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Abstract. Projection-based methods are an efficient and applicable family of derivative free
methods for solving nonlinear monotone systems. This paper proposes a new projection method
for solving a system of large-scale nonlinear monotone equations. The new algorithm, in each
iteration, by using a modified conjugate gradient direction, constructs an appropriate
hyperplane that strictly separates the current approximation from the solution set of the
problem. Then the new approximation is determined by projecting the current point onto the
separating hyperplane. The global convergence and the linear convergence rate of the proposed
algorithm are proved under standard assumptions. Preliminary numerical experiments indicate

that the proposed algorithm is promising.
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1. Introduction

Consider the nonlinear system of equations:
F(x) =0, (1)

where F : R™ - R" is a continuous and monotone function, i.e.:

(F(x) —F()) (x—y) =0, vxy€R™, 2)

" Corresponding author.

http://www.hdoi.hr/crorr-journal ©2018 Croatian Operational Research Society



Mushtak A. K. Shiker and Keyvan Amini
64

Nonlinear monotone systems of equations have many practical backgrounds in applied
mathematics, as in: some monotone inequality problems [20], economic equilibrium problems
and the first order necessary condition of the unconstrained optimization.

There are numerous methods for solving (1) where those are, generally, based on the

following unconstrained optimization problem: ng%{lrll f(x) = % IF)]|12. Newton and quasi-
X

Newton strategies [4, 5, 6, 7, 11, 15| are examples for such methods. They are attractive
because they converge rapidly from a sufficient initial guess. But they are typically
unattractive for large-scale nonlinear systems of equations because they need to solve a linear
system using the Jacobian matrix or an approximation of it. In recent decades, as an efficient
strategy, projection methods have received more attention so as to find solutions for monotone
nonlinear systems. These methods usually use a search direction dy which (for all k € N)
satisfies:

Frdi < —clIFill?, (3)

where ¢ is a positive constant [1, 23]. It is observable that this condition is exactly the
sufficient descant condition if F(X) is a gradient vector for a real value function.

In 1998, Solodov and Svaiter [17] proposed the first projection algorithm for solving
(1). They proved that their method is globally convergent to a solution of (1) without any
additional regularity assumptions. Another attractive property of their method is that the
sequence of the distances from the iterates to the solution set of the equation is decreasing. In
2005, Zhou and Toh [24] extended Solodov and Svaiter’s method to solve a system of
monotone equations with singular solutions, showing the superlinear convergence of their
method. Because of the simplicity and the low storage, some authors decided to use the
conjugate gradient methods in projection methods. In 2009, Cheng [8] proposed a derivative-
free PRP method along with the projection method for solving monotone equations. In 2010,
Yan et al. [19], by using modified HS directions, proposed two efficient derivative-free methods
for solving nonlinear monotone equations. In 2015, Amini et al. [2] also proposed a double-
projection-based algorithm for large-scale nonlinear system of monotone equations.

In this paper, inspired by some modified CG directions using the second order
information, a new projection algorithm for solving problem (1) is proposed. The new
algorithm has some advantages. First, the sequence of the distances from the iterates to the
solution set of the equations is decreasing, and the approximates generated by the new
algorithm are closer to the solution set of the equations in comparison to other projection
methods. Second, the new algorithm is derivative-free so that it can be employed to solve
nonsmooth monotone equations. Third, it does not impose any expenses computing to find the
direction. Forth, the new method is globally convergent even when the solution of problem is
not singleton. Under suitable conditions, we showed the global convergence and local linear
convergence rate of the proposed method. The given preliminary numerical experiments clearly
state that the algorithm is numerically robust and effective.

The rest of the paper is organized as follows: In section 2, after describing the idea of
the projection-based methods, a new effective algorithm for solving problem (1) is presented.
Section 3 presents the global convergence analysis of the proposed algorithm. Section 4 reports
some numerical experiments to show the promising behavior of the approach especially when it
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is used for large-scale nonlinear monotone equations. Finally, some concluding remarks are

presented in section 5.
2. The new projection algorithm

As mentioned previously, there is a wide variety of approaches developed to solve a system of
nonlinear equations. These approaches, generally, use an iterative process [16] for generating
the next iterate by Xpyq = Xx + axdyg, where ay is a step length that is determined by some
line search technique.

