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Abstract. The paper studies the problem of cluster detection in noisy environment. The solution
of this problem is based on the well known Expectation Maximization (EM) algorithm. By utilizing
the Mahalanobis distance, and modifying the hidden variable, the rejection procedure is constructed
so that it omits data from calculation of the current iteration step. Thus we construct the adaptive
framework for solving the above problem. Several numerical examples are presented to illustrate the
proposed algorithm.
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1. Introduction

Clustering is a widely used exploratory data analysis tool that has been successfully applied to
data analysis, image processing, pattern recognition, engineering [2, 4, 6, 7, 8, 15, 17, 18], and
many other fields. In this paper, we focus on the detection of clusters in a noisy environment
based on the well-known EM algorithm [2, 3, 9, 11, 18]. This implies data sets X = {xi : i ∈
I} ⊂ Rn, I = {1, . . . ,m} with the presence of outliers or large database sets [2, 11, 13, 17].

Consequently, the main aim is to detect clusters {πj : j ∈ J}, J = {1 . . . , k}, k ≤ m, where
πj = {xi : i ∈ Ij ⊆ I}. As it was earlier mentioned, some data do not belong to any cluster, i.e.
they are noisy, and thus they disrupt the clustering process causing degeneration on the final
clusters structure. In this situation, the clustering problem becomes even more complicated and
requires an effective rejection procedure. The rejection procedure restricts the clustering process
on the selected data, resulting in an adaptive process which detects the specific statistical model.
Consequently, set X̃ = {xi : i ∈ Ĩ} ⊆ X is extracted, where Ĩ =

⋃
j∈J

Ij .

For that purpose we propose a rejection procedure within the EM algorithm by modifying
the hidden variable. The aim is to disregard noisy data from further calculation in the current
clustering step. In the sense of the Gaussian mixture model, the Mahalanobis distance is used,
which is widely applied in application in data clustering analysis [8, 11, 16]. The Mahalanobis
distance is used to determine data dispersion within cluster πj by weighted mean and weighted
median of data [13, 14, 19]. In this sense, the problem of dispersion is solved as the LS
(Least Squares) and the LAD (Least Absolute Deviation) problems which have a wide variety
of applications, such as image processing, clustering, data analysis, outliers detection, pattern
recognition etc. [1, 6, 12, 14, 17, 19]. To accomplish a better clustering quality, the dispersion
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of each cluster is pondered with a rejection parameter α > 0, where data is considered noisy if
it exceeds each threshold.

In order to determine the ddesired rejection parameter α > 0, calculations on the modified
EM are conducted on various numerical examples. To achieve this, a clustering quality is
considered. Many different and useful clustering validity measures exist to achieve this purpose.
Because there is a range of new measures to choose from, it is not easy to choose a specific
one. In our case, a cluster quality measure is provided by observation in the well known
Davies-Bouldin index [4, 15, 20]. Besides, the percentage of rejected data is also taken into the
observation because it gives good information about the noise ratio.

The paper is organized as follows: in Section 2 the EM algorithm is briefly introduced, as
well as its implementation for the Gaussian mixture model which is presented in Subsection
2.1. In Section 3 the modified EM algorithm and its pseudocode are presented. In Section 4
we present several illustrative examples, and finally, in Section 5 we give the conclusion.

2. Clustering with EM algorithm

The EM algorithm is an iterative procedure aiming to compute the maximum likelihood esti-
mate (MLE) of log-likelihood

lnL(Θ|X) = lnP (X|Θ) (1)

where X is some random variable. In order to facilitate the ML estimation parameter Θ
for which the observed data are the most likely, the so-called hidden random variable Z is
introduced. Then, instead of solving the log-likelihood of the observed data X, the log-likelihood
function of the complete data (X,Z) is observed, i.e.

lnL(Θ|X,Z) = lnP (X,Z|Θ). (2)

In the presence of hidden data Z, in order to estimate model parameters Θ for which the
observed data are the most likely, the EM algorithm iteratively applies the following two steps:

Expectation step (E-step): Calculate the expected value of the complete data log-likelihood
function under the current estimate of the parameters Θ(t):

