and Maulik [18] proposed the following linearization model for 
solving fuzzy MOLFP problems by goal programming methods: 
Find x so as to 
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,  

 
z represents the fully achievement function consisting of the weighted under and 
over-deviational variables, and numerical weights wk  represent the relative 
importance of achieving the aspired levels of the respective fuzzy goals, 
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1
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, (for functions to be maximized) or 
1

k
k k

w
u z

 

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be minimized), lk is the lowest value of the kth objective function, uk is the highest 
value of the kth objective function, while kz  is the value determined by the 
decision maker. 
 
2.5. Linearization using a modification of the method of vari-
able change  
 
To solve the multi-objective linear fractional programming model by the linear 
goal programming method for objective functions that are to be maximized or 
minimized, Perić and Babić [20] proposed the linearization of the linear fractional 
objective functions in the following way: 
 

           
0

1
0 0

1 1
0

1

( ) / , 0

n
k

kj j n n
j k k

k kj j kj jn
k j j

kj j
j

c x c

z d x d d x d
d x d



 




 

      
 


 


  

  
for all xj, 1,2,..., ,j n   

1, 2, ,k K        0 0
1 1

( ) ( )
n n

k k
kj j k kj j

j j

c x c z d x d
 

       

 

0 0
1

( )
n

k k
kj k kj j k

j

c z d x z d c


   
1

,
n

kj j k k k
j

C x d d Z 



    1,2,..., ,k K  (9) 

 
where kz  is the value of the kth objective function determined by the decision 

maker, ,kj kj k kjC c z d   0 0 ,k k
k kZ z d c   kd  and kd   are under and over-

deviational variables   1,  2,  ..., .k K   
Therefore the goal programming model is presented as 
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To solve the model (9) we can use numerous GP approaches for solving MOLGP 
models. 
In multi-objective linear fractional programming problems, we often obtain weakly 
efficient (w-efficient) solutions (points).  
Below we recall the definitions of weakly efficient and efficient solutions  of multi-
objective programming problems. In a multi-objective programming problem with 
k objective functions to be maximized, a decision vector *x S  is weakly efficient 
(weakly Pareto optimal) if another decision vector x S  such that 

*( ) ( )x xi if f  for all 1,2,...,i k  does not exist. In a multi-objective 
programming problem with k objective functions to be maximized, a decision 
vector *x S  is efficient (Pareto optimal) if another decision vector x S  such 
that *( ) ( )x xi if f  for all 1,2,...,i k  and *( ) ( )j jf x f x for at least one index 
j ([13], [1]) does not exist. Therefore, a Pareto optimal set is a subset of a weakly 
Pareto optimal set. 
Since the set of all efficient points may not be entirely closed, this causes serious 
difficulties in trying to directly compute the set of all efficient points when the 
objective functions are linear fractional functions. Because the set of all w-efficient 
points is closed, it is easier to compute this set. 
 
3. Practical application: financial planning 
 
3.1. A financial structure optimization problem 
 
Consider a firm which is expected to reach US$60.0 million of capital in the next 
year. In order to increase the firm’s value, the firm’s financial manager wants to 
improve the financial condition of the company by constructing the optimal 
financial structure. Based on the expected sales for the next year, the aim is to 
maximize the manager’s satisfaction with some financial ratios. Table 1 shows the 
variables which are considered. The four conflicting fractional goals are as follows: 
(1) minimization of current ratio, (2) minimization of debt ratio, (3) maximization 
of turnover ratio and (4) maximization of profitability ratio [19]. 

 

Assets Variable Expected 
values in $ 

mill. 