The projection methods firstly determine a direction dy, then they use a line search
technique to find a nonnegative step length ay such that:

F(zi)" (X — 71) > 0, (4)
where
Zx = Xg + ogdy. (5)
After that, the hyperplane
Hy = {x € R"| F(z)" (x — z) = 0}, (6)

strictly separates the current approximation xpfrom the solution set of the problem. Based on
this fact, Solodov and Svaiter [17] advised that the next iterate, Xx,q, can be determined by
projection zy, onto Hy, where

Ck = {x € R | F()" (x — ) < 0}. (7)

Based on the fact that Cy contains the solutions of the problem, but xy & Cy, by

projecting Xy onto Cy, a better approximation for a solution of system (1) can be obtained.
This proposes that the next approximation, Xy, 1, can be determined as follows

. F(z1) T (xc—21)
Xg41 = Pe(xy) = argmin{||x — xi|| | x € Cy} = xi — WF(ZQ (8)

Theoretical properties as well as the numerical results demonstrate the efficiency and
the robustness of the projection-based algorithms for monotone equations. It is clear that a
proper line search technique to complete the projection algorithm is needed. Most of practical
approaches exploit an inexact line search to identify a step length oy guaranteeing the global
convergence property in minimal cost. There exist some line search conditions for general
nonlinear equations, for example [13, 19, 23|, and also a particular backtracking line search
proposed by Solodov and Svaiter in [17]. Recently, Amini and Kamandi [12] introduced a new
line search processes some computational experiments on large-scale problems persuades us to
take advantages of this line search, which requires o= {Bpi:i =0,1,2, } satisfies the
following condition

lldyll?
—F(xx + O(kdk)Tdk = (1)-:—x|l|(F—(Zl](()||' (9)
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where o is a positive constant, p € (0,1) and B is an initial guess for ay. It is easy to see that if
dy satisfies F(xi)Td < 0, then the inequality (9) holds for all sufficiently small ay > 0.

For any work that deals with large-scale nonlinear monotone equations, the low storage
techniques will be very useful. So, because of their simplicity and low storage, many authors
use the conjugate gradient methods combined with projection methods for solving large scale
systems of monotone equations as well as optimization problems. Recently, the idea of
conjugate gradient techniques has been widely developed for solving optimization problems
and systems of nonlinear equations [3, 9, 14, 22, 24]. In 2009, Zhang and Zhou [22] proposed a
spectral gradient projection method that is a combination of a modified spectral gradient
method and Solodov and Svaiter’s method. The attractive property of their method is that it
can be applied for solving nonsmooth equations. Li and Li [14] in 2011, and Ahookhosh.et al
[1] in 2013, also proposed some derivative-free projection approaches that use three-term CG
directions appropriate to handle large-scale problems. The numerical results show that such
methods are even appropriate to solve non-smooth monotone equations.

The theoretical and numerical results of the conjugate gradient methods motivating to
be used to improve the projection method for solving systems of large-scale nonlinear
monotone equations. Constructing and using conjugate gradient procedures in our algorithm
gives us some advantages: these approaches are globally convergent without the
differentiability assumptions; they decrease the computational cost of the algorithm and the
number of iterations and function evaluations; and finally, they can improve the efficiency of
the new algorithm. Based on the idea described by Yuan and Zhang [20], to generate a
conjugate gradient direction, a new direction has been introducing as follows:

_ _Fk + B{(n_l dk—l lf k 2 1,
e = { —Fy ifk =0, (10)
to use in a projection-based algorithm where
Bm = Max!0 FE+1Ykm _ U“ykm”2 FT. . d (11)
k ) dEYkm (dle(-y{(n 2 Uk+1YKk (v
. 1
with p > " and
0
Yk = Yk %Sk' (12)
where yy = Fryq — Fx and sy = Xgqq — Xk
pr = 2[IFll = IFCxy + agedi) [T + (Fxic + ogedy) + F(x3)) s (13)

Now, we are ready to outline the new algorithm for nonlinear systems of monotone equations.



A new projection-based algorithm for solving a large-scale nonlinear system of monotone equations

67

Algorithm 1: New Projection-Based Algorithm

Input: An initial point x, € R", positive constantsk.x,0,€,s andp € (0,1).