Q(Θ|Θ(t)) = EZ|X,Θ(t) [lnL(Θ|X,Z)]. (3)

Maximization step (M-step): Find the parameter that maximizes this expectation:

Θ(t+1) = arg max
Θ

Q(Θ|Θ(t)). (4)

Each iteration consists of an E-step which finds the distribution for the unobserved variables Z.
In the M-step, the log-likelihood function is maximized under the assumption that the hidden
data Z are known. This whole procedure is repeated until some stopping criteria, e.g. until the
difference of change between the parameter updates becomes very small using a norm or until
convergence of the observed log-likelihood function (1) is established.

Convergence is assured since the algorithm is guaranteed to increase the log-likelihood at
each iteration and converge to a global or local maximum of the log-likelihood function [21].
Its convergence also depends on the initial parameters and on the model. However, even if a
local maximum solution is reached, it may still capture satisfactorily the clustering structure.
Once the algorithm has converged, parameters are assigned to clusters according to the final
estimates where data xi is appointed to cluster πj if

P (πj |xi) > P (πl|xi), j, l ∈ J, j 6= l, (5)

where P (πj |xi) is the probability of xi belonging to a cluster πj , and P (πl|xi) to a cluster πl,
respectively.
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2.1. The EM algorithm for the Gaussian mixture model

The Gaussian mixture model is a powerful model for data clustering. It models the data as a
mixture of multiple Gaussian distributions where each Gaussian component corresponds to one
cluster. The EM algorithm optimizes the Gaussian mixture model

P (x|Θ) =
∑

j∈J
wjP (x|θj), (6)

where wj represents the a priori probability of belonging to a corresponding cluster πj , what
directly implies

∑
j∈J wj = 1. The parameter θj = (µj ,Σj) is presented with expectation

µj ∈ Rn and covariance matrix Σj ∈ Rn×n of density function for the multivariate normal
(Gaussian) distribution of dimension n, i.e.

P (x|θj) =
1

(2π)n/2|Σj |1/2
e−

1
2 (x−µj)T Σ−1

j (x−µj). (7)

In this case the hidden variable Z determines the component from which the observation orig-
inates. A good choice for a hidden variable Z, where zi ∈ Rk is a measurement vector whose
entry zij is equal to one, if and only if, component j (i.e. cluster πj) contains observation xi.
In that case P (zij = 1) = wj and

∑
j∈J zij = 1 and we can write

P (Z = zi) =
∏

j∈J
w
zij
j . (8)

Now the complete log-likelihood function can be carried out as

lnL(Θ|X,Z) = lnP (X,Z|Θ) =
∑

i∈I

∑

j∈J
zij(lnwj + lnP (xi|θj)), (9)

where the aim is to estimate parameters Θ = {(wj , µj ,Σj) : j ∈ J} of the Gaussian mixture
model alternating E-step and M-step until convergence.

E-step: Thus, the E-step results with the calculation of expectation Q(Θ|Θ(t)) where Θ(t) =

{(w(t)
j , µ

(t)
j ,Σ

(t)
j ) : j ∈ J} (and thus θ

(t)
j = (µ

(t)
j ,Σ

(t)
j )) are current estimation of parame-

ters, i.e.

Q(Θ|Θ(t)) = EZ|X,Θ(t) [lnL(Θ|X,Z)]

=
∑

i∈I

∑

j∈J
h

(t)
ij (lnwj + lnP (xi|θj)). (10)

Parameter h
(t)
ij presents the posteriori probabilities, i.e. the probability that observation

xi is generated by the component π
(t)
j , defined as follows:

h
(t)
ij =

w
(t)
j P (xi|θ(t)

j )
∑

l∈J
w

(t)
l P (xi|θ(t)

l )
. (11)

M-step: In the M-step, an optimum of Q(Θ|Θ(t)) must be carried out. It can be analytically
solved from the equation ∇ΘQ(Θ|Θ(t)) = 0. Easily, the optimal results can be carried
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out as:

w
(t+1)
j =

1

m

∑

i∈I
h

(t)
ij , (12)

