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Abstract. A set of sufficient conditions which guarantee the existence of a point x⋆ such
that f(x⋆) = x⋆ is called a “fixed point theorem”. Many such theorems are named after
well-known mathematicians and economists.
Fixed point theorems are among most useful ones in applied mathematics, especially in
economics and game theory. Particularly important theorem in these areas is Kakutani’s
fixed point theorem which ensures existence of fixed point for point-to-set mappings, e.g.,
[2, 3, 4]. John Nash developed and applied Kakutani’s ideas to prove the existence of
(what became known as) “Nash equilibrium” for finite games with mixed strategies for any
number of players. This work earned him a Nobel Prize in Economics that he shared with
two mathematicians. Nash’s life was dramatized in the movie “Beautiful Mind” in 2001.
In this paper, we approach the system f(x) = x differently. Instead of studying existence of
its solutions our objective is to determine conditions which are both necessary and sufficient
that an arbitrary point x⋆ is a fixed point, i.e., that it satisfies f(x⋆) = x⋆. The existence
of solutions for continuous function f of the single variable is easy to establish using the
Intermediate Value Theorem of Calculus. However, characterizing fixed points x⋆, i.e.,
providing answers to the question of finding both necessary and sufficient conditions for
an arbitrary given x⋆ to satisfy f(x⋆) = x⋆, is not simple even for functions of the single
variable. It is possible that constructive answers do not exist. Our objective is to find
them.
Our work may require some less familiar tools. One of these might be the “quadratic
envelope characterization of zero-derivative point” recalled in the next section. The re-
sults are taken from the author’s current Research project “Studying the Essence of Fixed
Points”. They are believed to be original. The author has received several feedbacks on
the preliminary report and on parts of the project which can be seen on Internet [9].
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1. Introduction

A set of sufficient conditions which guarantee the existence of a point x⋆ such that
f(x⋆) = x⋆ is called a “fixed point theorem”. Our objective is not to come up
with another such theorem. Instead we wish to characterize points x for which
f(x) = x. This will be done at primal and dual levels, producing different geometric
interpretations. At the primal level these points will turn out to be apexes of certain
classes of parabolas. At the dual level they are characterized by uniformly bounded
ratios of functions around x⋆ but not at x⋆ itself.
The results are proved using two major theorems: quadratic envelope characteriza-
tion of zero-derivative points and the fundamental theorem of calculus. Here is the
former.

Theorem 1 (Quadratic envelope characterization of zero-derivative points [7]).
Consider a continuously differentiable function of the single variable with Lipschitz
derivative on an interval I = [a, b]. If a < x⋆ < b, then f ′(x⋆) = 0 if, and only if
there is a constant Λ ≥ 0 such that

|f(x)− f(x⋆)| ≤ Λ(x− x⋆)2,

for every x ∈ I.

Note that this theorem talks about zero-derivative points without using differentia-
tion. It was proved for functions in n variables in [7]. One can find it depicted in
this author’s data “Formula” on Researchgate. Its simplified proof for n = 2 and for
C2 functions is given in the textbook [6]. Various discussions regarding this result
can be found in the Q&A section on Researchgate under the question “Is there a
book in English . . . ” We have not yet seen an affirmative answer to this question.
The interested reader can find more on fixed points in, e.g., [1, 2, 5] and Journal on
Fixed Point Theory and Applications. Depictions of fixed points in one, two and
three dimensions using string, disc and a cup of coffee, respectively, can be found in
the literature typically related to the Brouwer fixed point theorem.

2. Primal characterization of fixed points

In this section we characterize fixed points using a particular integral. Since the re-
sults appear to be new, and possibly non-intuitive, we illustrate them by elementary
examples.

Theorem 2 (Primal characterization of fixed points). Consider a continuous Lip-
schitz function f of the single variable x on I = [a, b] and a point x⋆ such that
a < x⋆ < b. Denote

W (x) =

∫ x

x⋆

(f(t)− t) dt, on [x⋆, x].

Then f(x⋆) = x⋆ if, and only if

|W (x)| ≤ Λ(x− x⋆)2, x ∈ I, (1)

for some Λ ≥ 0.
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Proof. The derivative of W is W ′(x) = f(x) − x by the Fundamental theorem of
calculus. Hence x⋆ is a zero-derivative point of W (x). Using the quadratic envelope
property of C1 functions with Lipschitz derivative (Theorem 2), we have

|W (x)−W (x⋆)| ≤ Λ(x− x⋆)2, (2)

for every x in I and some Λ ≥ 0. But W (x⋆) = 0, yielding (1).
Conversely, we assume that (1) holds. We know that W (x⋆) = 0, hence (2) holds.
Hence, W (x⋆) = 0 by Theorem 1. On the other hand, the fundamental theorem of
calculus gives W (x) = f(x)− x, for a < x < b. Hence f(x⋆) = x⋆.