Liabilities 
and equity 

Variable Expected 
values 

Current 
assets 

x11 11150 250x 

 

Current 
liabilities 

x21 75
21 300x   
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Fixed 
assets 

x12 12 300x   Long-term 
liabilities 

x22 21 22 250x x   

100
22x  300 

Total 
assets 

x11+x12 11 12 350x x   Shareholder
s equality

x23 2375 125x   

   Retained 
earnings 
added

x24 24100 140x   

Total 
assets 

x11+x12  Total 
liabilities 
and 
equality

x21+x22+
x23+x24 

x11+x12 = 
x21+x22+x23+x24 

Table 1: Definition of the variables in the balance sheet (B/S) 
 
 
3.2. MOLFP model 
 
The above data are the basis for the following MOLFP model: 
 

             11 21 22 24
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S  

 

 z1, z2, z3 and z4 are functions of current ratio, debt ratio, turnover ratio and 
profitability ratio, respectively.  
 
3.3. The model solving 
 
Marginal solutions, obtained by maximizing each of the four objective functions 
individually on a given set of constraints using Charnes and Cooper’s method [3], 
are presented in the following table: 
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Marginal 
solution 

Variable values z1 z2 z3 z4 

*
1x  x11 = 150 x12 = 300 –0.8571 –1.5714 0.1333 1.6667 

x21 = 175 x22 = 100

x23 = 75 x24 = 100
*
2x  x11 = 215 x12 = 300 –1.4333 –0.9434 0.1165 2.3333 

x21 = 150 x22 = 100

x23= 125 x24 = 140
*
3x  x11 = 220 x12 = 205 –2.9333 –1.4286 0.1412 1.6667 

x21 = 75 x22 = 175

x23 = 75 x24 = 100
*
4x  x11 = 250 x12 = 300 –3.3333 –1.5581 0.1091 2.3333 

x21 = 75 x22 = 260

x23 = 75 x24 = 140

Table 2: Marginal solutions 
 
To solve the model by using presented linearization techniques we form the 
following goal programming models, which are solved using Excel Solver for Linear 
Programming: 
Linearization model (1): The relation (6) is used to linearize the objective 
functions: 

* * *
* * * *11 1 1 1 1 1 1

1 1 1 11 11 12 12 21 21
21 11 12 21

* * *
* * *1 1 1 1 1 1

22 22 23 23 24 24
22 23 24

11 12
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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( 150) ( 0.0057) (

x x x
x x

      

x x x

x z z z
z z x x x x x x

x x x x

z z z
x x x x x x

x x x
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  
        

  
     21 22

23 24 11 21

300) 0 ( 175) 0.0049 100) 0

( 75) 0 ( 100) 0 0.005714285 0.004897959 0.857142857

(x x

x x x x

        
         

 

 

The functions z2 and z3 are linearized analogously. Thus: 
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21 22
2 21 22 23

23 24

24

(x) 0.003773584 0.003773584 0.00359985

                             +0.003559985 0.9434

x x
z x x x

x x

x


     




 

3 11 12
11 12

60
( ) 0.000332179 0.000332179 0.282352575z x x

x x
    


x  

 

Based on this calculation we can form the linear goal programming model (iii) 
(the variant (a) when *

k kz z , and the variant (b) when min *
kk kz z z  ):  
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*
1 1 0.8571,z z    *

2 2 0.9434,z z    *
3 3 0.1412,z z   *

4 4 2.3333,z z   

1 0.4038,w   2 1.5913,w   3 40.48,w   and 4 1.5.w  The weights w1, w2, w3 and 

w4 are calculated by 
1

k
k k

w
u z




, where uk is the biggest value of the kth objecti-

ve function on the given set. 
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11 12
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300, 350,
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 
 
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1 1.15,z    2 1.25,z    3 0.12,z   4 1.85z  , 1 3.4141,w   2 3.2616,w   

3 47.1698,w   and 4 20.6911.w   In the variant (b) 1 2 3 4, , ,  z z z z  are given by 

the decision maker, while w1, w2, w3, and w4 are calculated by 
1

k
k k

w
u z




, 

where uk is the biggest value of the kth objective function. 
Linearization model (2): Using the relation (8) we solve the following models: 
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Linearization model (3): Using the relation (8) we solve the following models: 
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where 
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1 1.15,z    2 1.25,z    3 0.12,z   4 1.85z  , 1 3.4141,w   2 3.2616,w   

3 47.1698,w   and 4 20.6911.w    
 
3.4. The solutions 
 
The solutions of the models (11), (12), and (16) are given in Tables 3 and 4. 
 