µ
(t+1)
j =

∑

i∈I
h

(t)
ij xi

∑

i∈I
h

(t)
ij

, (13)

Σ
(t+1)
j =

∑

i∈I
h

(t)
ij (xi − µ(t+1)

j )(xi − µ(t+1)
j )T

∑

i∈I
h

(t)
ij

. (14)

3. Modified EM algorithm

Considering the problem of finding clusters in data set X in presence of noisy data, it is possible
that the standard EM algorithm can not accomplish the desired results. That is because the
standard EM processes all data which may affect the clustering structure and consequently
alter the final results. This fact requires the data omission in the current EM steps in order
to preserve the cluster structure. This is carried out by modifying the hidden variable Z to Z̃,
where z̃i = δ̃izi. A noisy data is determined by δ̃i ∈ R which is defined as

δ̃i =

{
1, ‖δi‖ ≥ 1;
0, else,

(15)

where δi ∈ Rk presents a vector whose components δij are the Kronecker deltas defined as

δij =

{
1, dM (xi; θj) ≤ ασj ;
0, else.

(16)

As it is defined in (16), observation xi is detected as noisy if dM (xi; θj) exceeds the pre-
defined pondered value σj , which presents data dispersion of the observed cluster πj . Parameter
α > 0 presents a fine regulation factor of data rejection. The function dM : Rn → R presents
the Mahalanobis distance defined as

dM (xi; θj) =
√

(xi − µj)TΣ−1
j (xi − µj). (17)

Dispersion σj is derived directly from corresponding cluster πj as the minimization problem

σj = argmin
a∈R

∑

i∈Ij
P (xi|θj)(a− dM (xi; θj))

2, (18)

where Ij = {i ∈ I : δij = 1}. In this situation, problem (18) is solved in the sense of `2 norm
and is known as the LS problem where the optimal solution is called a weighted mean of data
[13]. If the problem of dispersion is observed in the sense of `1 norm, i.e.

σj = argmin
a∈R

∑

i∈Ij
P (xi|θj)|a− dM (xi; θj)|, (19)

then problem (19) is known as the LAD problem where the optimal solution is called a weighted
median of data [13, 14, 19]. In both cases, weights are set to be a value of probability density
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function, which gives a greater impact on the dispersion of those data which are better grouped.
Finally, the probability of hidden variable Z̃ is defined as

P (Z̃ = z̃i) = δ̃i
∏

j∈J
w
zij
j . (20)

Consequently, some data do not belong to any cluster, and thus they are rejected and considered
as noise. In this case δ̃i = 0, which directly indicates that the probability of belonging to any
cluster is equal to zero.

To execute the E-step and the M-step, the complete log-likelihood function lnL(Θ|X, Z̃)
must be derived. In this situation, we redefine probability (20) to the expression with the same
operation defined as

P (Z = zi) =
∏

j∈J
w
zij
j , i ∈ Ĩ = {i ∈ I : δ̃i = 1}. (21)

Consequently, lnL(Θ|X, Z̃) can be rewritten to

lnL(Θ|X̃, Z) =
∑

j∈J

∑

i∈Ĩ

zij(lnwj + lnP (xi|θj)). (22)

This implies the same optimization procedure as for the standard EM, with initialization step

Θ(t) = {(w(t)
j , µ

(t)
j ,Σ

(t)
j ) : j ∈ J}, together with σ

(t)
j > 0, j ∈ J , and the pre-defined rejection

parameter α > 0. Now Ĩ(t) = {i ∈ I : δ̃
(t)
i = 1} can be easily conducted, where

δ
(t)
ij =

{
1, dM (xi; θ

(t)
j ) ≤ ασ(t)

j ;

0, else,
(23)

and hence
σ

(t)
j = argmin

a∈R

∑

i∈I(t)j

P (xi|θ(t)
j )(a− dM (xi; θ

(t)
j ))2, (24)

or
σ

(t)
j = argmin

a∈R

∑

i∈I(t)j

P (xi|θ(t)
j )|a− dM (xi; θ

(t)
j )|, (25)

where I
(t)
j = {i ∈ I : δ

(t)
ij = 1}. Finally, it can be written that

δ̃
(t)
i =

{
1, ‖δ(t)

i ‖ ≥ 1;
0, else.