We note that if some Λ over-estimates W (x) on I as in (1), then so does every bigger
Λ. Therefore we can talk about a class of (“sufficiently large”) parabolas. Theorem
2 has an interesting geometric interpretation:

Corollary 1. Let f and I be as above. If a < x⋆ < b is a fixed point f(x⋆) = x⋆,
then x⋆ is the apex of a class of parabolas over-estimating the absolute value of the
function W (x) on I.

Let us illustrate this result by elementary examples.

Example 1. Consider interval I = [−1, 1] and the fixed point x⋆ = 0 of the function
f(x) = sinx. Then

|W (x)| = |(cosx+
1

2
x2 − 1)| ≤ Λx2,

for every x in I and some Λ ≥ 1.
Indeed, x⋆ is an apex of a class of “suitable” parabolas rx2 on I for all sufficiently
large r, e.g., r ≥ 1. Note that, in this example, the graph of the absolute value of
W (x) lies just above the x axis. (If x⋆ were not a fixed point, such class would not
have existed; compare Figures 1 and 2. The two parabolas in Figure 1 correspond to
“large enough” Λ’s.)

Example 2 (Trivial example). Consider the zero function f(x) = 0 on I = [−1, 1].
Could x⋆ = 0 be a fixed point of f(x)? Affirmative, if by the theorem |x + x⋆| ≤
2Λ|x− x⋆| on I for some Λ ≥ 0. True.

Example 3. Is x⋆ = 0 a fixed point of f(x) = 1 on I = [−1, 1]? We use Theorem 2.
Point x⋆ is not an apex of any class of parabolas over-estimating |W (x)| = |x− 1

2x
2|

on I, so the answer is negative.
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Figure 1: Primal condition for fixed point x⋆ = 0 holding

Figure 2: Violation of the primal necessary condition for fixed point

3. Dual characterization of fixed point

We know that for fixed points there exist positive Λ’s in (1). After division by
any of such numbers we obtain “dual” characterization of fixed points. In order to
formulate these, we use functions which are possibly not defined at x⋆ in I but which
are uniformly bounded on the complementary set I\{x⋆}. Such functions were used
in a different context in, e.g., [8].

Theorem 3 (Dual characterization of fixed point). Consider a continuous Lipschitz
function f of the single variable x on I = [a, b] and a point x⋆ such that a < x⋆ < b.
Recall W (x) and denote

R(x) =
|W (x)|

(x− x⋆)2
on I\{x⋆}.

Now f(x⋆) = x⋆ is a fixed point if, and only if R(x) is bounded on I\{x⋆} by some
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constant Λ ≥ 0.

Example 4. We know that x⋆ = 0 is a fixed point of f(x) = sinx on I = [−1, 1].
Therefore,

R(x) =
| cosx+ 1

2 (x
2 − 1)|

x2

is bounded by some constant on I\{0}. The graph of such R(x) is depicted in Fig-
ure 3.

Figure 3: Dual necessary condition for fixed point x⋆ = 0

Example 5. Consider I = [−1, 1], f(x) = 0 and x⋆ = 0. Around the point x⋆ we

find, after division, that R(x) = |x|
|x| = 1, x ̸= 0, is bounded so x⋆ is a fixed point.

Example 6. However, x⋆ = 0 is not a fixed point of the function f(x) = 1 on

I = [−1, 1] because R(x) = |x−x2|
x2 is unbounded on I\{x⋆}. Depicted in Figure 4.

Figure 4: Violation of the dual necessary condition for fixed point
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4. Conclusion

We study functions of the single variable and find conditions, for a given arbitrarily
chosen point x⋆, which are both necessary and sufficient for a fixed point. This is
done at two levels. At the primal level we show that a fixed point is an apex of
a particular class of parabolas. At the dual level, fixed point is characterized by
boundedness of particular ratio functions in a neighbourhood of x⋆ but not at x⋆

itself. It is expected that the results given hereby will possibly lead to new directions
in the study of fixed points for functions of several variables and advance the study
of equilibria in the theory of games, economics and other areas.
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