 

GP solution z1 z2 z3 z4 

Linearization 
model (1) 

–1.09812 –1.16431 0.12911 2.32864 

Linearization 
model (2) 

–1.00 –0.14286 0.14118 1.66667 

Linearization 
model (3) 

–1.00 –0.14286 0.14118 1.66667 

Table 3: Goal programming solutions, version (a) 
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GP solution z1 z2 z3 z4 

Linearization 
model (1) 

–1.20222 –1.16431 0.12911 2.32864 

Linearization 
model (2) 

–1.00 –0.14286 0.14118 1.66667 

Linearization 
model (3) 

–1.00 –0.14286 0.14118 1.66667 

Table 4: Goal programming solutions, version (b) 
 
Tables 3 and 4 show that the solutions of the problem solved by model (1) are 
different from the solutions obtained by models (2) and (3) in both versions. It 
should be noted that the objective function weights in versions (a) and (b) are 
different. Also, changing the weights of the objective functions by solving the 
linearization models (1), (2) and (3) in both variants, we have concluded that the 
model (1) is not sensitive to the changes of the objective function weights in both 
variants. The linearization models (2) and (3) in our example give the same 
solution. It is because the linearization models (2) and (3) differ only in the fact 
that model (2) contains the additional constraints 

0
1

0,
K

k
kj j

j

d x d


   

which are in our example proven to be redundant. Solving the models (2) and (3) 
in both variants by varying the objective function weights, we obtain the weak 
efficient solutions which reflect the preferences of the decision maker, and greatly 
improve the process of problem solving.  
The model (3) is the most applicable from the point of view of analysts. Here we 
solve a linear programming problem where the additional constraints are 
constituted by the linearized objective functions. The linearization process is not 
demanding for the analyst. Model (2) gives the same solutions as the model (3), 
but it requests forming two additional constraints for each objective function. The 
model (1) requests the linearization of the objective functions by Taylor’s 
polynomial approximation, which requires an additional effort and increases the 
possibility of errors, and in our example is not sensitive to the changes of the 
objective function weights as well. The sensitivity of the model (1) to changes of 
the objective function weights should be investigated theoretically and by solving 
more different practical multi-objective linear fractional programming problems. 
According to the brief discussion given above we conclude that the model (3) is 
the most applicable in both variants for solving the problem of the financial 
structure optimization by goal programming. 
At the end of the discussion it should be noted that the accuracy of the linearized 
models has been investigated by comparing the marginal solutions obtained by 
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using Charnes and Cooper’s method and the linearized linear programming models 
in solving our problem whereby we got the same solutions when we used the 
linearization models (2) and (3). Small differences in the marginal values of the 
objective function appeared in the application of linearization model (1). The 
linearization model (3) is computationally simple where it is a good approximation 
of an exact method. How much it outperforms an exact MOLFP method it should 
be further investigated on more examples with a big number linear fractional 
objective functions, variables and constraints. Also theoretically the efficiency of 
the obtained solutions should be investigated. 
 
4. Concluding remarks 
 
This paper presents three different approaches to the linearization of linear 
fractional functions for solving multi objective linear fractional programming 
problems by using goal programming methodology.  
The presented methodologies are tested on the example of a financial structure 
optimization problem in a company. The analysis of applicability of the 
linearization methodologies indicates the most appropriate linearization approach 
for solving the financial structure optimization problem is linearization model (3). 
The use of the chosen methodology is simple for both the analyst and the decision 
maker. If the decision maker determines objective function weights, then the 
obtained solutions reflect the decision maker's preferences. The obtained solutions 
are weakly efficient. 
For future research, we suggest testing the computational characteristics of the 
linearization approach using the examples with a large number of objective 
functions, variables and constraints and theoretically testing the efficiency of the 
obtained solutions. 
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