(26)

The results of the M-step now can be easily conducted as:

w
(t+1)
j =

1

m̃(t)

∑

i∈Ĩ(t)
h

(t)
ij , (27)

µ
(t+1)
j =

∑

i∈Ĩ(t)
h

(t)
ij xi

∑

i∈Ĩ(t)
h

(t)
ij

, (28)

Σ
(t+1)
j =

∑

i∈Ĩ(t)
h

(t)
ij (xi − µ(t+1)

j )(xi − µ(t+1)
j )T

∑

i∈Ĩ(t)
h

(t)
ij

, (29)



228 Vedran Novoselac and Zlatko Pavić

where m̃(t) = |Ĩ(t)|.
Because of the noisy environment, the initialization step presents a hard task, where the

goal is to refine the initial mixture model parameter to a better fit. A standard practice for the
execution of Algorithm 1 is to call a running for many different initial parameter values and
choose the mixture model with the best quality. Nevertheless, the initial parameters should
be reasonably determined. For example, initial component covariance matrices are set to the

identity matrix, i.e. Σ
(0)
j = I. Initial expectations µ

(0)
j can be efficiently selected by visual

insight or randomly generated over the data set X. In this sense the n-dimensional balls

dM (x, θ
(0)
j ) ≤ rj are introduced to present initial components defined by δ

(0)
ij . The radii rj are

selected to be less than the diameter of X, i.e. rj < diamX, diamX = maxi,j∈I ‖xi − xj‖,
where the proposed method has shown good properties if the n-dimensional ball intersects
cluster πj , which in most cases leads to its detection. Furthermore, the determination of rj
can be effectively done by visual insight, or by further research (e.g. aim is to accomplish

rj ≤ diamπj). Now data dispersions σ
(0)
j can be easily calculated by (24) or (25), as well as

the component weights

w
(0)
j =

rnj∑
l∈J

rnl
, (30)

which are obtained as the ratio of the observed n-dimensional volume of a Euclidean ball, with
a sum of all initialization balls. The determination of the optimal number of clusters is not
taken into the observation wherever it is supposed that it is known. A good insight into the
problem can be achieved by observing different numbers of clusters and choosing number k with
the best cluster quality measurement [10]. A pseudo-code for the modified EM is presented in
Algorithm 1.

By including the initialization step, the problem of the cluster detection becomes very
sensitive and multiple local maxima may occur. The stoppage criteria based on the difference
between parameter values is constructed, i.e.

‖Θ(t+1) −Θ(t)‖ =
√

∆2w(t+1) + ∆2µ(t+1) + ∆2Σ(t+1) (31)

where

∆2w(t+1) =
∑

j∈J
‖w(t+1)

j − w(t)
j ‖2, (32)

∆2µ(t+1) =
∑

j∈J
‖µ(t+1)

j − µ(t)
j ‖2, (33)

∆2Σ(t+1) =
∑

j∈J
‖Σ(t+1)

j − Σ
(t)
j ‖2, (34)

present the standard squared Euclidean norm for scalar, vector and matrix cases. If the dif-
ference does not exceed pre-defined ε > 0, then the stoppage of Algorithm 1 is achieved. The
proposed method has convergence property, where a problem occurs for situations when ini-
tialization component has no data, or rejection parameter α > 0 is too small, which causes
continuous cluster shrinking.
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Algorithm 1 The modified EM algorithm for the Gaussian mixture

1: Θ(0) = {(w(0)
j , µ

(0)
j ,Σ

(0)
j ) : j ∈ J}, rj > 0, σ

(0)
j > 0, ∀j ∈ J , α > 0, ε > 0, t = 0;

2: loop:
3: Calculate:

Ĩ(t) = {i ∈ I : δ̃
(t)
i = 1};

4: E-step: For every i ∈ Ĩ(t) and every j ∈ J calculate cluster
probability:

h
(t)
ij =

w
(t)
j P (xi|θ(t)j )∑

l∈J

w
(t)
l P (xi|θ(t)l )