Begin
Set k = 0;
Fo = F(xo)
dy = —F,
While ||Fyl|| > e.
Step 1:
Choose an initial step length
Set ax = [3;
Find the smallest index iy € {1,2,3, ...} such that
—F(x + ogedi) Tdy = M,
| 1+ [IFZ
While oy = p'kay;
Set Zg < Xk + O(kdk.
End While
Step 2: {New point calculation}
If ||F(z)|| < € stop. Otherwise compute Xy 41 by (8).
Step 3: Compute the search direction dy by (10).
Frer = F(Xie1);
If Fldy > —¢ [IFyl|2
dy = —Fy;
End If
kek+1.
End While
End

Remark 2.1 It is easy to see from Step 3 of Algorithm 1 that, for any k, FLdy < —g||Fill.
Therefore, the direction defined by algorithm always satisfies the sufficient conditions.

3. Convergence properties

This section focuses on the global convergence of Algorithm 1. To reach this end, the following

assumptions are needed.

Assumption 3.1

H1. The solution set of (1) is nonempty.

H2. F(x) is a monotone and Lipschitz continuous function on R", i.e., there exists a positive
constant L >0 such that ||[F(x)—F(y)|| <Lllx—yll,Vxy€R" Firstly, the projection
operator is defined as a mapping from R"™ to its nonempty closed convex set Q [18] Py[x] ==
argmin{||x — z||| z € Q},vx € R™. In the sequel, we discuss some preliminary lemmas that
show some important properties of orthogonal projection on a closed convex set and is
necessary to analyze the convergence properties of Algorithm 1.
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Lemma 3.1 [21] Let Q € R™ be a nonempty closed convex set and Pq(x) be the projection of
x onto Q . For any x,y € R", the following statements holds:

i) For any i € Q, (Pp(x) —x, z—Pp(x)) = 0.

ii) (Po(x) — Po(y), x —y) = 0, and the inequality is strict when Pq(x) # Po(y).

iii) [[Pa(x) = PaIl < lIx —yll.

Lemma 3.2 Let the assumptions H; and H, hold and the sequence {xy} is generated by
Algorithm 1. For any x* such that F(x*) = 0, then

s = XN < Mg — 7N = Ixpeen — xell?, (14)

Also, the sequence {xy} is bounded. Furthermore, either the sequence {x\} is finite while the
last iterate is a solution of (1) or the sequence is infinite and

Jim fIxg s = xill = 0. (15)
Moreover, {x;} converges to some solution of (1). Proof Theorem 2.1, in Solodov and

Svaiter's [17], gives the result.

Lemma 3.3 Suppose that the assumption 3.1 holds and the sequences {xi} and {zy} are
generated by algorithm 1, then

o = Min {B %} (16)
Proof By the line search rule (9), if ay # B then @ = p~ay does not satisfy (9). This means
that —F(x, + p~ toydi)Td, < 0 p~ Loy Viclldill? < o @lldill?, whereyy = m and 2 =
Xy + O dy.
The Lipschitz continuity of F and (3) result in the following: c||Fy|?> < —Ffdy =
(F@o - F”E:Xlﬁz)Tdk — F@i0 dx < IF(Z) — FGa)lllldill + o Gielldiel1* = Qe (L + o)l dglI>. So,
pcllFi

U Z Tl AR This mean that (16) is correct, and the proof is complete.

As an obvious, it is resulted from Lemma 3.3 that the line search of algorithm 1 is well-
defined.

Theorem 3.1 Suppose that the assumptions H; and H, hold and the sequence {xy} is
generated by Algorithm 1, then

lim [|Fy | = 0. (17)

Proof The relation (8) and the line search (9) result that

|F(z1) T (xk—2z10) | _ —oF(zg) Tdy > oo || dicll?

IF(zill IFIl  — Q+IF@IIDIF@II

Ixk+1 — Xk”2 = (18)
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The boundedness of the sequence {Xx} along with the continuity of the mapping F result that
[[F(x) )]l is bounded. So, there is a constant M > 0 such that ||F(xx)|| < M. By the Lipschitz
continuity of F, it can be concluded that

IF@II < IF(zi) — FGidll + IFxi)ll < Lz — x) + M = Lagelldg |l + M. (19)

oag?||dil|? N
(1+Logldg ll+M) (Lo |l dic ||+ M)’ !