;

5: M-step: Calculation of the Gaussian mixture model parameters for
every j ∈ J :

w
(t+1)
j =

1

m̃(t)

∑

i∈Ĩ(t)

h
(t)
ij ;

µ
(t+1)
j =

∑

i∈Ĩ(t)

h
(t)
ij xi

∑

i∈Ĩ(t)

h
(t)
ij

;

Σ
(t+1)
j =

∑

i∈Ĩ(t)

h
(t)
ij (xi − µ(t+1)

j )(xi − µ(t+1)
j )T

∑

i∈Ĩ(t)

h
(t)
ij

;

6: Iterate until:

if ‖Θ(t+1) −Θ(t)‖ ≤ ε then STOP;
else go to loop and t = t+ 1;

1

Remark 1. If parameter α > 0 satisfies next inequality for each iteration step of the modified
EM, i.e.

α ≥ max
i∈I,j∈J

dM (xi; θ
(t)
j )

σ
(t)
j

, ∀t, (35)

then Ĩ(t) = I, ∀t, i.e. all data are considered as no-noisy. This implies that the modified EM
acts the same as the standard EM for α� 0.

Remark 2. The squared Mahalanobis distance approximates a Chi-squared distribution χ2
n

with n degrees of freedom what can indicate whether a data point may be an outlier or have
a multivariate normal distribution [5]. In this case observation xi belongs to cluster πj if it
satisfies

d2
M (xi, θj) ≤ χ2

n(p), (36)

where p ∈ (0, 1) determines the p-quantile value, and therefore p ≈ 0.05 will be reasonable, pre-
venting the influence of those observations which are located on the tail regions of the Gaussians
of low probability. This fact leads to the approximation of the rejection parameter α > 0, which
can be conducted from (16) and (36) as α ≈ 1

σj
χn(p).
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4. Numerical examples

This section provides a few numerical examples. Data sets are distributed by the Gaussian
mixture model, whereas noises are added randomly over a pre-defined region or distributed
by a statistical model. In order to observe the clustering efficiency of the modified EM, the
well-known Davies-Bouldin (DB) index is observed, which is defined as

DB =
1

k

∑

j∈J
Rj , (37)

where

Rj = max
l∈J
j 6=l

Rjl, (38)

Rjl =
rj + rl
Djl

, (39)

Djl = d(µj , µl), (40)

rj =
1

mj

∑

i∈Ij
d(xi, µj). (41)

In (40) and (41) d : Rn × Rn → R presents the Euclidean distance measurement, while mj in
(41) presents a cardinal number of πj , i.e. mj = |πj |. The lower DB index indicates better

clustering properties. The percentage of the rejected data π̃ = X\X̃, i.e. noise ratio

w̃ =
m− m̃
m

(42)

is also taken into the observation, where m̃ = |X̃|. The stoppage criteria iteration rate is also
observed for the threshold ε > 0.

Example 1. The data set X is generated by the Gaussian distributions

Xj ∼ N (µj ,Σj), j = 1, 2, 3,

while noisy data are generated by a random vector, uniformly distributed over a pre-defined
rectangle Ω = [a, b]× [c, d], i.e.

X4 ∼ U(Ω).

The number of data generated by the corresponding random vectors are mj = 50, j = 1, 2, 3,
and m4 = 100, i.e. m = m1 +m2 +m3 +m4 = 250.

In Figure 1a) the initialization step is presented together with data set X. Contours of

dM (x; θ
(0)
j ) = rj, ∀j ∈ J , are presented with red-dashed lines, together with their corresponding

expectations µ
(0)
j , also marked red. Figures 1b) and 1c) present final results of the modified EM

in the sense of the LS(α = 3) and the LAD(α = 3) problems. Now red-dashed lines represent

ellipses dM (x; θ
(t)
j ) = ασ

(t)
j , ∀j ∈ J , with their corresponding expectation µ

(t)
j . The blue-dashed

lines present the original contours dM (x; θj) = ασ
(t)
j and expectations µj, ∀j ∈ J , as a visual

insight into the clustering quality. In Figures 1d), 1e), and 1f) trends are presented via α
of the DB index, noise ratio w̃, and the iteration rate t of the stoppage criteria, where each
initialization step is set to be as it is presented in Figure 1a). The solid graph presents the
modified EM in the sense of the LS, while dashed in the sense of the LAD problem. It can be
seen from Figure 1d) that both graphs have breakdown points, indicating cluster distortion. At
the same time, a great amount of data is associated with the clusters, which can be seen from
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Figure 1: Cluster detection with the modified EM.