The relation (18) together with (19) give ||Xgpq — Xill? =

( oay?||dil|?
(14 Loy [l e[l +M) (Loge [l dye || +M)

llim XK1 — Xkl|? = lim ) It is easy to conclude that

k—>oo

lim ogldy ]| = 0. (20)

Now, by using Cauchy Schwartz inequality along with (3), we get c||Fyl|? < —Fidy <
IFxlllldgll. So

cl|Fll < [ldgll- (21)
On the other hand, multiplying (16) by ||d||? results that

. Fll?
ogelldl2 = Min {Blldy))?, 20, (22)

From (21) and (22), it can be resulted that
SollFill2 < coelldill? (23)

where 0y = Min {Bcz ,%}. The relation (20) together with (23) conclude that llirglollell = 0.
4. Numerical results

In this section, some numerical experiments are reported to compare the performance of the
new method along with the following three algorithms:

DFPB1: This method is coming from Ahookhosh et al. [1], it uses a three-term PRP-
based conjugate gradient direction.

MPRP: This method from Li and Li [14] uses a modified PRP- based direction.

MPRP*: This method takes the direction (2.8) in [14] with the line search (9) in this
paper.

The experiments were run on a PC with CPU 2.20 GHz and 8 GB RAM. All of the
codes were written in MATLAB R2012b programming environment. The running of the codes
will check if the provided data for problems in all algorithms converges to the identical points.
All of the algorithms terminate whenever ||Fy|l < 10™* or ||F(z)|| < 1074, or the total number
of iterates exceeds 500000. In all of the algorithms, the parameters are specified as follows: p =

0.26,p = 0.7,6 = 0.3,e = 10™*, and the initial adaptive step length is computed by B =
Fiedy
(F(xg+tdy) —Fi) Tdg/t

The performances of these methods are compared with respect to the number of

where t = 1078.

iterations Nj, the number of function evaluations Njand CPU time. In order to compare these



Mushtak A. K. Shiker and Keyvan Amini
70

algorithms, some famous test problems in [1] and [14] are used where the dimensions are
trapped between 5000-50000 for the following initial points:

xo = (10,10, ...,10)7, x; = (=10,-10,...,—10)7, x, = (1,1,...,1)7,
T
x3 = (_1’_1’ ""_1)Tl x4 = (1P%P§ll l%) /] xs = (01,01, ...,0.1)T,
12 1 2
X6 = (E!E!"-:l)’r; X7 = (1_5,1 —E,...,O)T.

The numerical results of running the algorithms are listed in Table 1 and 2. Table 1
contains the number of iterations and the evaluated functions while Table 2 contains the
numerical results of CPU time.

To have a comprehensive comparison among the reported results, the performance
profile introduced by Dolan and More [10] is used as a well-known tool for evaluating and
comparing the algorithms and presented a wealth information, including efficiency and
robustness. The proposed performance profiles of algorithms (New, DFPB1, MPRP and
MPRP*) are exploited in the sense of the number of iterates, the number of function
evaluations and CPU time in Figures 1-3 respectively. From these figures, it is easy to see that
the new proposed method obtains the most wins on approximately 80%, 80% and 68% of
problems respectively, and this clearly shows the superiority of the new method compared with
the other methods for solving large-scale nonlinear monotone equations.

I ——— NEW
Bz ———DFPB1 ||
01 ——MPRP |}
— = MPRP*
D 1 1 1 1 1 1 1
1 1.5 2 25 3 35 4 45 5

Figure 1: Performance profile of the iteration number
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Figure 3: Performance profile of CPU time

From these results, it can be concluded that imposing the proposed conjugate gradient
direction to projection algorithms can improve the promising behavior of algorithms for solving
large-scale nonlinear monotone equations. Also, it can be concluded that Algorithm 1 is able to
compute an accurate solution of problem (1) without employing any merit functions.

5. Conclusions

The presented work proposes a new projection method using a modified conjugate gradient
direction for solving a system of large-scale nonlinear monotone equations. The projection-
based algorithms are suitable for solving monotone equations because it belongs to the class of
derivative-free function-value based methods, and it doesn't use any merit function and
derivatives. Also, this method enables a simple globalization. The low memory requirement
(i.e., the low computational cost) of derivative-free conjugate gradient strategies makes the



Mushtak A. K. Shiker and Keyvan Amini
72

proposed algorithms prepare to face the large-scale problems. The global convergence of the
proposed algorithm is proved under standard assumptions. Preliminary numerical experiments
indicated that the proposed algorithm is very efficient, and it is competitive with some famous
conjugate gradient methods.
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