the graphs presented in Figure 1e). Finally, this fact suggests that some data are noise, and can
point to a rejection parameter α. In our case α = 3 points to a good cluster quality and stable
noise ratio at the same time. In Figure 1f) the iteration rate of stoppage criteria for ε = 0.1 is
presented.

Example 2. The data set X is generated by the Gaussian distributions

Xj ∼ N (µj ,Σj), j = 1, 2, 3, 4,

while noisy environment is generated by the random vector

X5 ∼ N (ϕ(ρ),Σ5), ρ ∼ U([a, b]),

where ϕ : R → R2 presents a curve. In this example we obsereved
ϕ(u) = s0 + (β1 sin(γ1u), β2 sin(γ2u)), u ∈ [a, b], and some s0 ∈ R2. The number of data gen-
erated by corresponding random vectors are mj = 50, j = 1, 2, and mj = 150, j = 3, 4, and
m5 = 450, i.e. m = m1 +m2 +m3 +m4 +m5 = 950.

Analogously to Example 1, in Figure 2a) the initialization step is presented together with
data set X with the same initial covariance matrix. Figures 2b) and 2c) present final results
where α = 3 is observed for both situations. In Figures 2d), 2e) and 2f) trends are presented
via α of DB index, noise ratio w̃, and iteration rate t for ε = 0.1. The graphs in the LAD sense
show that for an α ≈ 2.5 the method has no results. In this situation the cluster shrinks, which
leads to bad condition matrices, causing the stoppage of Algorithm 1.

Example 3. The data set X is generated by the Gaussian distributions

Xj ∼ N (µj ,Σj), j = 1, 2, 3, 4, 5, 6,

whereas noisy environment is generated by the random vector

X7 ∼ U(Ω),

where Ω = {x ∈ R2 : (d(x, s1) < β1) || (β2 < d(x, s2) < β1)}, 0 < β2 < β1, and some s1, s2 ∈ R2

such that d(s1, s2) < β1. The number of data generated by the random vectors are mj = 90,
j = 1, 2, 3, 4, 5, 6, and m7 = 400, i.e. m = 960.
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Figure 2: Cluster detection with the modified EM.

Analogously to Example 1, Figure 3a) presents the initialization step together with data set
X. Figures 3b) and 3c) present final results, where α = 3 is observed for both situations.
Now DB index presented in Figure 3d) is not reliable because some clusters are intersected.
However, the noise ratio, presented in Figure 3e), shows the real situation from which the
rejection parameter can be easily determined, i.e. α = 3. In Figure 3f) the iteration rate of
stoppage criteria for threshold ε = 0.1 is presented.
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Figure 3: Cluster detection with the modified EM.
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5. Conclusion

Cluster detection in a noise environment with implemented modification within the EM algo-
rithm proved to be a good choice. It has been shown that the rejection procedure based on the
Mahalanobis distance preserves the clusters structure from noise data and effectively extracts
the requested mixture model. The noise ratio has proven to be a good choice alongside the
Davies-Bouldin index, where results showed a stability of the indicated parameter α = 3 for
the LS and the LAD modifications, respectively. Besides, for those rejection parameters results
show very similar characteristics for both modifications, where Algorithm 1 in the LAD sense
proves to be more robust on the outliers [13], which can be seen from the graphs displaying the
noise ratio trends. The iteration rate results for the criterion ε = 0.1 of the parameter α = 3
are also satisfactory and stable, where the convergence of Algorithm 1 is established for every
properly chosen initialization step.
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